Supplementary Information:

Asymmetric 1,4-Functionalization of 1,3-Enynes via Dual Photoredox and Chromium Catalysis

Authors: Feng-Hua Zhang^{1,2,3}, Xiaochong, Guo^{1,2,3}, Xianrong Zeng^{1,2}, Zhaobin Wang^{1,2*} Affiliations: ¹Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, Zhejiang Province, China;

² Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China;
³ These authors contributed equally to this work

Table of Contents

I.	Supplementary Methods	52
	1.1 General Information S	52
	1.2 Preparation of Starting Materials	33
	1.3 Asymmetric Radical 1,4-functionalization of 1,3-Enynes	36
	1.4 Other Radical Precursors and Synthetic Transformations	14
	1.5 Effect of Reaction Parameters	50
	1.6 Preliminary Mechanistic Study	52
	1.7 Assignment of the Absolute Configuration	57
	1.8 NMR Spectra	50
	1.9 Stereoselectivity Analysis S13	38
II Supplementary References S205		

I. Supplementary Methods

1.1 General Information

Unless otherwise noted, reagents were used as received from Sigma-Aldrich, Alfa, TCI, Energy Chemical, J&K. The aldehydes used for the allenylation reaction had been purified by reduced pressure distillation or recrystallization. All reactions were performed under an atmosphere of dry nitrogen gas. Anhydrous THF was purchased from J&K and stored under nitrogen gas. Other solvents were purified with activated aluminum oxide using a solvent-purification system.

NMR spectra were recorded on a Bruker spectrometer with a Prodigy broadband cryoprobe (500 MHz or 600 MHz for ¹H and 126 MHz or 151 MHz for ${}^{13}C$; chemical shifts (δ) are reported in ppm downfield from tertramethylsilane, using the solvent resonance as the internal standard. Optical rotation data were obtained with a Jasco P-2000 polarimeter at 589 nm, using a 50 mm path-length cell in the solvent and at the concentration indicated. High resolution mass spectrometric analysis was performed on ultraliquid chromatography-time-of-flight mass performance spectrometer (Synapt-G2-Si, Waters, USA) with electron spray ionization (ESI) resource and atmosphere pressure chemical ionization (APCI) resource. SFC analysis was carried out on an Agilent 1260 series system with Daicel CHIRALPAK® or Daicel CHIRALCEL® columns (internal diameter 4.6 mm, column length 250 mm, particle size 5 µm). HPLC analysis was carried out on Waters Arc HPLC system with Daicel CHIRALPAK® or Daicel CHIRALCEL® columns (internal diameter 4.6 mm, column length 250 mm, particle size 5 µm). The visible lights (160-440 nm LED, 20 W) were purchased from Kessil (website: http://kessil.com/science/PR160L.php).

1.2 Preparation of Starting Materials

Ligand Preparation: The ligands (R,S)-L1 and (S,R)-L1 were prepared according to a reported literature procedure, and all the analytical data matched the report (1).

DHP Esters Preparation:

The above DHP esters were prepared according to reported literature procedures, and all the analytical data matched the reports (2).

The reaction flask was charged with ethyl acetoacetate (3.5 mL, 27 mmol), cyclopent-3-ene-1-carbaldehyde (1.3 g, 13.5 mmol), and ethanol (30 mL). To the above solution, ammonium hydroxide (1.1 mL, 27 mmol) was added slowly. Then the system was heated to reflux with stirring. After completion of the reaction, as determined by TLC, the solution was cooled, concentrated, and

purified by silica-gel column chromatography (PE/EtOAc) and followed by recrystallization (EtOH/PE) to afford the desired product **S8** as a white solid.

¹H NMR (500 MHz, CDCl₃) δ 5.68 – 5.59 (m, 3H), 4.26 – 4.08 (m, 5H), 2.30 (s, 6H), 2.24 – 2.05 (m,5H), 1.30 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 168.4, 144.6, 130.3, 102.8, 59.6, 46.3, 35.9, 34.5, 19.5, 14.4.

HRMS (ESI) m/z [M + H]⁺ calcd for C₁₈H₂₆NO₄: 320.1862, found: 320.1824.

The above 1,3-envnes were prepared according to reported literature procedures, and all the analytical data matched the reports (3).

General Procedure 2 (GP-2): Preparation of 1,3-enynes $R \longrightarrow H \xrightarrow{PdCl_2(PPh_3)_2 (2 \text{ mol}\%)}_{I.5 \text{ equiv}} \xrightarrow{Cul (4 \text{ mol}\%)}_{Ft_3N (40 \text{ mL})} \xrightarrow{R}$

To an oven dried Schlenk flask equipped with a magnetic stir bar was successively added PdCl₂(PPh₃)₂ (0.8 mmol, 562 mg.) and CuI (1.6 mmol, 305 mg). The system was purged with nitrogen. Dry Et₃N (40 mL) was then added followed by the corresponding alkyne (40 mmol, 1.0 equiv.), vinyl bromide (60 mmol, 1.0 M in THF, 60 mL) via syringe. The reaction mixture was stirred at room temperature for 6 h. After evaporation under vacuum, the residue was purified by flash chromatography over silica gel and distilled under reduced pressure to give the desired 1,3-enynes.

All the yields have not been optimized.

but-3-en-1-yn-1-yldiisopropylsilane (S15). The title compound was prepared according to the GP-2, using ethynyldiisopropylsilane, purified by flash column chromatography: 100% hexanes, 85% yield, colorless liquid.

¹H NMR (500 MHz, CDCl₃) δ 5.83 (ddd, J = 17.6, 11.1, 0.9 Hz, 1H), 5.71 (dd,

J = 17.6, 2.3 Hz, 1H), 5.53 (dd, *J* = 11.1, 2.3 Hz, 1H), 3.76 (s, 1H), 1.13 – 0.99 (m, 14H).

¹³C NMR (126 MHz, CDCl₃) δ 128.3, 117.2, 106.4, 88.8, 18.5, 18.2, 10.8.

S16

((1-(but-3-en-1-yn-1-yl)cyclohexyl)oxy)trimethylsilane (S16). The title compound was prepared according to the GP-2, using ((1ethynylcyclohexyl)oxy)trimethylsilane, purified flash column by chromatography: 100% hexanes, 76% yield, colorless liquid.

¹H NMR (500 MHz, CDCl₃) δ 5.84 (dd, *J* = 17.6, 11.1 Hz, 1H), 5.60 (dd, *J* = 17.6, 2.1 Hz, 1H), 5.45 (dd, *J* = 11.1, 2.1 Hz, 1H), 1.86 – 1.84 (m, 2H), 1.69 – 1.42 (m, 8H), 0.19 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 126.3, 117.1, 94.1, 84.0, 70.2, 41.2, 25.3, 23.1, 1.9. HRMS (APCI) m/z [M + H]⁺ calcd for C₁₃H₂₃SiO: 223.1518, found: 223.1517.

The above NHPI esters were prepared according to reported literature procedures, and all the analytical data matched the reports (4).

1.3 Asymmetric Radical 1,4-functionalization of 1,3-Enynes

General procedure 3 (GP-3): Asymmetric 1,4-functionalization of 1,3enynes with DHP esters.

Preparation of the catalyst solution: In a nitrogen-filled glovebox, and oven-dried 20 mL vial with a magnetic stir bar, were charged the $CrCl_2$ (5.0 mg, 0.04 mmol, 10 mol%) and (*S*,*R*)-**L1** (23 mg, 0.048 mmol, 12 mol%). Then 8.0 mL THF was added and the vial was closed with a PTFE septum cap, and then stirred at room temperature for 2 h.

Catalytic asymmetric radical 1,4-functionalization of 1,3-enynes: In a nitrogen-filled glovebox, to the prepared catalyst solution were added the 1,3-enynes (0.6 mmol, 1.5 equiv), the aldehydes (0.4 mmol, 1.0 equiv), the DHP esters (0.6 mmol, 1.5 equiv), and 4-CzIPN (6.4 mg, 0.008 mmol, 2 mol%) sequentially. Then the vial was closed with a PTFE septum cap, and taken out of the glovebox. Then, the reaction was irradiated with two 20 W 160-440 nm LED for 12 hours (tube 5 cm away from lights, fans for cooling, 30-35 °C). After that, the reaction mixture was concentrated and run through a short silica gel pad with hexanes/EtOAc (3:1) as the eluent. Then the solvent was removed under the reduced pressure. The diastereoselectivity was determined via ¹H NMR analysis of the crude reaction mixture. and the residue was purified by flash chromatography to provide the desired product and the ee was determined via HPLC analysis.

Supplementary Figure 1. Reaction Set-up

6-methyl-1-phenyl-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 3). The title compound was prepared according to the GP-3 from benzaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow$ 10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 131 mg, 92% yield, 20:1 dr, 95% ee; (*S*,*R*)-**L1**: 131 mg, 92% yield, 20:1 dr, 94% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (R,S)-L1: 3.6 min (major), 4.4 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.34 (m, 2H), 7.31 (dd, *J* = 10.2, 4.8 Hz, 2H), 7.24 (ddd, *J* = 6.3, 4.4, 1.3 Hz, 1H), 5.13 (s, 1H), 5.07 (td, *J* = 7.6, 2.1 Hz, 1H), 2.32 (brs, 1H), 1.99 – 1.86 (m, 2H), 1.57 (dp, *J* = 13.4, 6.7 Hz, 1H), 1.17 – 1.08 (m, 3H), 1.06 (d, *J* = 7.2 Hz, 9H), 0.93 (d, *J* = 7.3 Hz, 9H), 0.91 – 0.85 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 206.6, 143.6, 128.2, 127.6, 127.2, 98.0, 88.9, 72.7, 38.0, 29.0, 22.3, 22.2, 18.7, 18.4, 11.6.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₃H₃₇Si: 341.2664, found: 341.2650. [α]²⁴_D = –181.2 (*c* = 0.5, CHCl₃); 95% ee, from (*R*,*S*)-L1.

6-methyl-1-(*o*-tolyl)-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 4). The title compound was prepared according to the GP-3 from 2-methylbenzaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow$ 10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 141 mg, 95% yield, > 20:1 dr, 96% ee; (*S*,*R*)-**L1**: 142 mg, 96% yield, > 20:1 dr, 97% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 5.1 min (major), 5.5 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.44 (dd, *J* = 7.5, 1.2 Hz, 1H), 7.18 (td, *J* = 7.4, 1.5 Hz, 1H), 7.13 (ddd, *J* = 13.6, 9.8, 4.5 Hz, 2H), 5.41 (s, 1H), 4.93 (ddd, *J* = 8.0, 7.2, 2.5 Hz, 1H), 2.39 (s, 3H), 2.08 (d, *J* = 5.3 Hz, 1H), 1.92 (dt, *J* = 13.8, 6.9 Hz, 1H), 1.83 (ddd, *J* = 13.9, 8.1, 7.0 Hz, 1H), 1.48 (dt, *J* = 13.4, 6.7 Hz, 1H), 1.21 – 1.11 (m, 3H), 1.08 (d, *J* = 7.3 Hz, 9H), 0.99 (d, *J* = 7.3 Hz, 9H), 0.82 (dd, *J* = 16.9, 6.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 207.2, 141.2, 135.6, 130.4, 127.4, 126.8, 125.8, 96.8, 88.2, 69.9, 37.8, 29.0, 22.3, 22.1, 19.3, 18.7, 18.5, 11.8.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₄H₃₉Si: 355.2821, found: 355.2830 $[\alpha]^{24}D = -133.2$ (*c* = 0.5, CHCl₃); 96% ee, from (*R*,*S*)-L1.

6-methyl-1-(*m*-tolyl)-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 5). The title compound was prepared according to the GP-3 from 3-methylbenzaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow$ 10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 128 mg, 86% yield, 13:1 dr, 93% ee; (*S*,*R*)-**L1**: 130 mg, 88% yield, 13:1 dr, 93% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.6 min (major), 4.3 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.22 – 7.14 (m, 3H), 7.07 – 7.03 (m, 1H), 5.10 – 5.07 (m, 2H), 2.34 (s, 3H), 2.29 (d, *J* = 5.3 Hz, 1H), 2.00 – 1.88 (m, 2H), 1.64 – 1.56 (m, 1H), 1.17 – 1.09 (m, 3H), 1.06 (d, *J* = 7.1 Hz, 9H), 0.93 (d, *J* = 7.2 Hz, 9H), 0.89 (t, *J* = 6.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 206.6, 143.4, 137.7, 128.3, 128.1, 128.0, 124.3, 98.0, 88.8, 72.6, 38.1, 29.0, 22.3, 22.2, 21.4, 18.7, 18.4, 11.6.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₄H₃₉Si: 355.2821, found: 355.2816. [α]²⁴_D = –146.8 (*c* = 0.5, CHCl₃); 93% ee, from (*R*,*S*)-L1.

1-(4-fluorophenyl)-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 6). The title compound was prepared according to the GP-3 from 4-fluorobenzaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: 5→10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 142 mg, 95% yield, > 20:1 dr, 93% ee; (*S*,*R*)-**L1**: 142 mg, 95% yield, > 20:1 dr, 92% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (R,S)-L1: 3.7 min (major), 4.4 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.31 (m, 2H), 7.02 – 6.98 (m, 2H), 5.13 (s, 1H), 5.07 (td, *J* = 7.6, 2.1 Hz, 1H), 2.31 (s, 1H), 2.00 – 1.83 (m, 2H), 1.58 (dp, *J* = 13.3, 6.7 Hz, 1H), 1.18 – 1.09 (m, 3H), 1.06 (d, *J* = 7.0 Hz, 9H), 0.95 (d, *J* = 7.2 Hz, 9H), 0.88 (dd, *J* = 8.2, 6.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 206.7 (s), 162.2 (d, *J* = 245.5 Hz), 139.5 (d, *J* = 3.1 Hz), 128.8 (d, *J* = 8.1 Hz), 114.9 (d, *J* = 21.4 Hz), 98.1 (s), 89.0 (s), 72.0 (s), 38.0 (s), 29.0 (s), 22.3 (s), 22.2 (s), 18.6 (s), 18.4 (s), 11.6 (s).

¹⁹F NMR (471 MHz, CDCl₃) δ -115.16.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₃H₃₆SiF: 359.2570, found: 359.2566.

 $[\alpha]^{24}$ _D = -187.2 (*c* = 0.5, CHCl₃); 93% ee, from (*R*,*S*)-L1.

1-(4-chlorophenyl)-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (**Figure 3, entry 7).** The title compound was prepared according to the **GP-3** from 4-chlorobenzaldehyde, enyne **1** and DHP ester **2**, purified by flash column chromatography on silica gel: 5→10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 122 mg, 78% yield, 15:1 dr, 91% ee; (*S*,*R*)-**L1**: 122 mg, 78% yield, 15:1 dr, 93% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.6 min (major), 4.2 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.25 (m, 4H), 5.12 (s, 1H), 5.04 (t, *J* = 7.5 Hz, 1H), 2.28 (s, 1H), 1.96 – 1.81 (m, 2H), 1.54 (tt, *J* = 13.3, 6.7 Hz, 1H), 1.14 (dt, *J* = 14.5, 7.3 Hz, 3H), 1.06 (d, *J* = 7.5 Hz, 9H), 0.96 (d, *J* = 7.3 Hz, 9H), 0.87 (dd, *J* = 9.5, 7.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 207.1, 142.2, 133.2, 128.4, 128.3, 97.9, 89.0, 72.1, 37.9, 29.0, 22.3, 22.1, 18.6, 18.5, 11.6.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₃H₃₆SiCl: 375.2275, found: 375.2286.

 $[\alpha]^{24}$ _D = -128.8 (*c* = 0.5, CHCl₃); 91% ee, from (*R*,*S*)-L1.

1-(4-bromophenyl)-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 8). The title compound was prepared according to the GP-3 from 4-bromobenzaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: 5→10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 118 mg, 68% yield, 13:1 dr, 93% ee; (*S*,*R*)-**L1**: 118 mg, 68% yield, 13:1 dr, 92% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 4.2 min (major), 5.2 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 8.5 Hz, 2H), 5.11 (s, 1H), 5.04 (td, *J* = 7.8, 1.9 Hz, 1H), 2.24 (s, 1H), 1.89 (dtd, *J* = 21.6, 14.0, 7.3 Hz, 2H), 1.58 – 1.50 (m, 1H), 1.17 – 1.09 (m, 3H), 1.06 (d, *J* = 7.1 Hz, 9H), 0.96 (d,

J = 7.2 Hz, 9H), 0.86 (dd, *J* = 10.7, 6.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 207.2, 142.8, 131.2, 128.8, 121.3, 97.9, 89.0, 72.1, 37.9, 29.0, 22.3, 22.1, 18.7, 18.5, 11.6.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₃H₃₆SiBr: 419.1770, found: 419.1735.

 $[\alpha]^{24}$ _D = -135.2 (*c* = 0.5, CHCl₃); 93% ee, from (*R*,*S*)-L1.

6-methyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 9). The title compound was prepared according to the **GP-3** from 4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)benzaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 93 mg, 48% yield, 16:1 dr, 96% ee; (*S*,*R*)-**L1**: 94 mg, 49% yield, 16:1 dr, 95% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.6 min (major), 3.9 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 5.13 (s, 1H), 5.05 (td, *J* = 7.7, 1.9 Hz, 1H), 2.26 (d, *J* = 4.8 Hz, 1H), 1.97 – 1.83 (m, 2H), 1.56 – 1.52 (m, 1H), 1.34 (s, 12H), 1.17 – 1.09 (m, 3H), 1.06 (d, *J* = 7.2 Hz, 9H), 0.94 (d, *J* = 7.3 Hz, 9H), 0.86 (dd, *J* = 8.0, 6.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 207.1, 146.8, 134.7, 126.4, 97.8, 88.8, 83.7, 72.7, 37.9, 29.0, 24.9, 24.8, 22.3, 22.2, 18.7, 18.5, 11.6.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₉H₄₈SiBO₂: 467.3522, found: 467.3521.

 $[\alpha]^{24} = -105.2 \ (c = 0.5, \text{CHCl}_3); 96\% \text{ ee, from } (R,S)-\text{L1}.$

1-(4-methoxyphenyl)-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 10). The title compound was prepared according to the GP-3 from 4-methoxybenzaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $10\rightarrow15\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 125 mg, 81% yield, > 20:1 dr, 95% ee; (*S*,*R*)-**L1**: 136 mg, 88% yield, > 20:1 dr, 95% ee.

HPLC analysis: The ee was determined on a CHIRALPAK IC-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 5.6 min (major), 5.2 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 6.87 – 6.83 (m, 2H), 5.13 – 5.05 (m, 2H), 3.80 (s, 3H), 2.28 (d, *J* = 5.1 Hz, 1H), 2.03 – 1.90 (m, 2H), 1.62 (td, *J* = 13.4, 6.7 Hz, 1H), 1.16 – 1.07 (m, 3H), 1.05 (d, *J* = 6.9 Hz, 9H), 0.95 – 0.88 (m, 15H).

¹³C NMR (126 MHz, CDCl₃) δ 206.2, 159.1, 135.8, 128.5, 113.6, 98.1, 88.9, 72.1, 55.3, 38.2, 29.0, 22.4, 22.2, 18.7, 18.4, 11.6.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₄H₃₉SiO: 371.2770, found: 371.2737.

 $[\alpha]^{24}$ _D = -130.8 (*c* = 0.5, CHCl₃); 95% ee, from (*R*,*S*)-L1.

6-methyl-1-(4-(methylthio)phenyl)-2-(triisopropylsilyl)hepta-2,3-dien-1ol (Figure 3, entry 11). The title compound was prepared according to the GP-3 from 4-(methylthio)benzaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $10\rightarrow15\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 143 mg, 89% yield, > 20:1 dr, 95% ee; (*S*,*R*)-**L1**: 142 mg, 88% yield, > 20:1 dr, 94% ee.

HPLC analysis: The ee was determined on a CHIRALPAK IC-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 4.6 min (major), 4.3 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.23 – 7.20 (m, 2H), 5.12 – 5.04 (m, 2H), 2.47 (s, 3H), 2.26 (d, *J* = 5.4 Hz, 1H), 1.99 – 1.86 (m, 2H), 1.62 – 1.56 (m, 1H), 1.17 – 1.08 (m, 3H), 1.06 (d, *J* = 7.1 Hz, 9H), 0.94 (d, *J* = 7.2 Hz, 9H), 0.88 (dd, *J* = 8.4, 6.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 206.7, 140.7, 137.5, 127.7, 126.6, 97.9, 88.9, 72.2, 38.0, 29.0, 22.3, 22.2, 18.7, 18.5, 16.1, 11.6.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₄H₃₉SiS: 387.2542, found: 387.2507.

 $[\alpha]^{24} = -172.4$ (*c* = 0.5, CHCl₃); 95% ee, from (*R*,*S*)-L1.

N-(4-(1-hydroxy-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1yl)phenyl)acetamide (Figure 3, entry 12). The title compound was prepared according to the **GP-3** from *N*-(4-formylphenyl)acetamide, enyne **1** and DHP ester **2**, purified by flash column chromatography on silica gel: $10 \rightarrow 15\%$ EtOAc in hexanes, white solid.

(*R*,*S*)-**L1**: 131 mg, 79% yield, > 20:1 dr, 94% ee; (*S*,*R*)-**L1**: 122 mg, 74% yield, > 20:1 dr, 94% ee.

HPLC analysis: The ee was determined on a CHIRALPAK IC-3 column (15% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 9.6 min (major), 10.2 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 7.17 (s, 1H), 5.10 – 5.07 (m, 2H), 2.30 (d, *J* = 5.6 Hz, 1H), 2.17 (s, 3H), 2.01 – 1.88 (m, 2H), 1.66 – 1.58 (m, 1H), 1.16 – 1.08 (m, 3H), 1.05 (d, *J* = 7.0 Hz, 9H), 0.93 (d, *J* = 7.2 Hz, 9H), 0.90 (t, *J* = 6.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 206.5, 168.1, 139.4, 137.4, 127.9, 119.2, 97.9, 89.0, 72.1, 38.0, 29.0, 24.7, 22.4, 22.2, 18.7, 18.4, 11.6.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₅H₄₀SiNO: 398.2879, found: 398.2893.

 $[\alpha]^{24} = -201.2$ (*c* = 0.5, CHCl₃); 94% ee, from (*R*,*S*)-L1.

6-methyl-1-(4-(trifluoromethyl)phenyl)-2-(triisopropylsilyl)hepta-2,3dien-1-ol (Figure 3, entry 13). The title compound was prepared according to the GP-3 from 4-(trifluoromethyl)benzaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 102 mg, 60% yield, 10:1 dr, 94% ee; (*S*,*R*)-**L1**: 102 mg, 60% yield, 10:1 dr, 94% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.9 min (major), 5.4 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, *J* = 8.1 Hz, 2H), 7.48 (d, *J* = 8.2 Hz, 2H), 5.22 (d, *J* = 4.5 Hz, 1H), 5.00 (ddd, *J* = 8.6, 7.0, 1.9 Hz, 1H), 2.25 (d, *J* = 5.9 Hz, 1H), 1.87 (dt, *J* = 13.7, 6.8 Hz, 1H), 1.77 (ddd, *J* = 14.0, 8.2, 7.0 Hz, 1H), 1.44 (dt, *J* = 13.4, 6.7 Hz, 1H), 1.23 – 1.11 (m, 3H), 1.08 (d, *J* = 7.2 Hz, 9H), 0.99 (d, *J* = 7.3 Hz, 9H), 0.81 (dd, *J* = 19.8, 6.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 207.8 (s), 147.8 (s), 129.6 (q, *J* = 32.3 Hz), 127.2 (s), 125.0 (q, *J* = 3.8 Hz), 124.2 (q, *J* = 271.9 Hz), 97.8 (s), 88.9 (s), 72.3 (s), 37.7 (s), 29.0 (s), 22.2 (s), 22.1 (s), 18.6 (s), 18.5 (s), 11.6 (s).

¹⁹F NMR (471 MHz, CDCl₃) δ -62.45.

HRMS (APCI) m/z $[M - H_2O + H]^+$ calcd for C₂₄H₃₆SiF₃: 409.2538, found: 409.2509.

 $[\alpha]^{24}$ = -86.8 (*c* = 0.5, CHCl₃); 94% ee, from (*R*,*S*)-L1.

liquid.

6-methyl-1-(thiophen-2-yl)-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 14). The title compound was prepared according to the GP-3 from thiophene-2-carbaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow10\%$ EtOAc in hexanes, colorless

(*R*,*S*)-**L1**: 125 mg, 86% yield, > 20:1 dr, 97% ee; (*S*,*R*)-**L1**: 129 mg, 89% yield, > 20:1 dr, 97% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.9 min (major), 4.4 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.23 (dd, *J* = 5.1, 1.0 Hz, 1H), 7.01 (d, *J* = 3.0 Hz, 1H), 6.93 (dd, *J* = 5.0, 3.5 Hz, 1H), 5.33 (s, 1H), 5.16 (td, *J* = 7.6, 1.7 Hz, 1H), 2.46 (brs, 1H), 2.03 (t, *J* = 7.2 Hz, 2H), 1.72 – 1.59 (m, 1H), 1.21 – 1.14 (m, 3H), 1.09 (d, *J* = 7.3 Hz, 9H), 0.99 (d, *J* = 7.3 Hz, 9H), 0.93 (dd, *J* = 6.6, 5.3 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 206.5, 148.5, 126.4, 125.2 (two carbons), 98.4, 89.7, 67.8, 37.6, 29.0, 22.3, 22.2, 18.6, 18.4, 11.6.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₁H₃₅SiS: 347.2229, found: 347.2224.

 $[\alpha]^{24}$ _D = -148.8 (*c* = 0.5, CHCl₃); 97% ee, from (*R*,*S*)-L1.

6-methyl-1-(thiophen-3-yl)-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 15). The title compound was prepared according to the GP-3 from thiophene-3-carbaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 126 mg, 87% yield, > 20:1 dr, 95% ee; (*S*,*R*)-**L1**: 127 mg, 88% yield, > 20:1 dr, 95% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 4.0 min (major), 4.8 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.27 (dd, *J* = 3.1, 1.8 Hz, 1H), 7.22 – 7.19 (m, 1H), 7.10 (dd, *J* = 5.0, 1.2 Hz, 1H), 5.21 (d, *J* = 1.0 Hz, 1H), 5.10 (td, *J* = 7.6, 1.9 Hz, 1H), 2.25 (brs, 1H), 2.03 – 1.89 (m, 2H), 1.67 – 1.55 (m, 1H), 1.20 – 1.13 (m, 3H),

1.08 (d, J = 7.2 Hz, 9H), 0.98 (d, J = 7.3 Hz, 9H), 0.91 (t, J = 6.8 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 206.7, 145.3, 126.7, 125.8, 122.0, 97.8, 88.9, 68.4, 38.0, 29.0, 22.3, 22.2, 18.6, 18.4, 11.6.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₁H₃₅SiS: 347.2229, found: 347.2226.

 $[\alpha]^{24_{\rm D}} = -164.0 \ (c = 0.5, \text{CHCl}_3); 95\% \text{ ee, from } (R, S)-\text{L1}.$

1-(furan-2-yl)-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 16). The title compound was prepared according to the GP-3 from furan-2-carbaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow$ 10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 116 mg, 84% yield, 8:1 dr, 88% ee; (*S*,*R*)-**L1**: 116 mg, 84% yield, 8:1 dr, 88% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (R,S)-L1: 3.6 min (major), 4.0 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.34 (m, 1H), 6.30 (dd, *J* = 3.2, 1.8 Hz, 1H), 6.25 (d, *J* = 3.2 Hz, 1H), 5.16 (td, *J* = 7.6, 1.9 Hz, 1H), 5.08 (s, 1H), 2.35 (brs, 1H), 2.05 – 1.92 (m, 2H), 1.71 – 1.59 (m, 1H), 1.18 – 1.09 (m, 3H), 1.07 (d, *J* = 7.1 Hz, 9H), 0.99 (d, *J* = 7.2 Hz, 9H), 0.92 (dd, *J* = 6.6, 3.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 206.9, 156.0, 142.0, 110.1, 107.2, 95.4, 89.4, 65.6, 37.9, 28.9, 22.4, 22.2, 18.6, 18.4, 11.5.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₁H₃₅SiO: 331.2457, found: 331.2455.

 $[\alpha]^{24}$ _D = -156.8 (*c* = 0.5, CHCl₃); 88% ee, from (*R*,*S*)-L1.

1-(benzofuran-5-yl)-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1-ol

(Figure 3, entry 17). The title compound was prepared according to the GP-3 from benzofuran-5-carbaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $10\rightarrow15\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 138 mg, 87% yield, 15:1 dr, 92% ee; (*S*,*R*)-**L1**: 136 mg, 85% yield, 15:1 dr, 91% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3%

i-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 5.0 min (major), 6.8 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.61 (t, *J* = 2.4 Hz, 2H), 7.45 (d, *J* = 8.5 Hz, 1H), 7.33 (dd, *J* = 8.5, 1.7 Hz, 1H), 6.74 (dd, *J* = 2.1, 0.7 Hz, 1H), 5.24 (d, *J* = 2.7 Hz, 1H), 5.10 (td, *J* = 7.7, 2.2 Hz, 1H), 2.36 (d, *J* = 5.4 Hz, 1H), 2.02 – 1.89 (m, 2H), 1.62 – 1.56 (m, 1H), 1.18 – 1.09 (m, 3H), 1.06 (d, *J* = 7.1 Hz, 9H), 0.92 (d, *J* = 7.2 Hz, 9H), 0.87 (dd, *J* = 11.3, 6.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 206.5, 154.5, 145.3, 138.3, 127.2, 123.8, 119.9, 111.1, 106.7, 98.4, 89.0, 72.8, 38.1, 29.0, 22.3, 22.2, 18.7, 18.4, 11.6.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₅H₃₇SiO: 381.2614, found: 381.2601.

 $[\alpha]^{24_{\rm D}} = -156.8 \ (c = 0.5, \text{CHCl}_3); 92\% \text{ ee, from } (R,S)-L1.$

1-(2,3-dihydrobenzofuran-5-yl)-6-methyl-2-(triisopropylsilyl)hepta-2,3dien-1-ol (Figure 3, entry 18). The title compound was prepared according to the **GP-3** from 2,3-dihydrobenzofuran-5-carbaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $10\rightarrow15\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 115 mg, 72% yield, > 20:1 dr, 94% ee; (*S*,*R*)-**L1**: 116 mg, 73% yield, > 20:1 dr, 92% ee.

SFC analysis: The ee was determined on a CHIRALPAK IC-3 column (5% *i*-PrOH in CO₂, 2.0 mL/min); retention times for compound obtained using (R,S)-L1: 6.0 min (major), 4.5 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.23 (s, 1H), 7.11 (d, *J* = 8.2 Hz, 1H), 6.71 (d, *J* = 8.2 Hz, 1H), 5.10 (td, *J* = 7.6, 2.2 Hz, 1H), 5.08 – 5.03 (m, 1H), 4.56 (t, *J* = 8.7 Hz, 2H), 3.18 (t, *J* = 8.6 Hz, 2H), 2.27 (d, *J* = 5.7 Hz, 1H), 2.03 – 1.91 (m, 2H), 1.62 (dp, *J* = 13.3, 6.7 Hz, 1H), 1.12 (dt, *J* = 9.6, 7.2 Hz, 3H), 1.06 (d, *J* = 6.9 Hz, 9H), 0.96 – 0.88 (m, 15H).

¹³C NMR (126 MHz, CDCl₃) δ 206.1, 159.6, 135.7, 127.3, 126.9, 124.0, 108.7, 98.2, 88.9, 72.3, 71.3, 38.2, 29.7, 29.1, 22.4, 22.2, 18.7, 18.4, 11.6.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₅H₃₉SiO: 383.2770, found: 383.2844.

 $[\alpha]^{24_{\rm D}} = -136.8 \ (c = 0.5, \text{ CHCl}_3); 94\% \text{ ee, from } (R,S)-\text{L1}.$

1-(9-ethyl-9*H*-carbazol-3-yl)-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 19). The title compound was prepared according to the **GP-3** from 9-ethyl-9*H*-carbazole-3-carbaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $10\rightarrow15\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 159 mg, 84% yield, 19:1 dr, 94% ee; (*S*,*R*)-**L1**: 159 mg, 84% yield, 19:1 dr, 94% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OJ-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 5.8 min (major), 7.4 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, *J* = 1.3 Hz, 1H), 8.07 (d, *J* = 7.7 Hz, 1H), 7.51 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.40 (d, *J* = 8.1 Hz, 1H), 7.35 (d, *J* = 8.4 Hz, 1H), 7.22 (dd, *J* = 11.1, 4.0 Hz, 1H), 5.33 (dd, *J* = 6.0, 2.1 Hz, 1H), 5.16 (td, *J* = 7.6, 2.2 Hz, 1H), 4.35 (q, *J* = 7.2 Hz, 2H), 2.42 (d, *J* = 6.0 Hz, 1H), 2.12 – 1.98 (m, 2H), 1.64 (dp, *J* = 13.4, 6.7 Hz, 1H), 1.40 (t, *J* = 7.2 Hz, 3H), 1.16 (dd, *J* = 15.0, 7.5 Hz, 3H), 1.07 (d, *J* = 7.2 Hz, 9H), 0.94 – 0.86 (m, 15H).

¹³C NMR (126 MHz, CDCl₃) δ 206.3, 140.3, 139.7, 134.0, 125.5, 125.4, 123.1, 122.7, 120.3, 119.4, 118.7, 108.5, 108.2, 98.4, 88.8, 73.0, 38.3, 37.6, 29.1, 22.4, 22.3, 18.7, 18.4, 13.7, 11.6.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₃₁H₄₄SiN: 458.3243, found: 458.3244.

 $[\alpha]^{24}$ _D = -218.8 (*c* = 0.5, CHCl₃); 94% ee, from (*R*,*S*)-L1.

6-methyl-1-(1-methyl-1*H*-pyrazol-4-yl)-2-(triisopropylsilyl)hepta-2,3dien-1-ol (Figure 3, entry 20). The title compound was prepared according to the **GP-3** from 1-methyl-1*H*-pyrazole-4-carbaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $10\rightarrow15\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-L1: 78 mg, 54% yield, 20:1 dr, 96% ee; (*S*,*R*)-L1: 82 mg, 57% yield, 20:1 dr, 95% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 11.4 min (major), 15.4 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.43 (s, 1H), 7.29 (s, 1H), 5.09 – 5.05 (m, 2H),

3.85 (s, 3H), 2.18 (d, *J* = 6.1 Hz, 1H), 2.01 – 1.87 (m, 2H), 1.61 (dp, *J* = 13.3, 6.7 Hz, 1H), 1.19 – 1.10 (m, 3H), 1.06 (d, *J* = 7.3 Hz, 9H), 0.99 (d, *J* = 7.3 Hz, 9H), 0.89 (dd, *J* = 9.2, 6.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 207.0, 138.2, 128.7, 125.7, 97.9, 88.7, 64.7, 38.9, 38.1, 29.0, 22.4, 22.2, 18.7, 18.5, 11.6.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₁H₃₇SiN₂: 345.2726, found: 345.2691.

 $[\alpha]^{24} = -110.0 \ (c = 0.5, \text{CHCl}_3); 96\% \text{ ee, from } (R,S)-\text{L1}.$

6-methyl-1-(2-methylthiazol-5-yl)-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 21). The title compound was prepared according to the GP-3 from 2-methylthiazole-5-carbaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $10\rightarrow15\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 109 mg, 72% yield, 13:1 dr, 94% ee; (*S*,*R*)-**L1**: 103 mg, 68% yield, 13:1 dr, 96% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 6.1 min (major), 6.9 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.48 (s, 1H), 5.29 (brs, 1H), 5.16 (td, *J* = 7.6, 1.5 Hz, 1H), 2.67 (s, 3H), 2.36 (d, *J* = 6.8 Hz, 1H), 2.00 (t, *J* = 7.2 Hz, 2H), 1.67 – 1.59 (m, 1H), 1.21 – 1.11 (m, 3H), 1.08 (d, *J* = 7.3 Hz, 9H), 1.00 (d, *J* = 7.3 Hz, 9H), 0.91 (t, *J* = 6.4 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 206.8, 166.5, 142.8, 139.7, 98.3, 90.1, 66.1, 37.6, 29.0, 22.3, 22.2, 19.4, 18.6, 18.5, 11.5.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₁H₃₆SiNS: 362.2338, found: 362.2365.

 $[\alpha]^{24}$ = -109.2 (*c* = 0.5, CHCl₃); 94% ee, from (*R*,*S*)-L1.

6-methyl-1-(2-methylpyrimidin-5-yl)-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 22). The title compound was prepared according to the **GP-3** from 2-methylpyrimidine-5-carbaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $15\rightarrow 20\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-L1: 113 mg, 76% yield, 8:1 dr, 94% ee; (*S*,*R*)-L1: 114 mg, 77% yield, 8:1

dr, 94% ee.

HPLC analysis: The ee was determined on a CHIRALPAK IC-3 column (15% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 6.8 min (major), 7.8 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 8.63 (s, 2H), 5.19 (s, 1H), 5.07 – 5.00 (m, 1H), 2.72 (s, 3H), 1.90 (dt, *J* = 13.8, 6.8 Hz, 1H), 1.85 – 1.75 (m, 1H), 1.62 (brs, 1H), 1.56 – 1.44 (m, 1H), 1.21 – 1.13 (m, 3H), 1.08 (d, *J* = 7.2 Hz, 9H), 1.01 (d, *J* = 7.3 Hz, 9H), 0.83 (d, *J* = 6.7 Hz, 3H), 0.79 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 208.2, 167.1, 155.8, 133.5, 97.4, 89.4, 68.9, 37.6, 28.9, 25.7, 22.2, 22.0, 18.6 (two carbons), 11.6.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₂H₃₇SiN₂: 357.2726, found: 357.2695.

 $[\alpha]^{24}$ = -63.6 (*c* = 0.5, CHCl₃); 94% ee, from (*R*,*S*)-L1.

1-(6-methoxypyridin-3-yl)-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1ol (Figure 3, entry 23). The title compound was prepared according to the **GP**-3 from 6-methoxynicotinaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $15\rightarrow 20\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 118 mg, 76% yield, 20:1 dr, 94% ee; (*S*,*R*)-**L1**: 119 mg, 77% yield, 20:1 dr, 94% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 6.1 min (major), 5.7 min (minor).

¹H NMR (500 MHz, CDCl₃) 8 8.12 (d, *J* = 2.3 Hz, 1H), 7.61 (dd, *J* = 8.6, 2.4 Hz, 1H), 6.72 (d, *J* = 8.6 Hz, 1H), 5.14 – 5.11 (m, 1H), 5.08 (td, *J* = 7.6, 2.1 Hz, 1H), 3.92 (s, 3H), 2.28 (d, *J* = 5.5 Hz, 1H), 1.99 – 1.85 (m, 2H), 1.57 (td, *J* = 13.4, 6.7 Hz, 1H), 1.18 – 1.09 (m, 3H), 1.06 (d, *J* = 7.1 Hz, 9H), 0.95 (d, *J* = 7.2 Hz, 9H), 0.87 (dd, *J* = 9.8, 6.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 206.7, 163.7, 145.5, 137.8, 131.9, 110.7, 97.8, 89.2, 70.0, 53.5, 38.0, 29.0, 22.3, 22.1, 18.7, 18.5, 11.6.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₃H₃₈SiON: 372.2723, found: 372.3690.

 $[\alpha]^{24}$ _D = -290.8 (*c* = 0.5, CHCl₃); 94% ee, from (*R*,*S*)-L1.

8-methyl-1-phenyl-4-(triisopropylsilyl)nona-4,5-dien-3-ol (Figure 3, entry 24). The title compound was prepared according to the GP-3 from 3-phenylpropanal, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $5 \rightarrow 10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 134 mg, 87% yield, 10:1 dr, 88% ee; (*S*,*R*)-**L1**: 134 mg, 87% yield, 10:1 dr, 86% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.8 min (major), 4.1 min (minor).

¹H NMR (500 MHz, CDCl₃) & 7.27 (dd, *J* = 12.4, 4.9 Hz, 2H), 7.18 (dd, *J* = 14.9, 7.3 Hz, 3H), 5.03 (td, *J* = 7.6, 1.4 Hz, 1H), 4.02 (d, *J* = 5.6 Hz, 1H), 2.89 – 2.80 (m, 1H), 2.68 (ddd, *J* = 13.7, 10.1, 6.6 Hz, 1H), 2.03 – 1.89 (m, 3H), 1.87 – 1.77 (m, 1H), 1.70 – 1.59 (m, 1H), 1.14 (ddd, *J* = 10.3, 8.6, 5.0 Hz, 3H), 1.09 – 1.02 (m, 18H), 0.92 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 206.6, 142.2, 128.5, 128.3, 125.7, 97.5, 88.2, 69.3, 40.4, 38.1, 32.5, 29.0, 22.4, 22.2, 18.7, 11.6.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₅H₄₁Si: 369.2978, found: 369.2950. [α]²⁴_D = –40.0 (*c* = 0.5, CHCl₃); 88% ee, from (*R*,*S*)-L1.

7-methyl-1-phenyl-3-(triisopropylsilyl)octa-3,4-dien-2-ol (Figure 3, entry 25). The title compound was prepared according to the **GP-3** from 2-phenylacetaldehyde, enyne **1** and DHP ester **2**, purified by flash column chromatography on silica gel: $5 \rightarrow 10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-L1: 122 mg, 82% yield, 7:1 dr, 88% ee; (*S*,*R*)-L1: 122 mg, 82% yield, 7:1 dr, 88% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.2 min (major), 3.4 min (minor).

¹H NMR (600 MHz, CDCl₃) δ 7.30 (t, *J* = 7.4 Hz, 2H), 7.25 – 7.20 (m, 3H), 5.07 – 5.01 (m, 1H), 4.23 (d, *J* = 7.2 Hz, 1H), 3.02 (dd, *J* = 13.9, 3.3 Hz, 1H), 2.79 (dd, *J* = 13.9, 9.2 Hz, 1H), 2.01 – 1.89 (m, 2H), 1.65 (td, *J* = 13.4, 6.7 Hz, 1H), 1.58 (brs, 1H), 1.21 (dq, *J* = 14.2, 7.3 Hz, 3H), 1.09 (t, *J* = 7.2 Hz, 18H), 0.95 (dd, *J* = 6.6, 2.1 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 207.5, 139.2, 129.5, 128.4, 126.3, 96.8, 87.8, 71.1, 44.9, 38.0, 29.0, 22.4, 22.3, 18.7 (two carbons), 11.6.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₄H₃₉Si: 355.2821, found: 355.2815. [α]²⁴_D = +8.8 (*c* = 0.5, CHCl₃); 88% ee, from (*R*,*S*)-L1.

8-methyl-1-(methylthio)-4-(triisopropylsilyl)nona-4,5-dien-3-ol (Figure 3, entry 26). The title compound was prepared according to the GP-3 from 3-(methylthio)propanal, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow$ 10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 104 mg, 73% yield, 10:1 dr, 80% ee; (*S*,*R*)-**L1**: 104 mg, 73% yield, 10:1 dr, 78% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.2 min (major), 3.5 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 5.01 (td, *J* = 7.7, 1.4 Hz, 1H), 4.12 (d, *J* = 6.3 Hz, 1H), 2.71 – 2.55 (m, 2H), 2.10 (s, 3H), 1.99 – 1.87 (m, 3H), 1.80 (dtd, *J* = 13.9, 8.5, 5.3 Hz, 1H), 1.64 (dq, *J* = 13.3, 6.7 Hz, 2H), 1.22 – 1.13 (m, 3H), 1.12 – 1.05 (m, 18H), 0.93 (dd, *J* = 6.7, 2.1 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 206.8, 97.1, 88.1, 69.0, 38.1, 37.7, 31.0, 29.0, 22.4, 22.2, 18.7 (two carbons), 15.5, 11.6.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₀H₃₉SiS: 339.2542, found: 339.2549.

 $[\alpha]^{24}$ = -23.6 (*c* = 0.5, CHCl₃); 80% ee, from (*R*,*S*)-L1.

1-(benzyloxy)-7-methyl-3-(triisopropylsilyl)octa-3,4-dien-2-ol (Figure 3, entry 27). The title compound was prepared according to the **GP-3** from 2-(benzyloxy)acetaldehyde, enyne **1** and DHP ester **2**, purified by flash column chromatography on silica gel: $5 \rightarrow 10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 132 mg, 82% yield, 6:1 dr, 82% ee; (*S*,*R*)-**L1**: 130 mg, 81% yield, 6:1 dr, 80% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.8 min (major), 6.0 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.26 (m, 5H), 5.00 – 4.94 (m, 1H), 4.58 (q, *J* = 11.9 Hz, 2H), 4.26 (d, *J* = 8.3 Hz, 1H), 3.61 (dd, *J* = 9.9, 2.8 Hz, 1H), 3.44 (dd, *J* = 9.8, 8.8 Hz, 1H), 2.34 (brs, 1H), 1.99 – 1.79 (m, 2H), 1.62 (td, *J* = 13.4, 6.7 Hz, 1H), 1.21 – 1.12 (m, 3H), 1.07 (dd, *J* = 9.6, 7.3 Hz, 18H), 0.90 (dd, *J* = 6.7, 3.2 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 208.0, 138.1, 128.4, 127.7 (two carbons), 92.5, 86.9, 74.9, 73.2, 68.9, 38.0, 28.9, 22.4, 22.2, 18.6 (two carbons), 11.5.

HRMS (ESI) m/z [M - H₂O + H]⁺ calcd for C₂₅H₄₁SiO: 385.2927, found:

385.2927.

 $[\alpha]^{24}$ _D = -31.6 (*c* = 0.5, CHCl₃); 82% ee, from (*R*,*S*)-L1.

2,2,9-trimethyl-5-(triisopropylsilyl)deca-5,6-dien-4-ol (Figure 3, entry 28). The title compound was prepared according to the **GP-3** from 3,3-dimethylbutanal, enyne **1** and DHP ester **2**, purified by flash column chromatography on silica gel: $5 \rightarrow 10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 98 mg, 70% yield, 5:1 dr, 82% ee; (*S*,*R*)-**L1**: 99 mg, 70% yield, 5:1 dr, 83% ee.

HPLC analysis: The ee was determined on a CHIRALPAK AD-3 column (0.5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.5 min (major), 3.8 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 5.01 – 4.95 (m, 1H), 4.15 (d, *J* = 9.6 Hz, 1H), 2.01 – 1.87 (m, 2H), 1.66 (dt, *J* = 20.1, 6.7 Hz, 1H), 1.61 – 1.56 (m, 2H), 1.46 (dd, *J* = 14.7, 9.7 Hz, 1H), 1.22 – 1.13 (m, 3H), 1.08 (t, *J* = 7.1 Hz, 18H), 0.98 (s, 9H), 0.94 (dd, *J* = 6.6, 2.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 207.2, 99.0, 87.9, 68.2, 52.2, 38.1, 30.5, 30.3, 29.0, 22.5, 22.3, 18.7 (two carbons), 11.6.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₂H₄₃Si: 335.3134, found: 335.3112. [α]²⁴_D = –16.0 (*c* = 0.5, CHCl₃); 82% ee, from (*R*,*S*)-L1.

2-(2-hydroxy-7-methyl-3-(triisopropylsilyl)octa-3,4-dien-1-yl)isoindoline-1,3-dione (Figure 3, entry 29). The title compound was prepared according to the **GP-3** from 2-(1,3-dioxoisoindolin-2-yl)acetaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $10\rightarrow15\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 109 mg, 62% yield, 7:1 dr, 89% ee; (*S*,*R*)-**L1**: 111 mg, 63% yield, 7:1 dr, 87% ee.

HPLC analysis: The ee was determined on a CHIRALPAK AD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 4.7 min (major), 6.0 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.85 – 7.80 (m, 2H), 7.72 – 7.67 (m, 2H), 5.12 – 5.07 (m, 1H), 4.28 (t, *J* = 8.0 Hz, 1H), 3.83 (ddd, *J* = 17.3, 14.2, 6.5 Hz, 2H), 2.04 – 1.92 (m, 2H), 1.85 (d, *J* = 9.6 Hz, 1H), 1.75 – 1.63 (m, 1H), 1.28 – 1.17 (m, 3H), 1.10 (dd, *J* = 7.4, 2.9 Hz, 18H), 0.96 (dd, *J* = 6.6, 5.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 207.4, 168.7, 133.9, 132.1, 123.2, 94.6, 88.4, 68.2, 44.9, 38.1, 29.0, 22.4, 22.3, 18.60 (two carbons), 11.4.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₆H₃₈SiNO₂: 424.2672, found: 424.2672.

 $[\alpha]^{24}$ = +54.8 (*c* = 0.5, CHCl₃); 89% ee, from (*R*,*S*)-L1.

7-methyl-1,1-diphenyl-3-(triisopropylsilyl)octa-3,4-dien-2-ol (Figure 3, entry 30). The title compound was prepared according to the GP-3 from 2,2-diphenylacetaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $5 \rightarrow 10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 139 mg, 78% yield, 20:1 dr, 96% ee; (*S*,*R*)-**L1**: 138 mg, 78% yield, 20:1 dr, 94% ee.

HPLC analysis: The ee was determined on a CHIRALPAK AD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.0 min (major), 3.4 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, *J* = 8.1 Hz, 4H), 7.29 – 7.21 (m, 4H), 7.15 (ddd, *J* = 14.9, 4.9, 1.1 Hz, 2H), 4.86 (m, 2H), 4.25 (d, *J* = 6.9 Hz, 1H), 1.67 (d, *J* = 6.1 Hz, 1H), 1.46 (dd, *J* = 10.4, 4.2 Hz, 2H), 1.40 (dt, *J* = 13.8, 6.7 Hz, 1H), 1.24 – 1.15 (m, 3H), 1.06 (d, *J* = 7.6 Hz, 18H), 0.80 (dd, *J* = 6.4, 4.0 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 207.7, 143.3, 141.4, 129.5, 128.7, 128.3, 128.2, 126.5, 126.1, 95.3, 88.0, 72.2, 57.2, 36.7, 28.8, 22.2, 22.1, 18.7 (two carbons), 11.8.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₃₀H₄₃Si: 431.3134, found: 431.3128. [α]²⁴_D = +41.6 (*c* = 0.5, CHCl₃); 96% ee, from (*R*,*S*)-L1.

2,8-dimethyl-4-(triisopropylsilyl)nona-4,5-dien-3-ol (Figure 3, entry 31). The title compound was prepared according to the **GP-3** from isobutyraldehyde, enyne **1** and DHP ester **2**, purified by flash column chromatography on silica gel: $5\rightarrow 10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 108 mg, 84% yield, > 20:1 dr, 96% ee; (*S*,*R*)-**L1**: 108 mg, 84% yield, > 20:1 dr, 96% ee.

HPLC analysis: The ee was determined on a CHIRALPAK AD-3 column (1% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.9 min (major), 4.2 min (minor).

¹H NMR (600 MHz, CDCl₃) δ 4.99 (ddd, *J* = 8.7, 7.2, 1.8 Hz, 1H), 3.82 (d, *J* = 3.2 Hz, 1H), 2.02 – 1.89 (m, 2H), 1.88 – 1.79 (m, 1H), 1.68 – 1.61 (m, 1H), 1.50 (brs,

1H), 1.18 (tt, *J* = 13.9, 7.1 Hz, 3H), 1.08 (dd, *J* = 10.2, 7.3 Hz, 18H), 1.00 (d, *J* = 6.8 Hz, 3H), 0.92 (dd, *J* = 6.6, 5.2 Hz, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 206.1, 96.5, 87.9, 74.6, 38.0, 33.4, 29.1, 22.4, 22.2, 20.8, 18.7 (two carbons), 15.9, 11.7.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₀H₃₉Si: 307.2821, found: 307.2755. [α]²⁴D = –29.6 (*c* = 0.5, CHCl₃); 96% ee, from (*R*,*S*)-L1.

1-cycloheptyl-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 32). The title compound was prepared according to the **GP-3** from cycloheptanecarbaldehyde, enyne **1** and DHP ester **2**, purified by flash column chromatography on silica gel: $5 \rightarrow 10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 99 mg, 66% yield, 20:1 dr, 97% ee; (*S*,*R*)-**L1**: 99 mg, 66% yield, 20:1 dr, 98% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (0.5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.6 min (major), 4.0 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 4.99 (ddd, *J* = 8.0, 7.2, 2.0 Hz, 1H), 3.92 (s, 1H), 2.02 – 1.88 (m, 2H), 1.83 (ddd, *J* = 13.7, 7.1, 3.4 Hz, 1H), 1.77 – 1.62 (m, 5H), 1.60 – 1.36 (m, 8H), 1.26 (dtd, *J* = 13.3, 10.3, 3.4 Hz, 1H), 1.22 – 1.12 (m, 3H), 1.08 (t, *J* = 7.1 Hz, 18H), 0.93 (dd, *J* = 6.7, 1.2 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 206.0, 96.8, 88.0, 74.8, 44.4, 38.2, 33.4, 29.1, 28.6, 28.2, 27.3, 26.8 (two carbons), 22.4, 22.2, 18.8, 18.7, 11.7.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₄H₄₅Si: 361.3290, found: .361.3287.

 $[\alpha]^{24} = -50.8$ (*c* = 0.5, CHCl₃); 97% ee, from (*R*,*S*)-L1.

1-cyclohexyl-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 33). The title compound was prepared according to the GP-3 from cyclohexanecarbaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow$ 10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 123 mg, 85% yield, > 20:1 dr, 94% ee; (*S*,*R*)-**L1**: 123 mg, 85% yield, > 20:1 dr, 95% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (1% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.3 min (major), 3.6 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 4.97 (ddd, *J* = 8.4, 7.1, 1.7 Hz, 1H), 3.78 (s, 1H), 2.00 – 1.85 (m, 3H), 1.83 – 1.72 (m, 2H), 1.64 (qd, *J* = 13.5, 6.9 Hz, 3H), 1.54 – 1.42 (m, 2H), 1.25 – 1.13 (m, 7H), 1.13 – 1.04 (m, 18H), 1.02 – 0.97 (m, 1H), 0.93 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 206.3, 95.8, 87.7, 74.2, 43.3, 37.9, 31.2, 29.1, 26.5 (three carbons), 26.2, 22.4, 22.3, 18.7 (two carbons), 11.7.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₃H₄₃Si: 347.3134, found: 347.3129. [α]²⁴_D = -57.6 (*c* = 0.5, CHCl₃); 94% ee, from (*R*,*S*)-L1.

6-methyl-1-(tetrahydro-2H-pyran-4-yl)-2-(triisopropylsilyl)hepta-2,3dien-1-ol (Figure 3, entry 34). The title compound was prepared according to the **GP-3** from tetrahydro-2*H*-pyran-4-carbaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 117 mg, 80% yield, > 20:1 dr, 92% ee; (*S*,*R*)-**L1**: 117 mg, 80% yield, > 20:1 dr, 94% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.5 min (major), 4.0 min (minor).

¹H NMR (600 MHz, CDCl₃) δ 5.00 – 4.93 (m, 1H), 4.03 (dd, *J* = 11.3, 4.0 Hz, 1H), 3.98 (dd, *J* = 11.2, 2.9 Hz, 1H), 3.76 (s, 1H), 3.38 – 3.29 (m, 2H), 1.96 (dt, *J* = 13.6, 6.7 Hz, 1H), 1.93 – 1.84 (m, 1H), 1.82 – 1.73 (m, 2H), 1.63 (dp, *J* = 13.3, 6.7 Hz, 1H), 1.57 – 1.48 (m, 2H), 1.48 – 1.36 (m, 2H), 1.22 – 1.14 (m, 3H), 1.08 (dd, *J* = 10.2, 7.4 Hz, 18H), 0.92 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 206.9, 95.0, 87.6, 73.7, 68.1, 67.8, 40.8, 37.9, 30.8, 29.1, 27.7, 22.4, 22.2, 18.7, 11.6.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₂H₄₁SiO: 349.2927, found: 349.2924.

 $[\alpha]^{24}$ = -33.2 (*c* = 0.5, CHCl₃); 92% ee, from (*R*,*S*)-L1.

tert-butyl 4-(1-hydroxy-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1-yl)piperidine-1-carboxylate (Figure 3, entry 35). The title compound was prepared according to the **GP-3** from *tert*-butyl 4-formylpiperidine-1-carboxylate, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $5 \rightarrow 10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 158 mg, 85% yield, > 20:1 dr, 92% ee; (*S*,*R*)-**L1**: 158 mg, 85% yield, > 20:1 dr, 92% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.5 min (major), 4.8 min (minor).

¹H NMR (600 MHz, CDCl₃) δ 4.98 (t, *J* = 7.5 Hz, 1H), 4.14 (brs, 2H), 3.78 (s, 1H), 2.62 (brs, 2H), 2.00 – 1.83 (m, 3H), 1.73 – 1.57 (m, 4H), 1.45 (s, 9H), 1.33 (qd, *J* = 12.7, 4.4 Hz, 1H), 1.24 – 1.14 (m, 4H), 1.07 (dd, *J* = 11.1, 7.4 Hz, 18H), 0.93 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 206.7, 154.8, 95.4, 87.8, 79.2, 73.5, 44.3, 43.5, 41.9, 37.9, 30.0, 29.1, 28.5, 26.4, 22.4, 22.3, 18.7 (two carbons), 11.6.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₇H₅₀SiNO₂: 448.3611, found: 448.3606.

 $[\alpha]^{24}$ _D = -23.2 (*c* = 0.5, CHCl₃); 92% ee, from (*R*,*S*)-L1.

1-cyclopentyl-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 36). The title compound was prepared according to the **GP-3** from cyclopentanecarbaldehyde, enyne **1** and DHP ester **2**, purified by flash column chromatography on silica gel: $5 \rightarrow 10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-L1: 100 mg, 72% yield, 20:1 dr, 92% ee; (*S*,*R*)-L1: 100 mg, 72% yield, 20:1 dr, 94% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (1% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.4 min (major), 3.7 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 4.98 – 4.89 (m, 1H), 3.85 (d, *J* = 6.6 Hz, 1H), 2.24 – 2.14 (m, 1H), 2.02 – 1.88 (m, 2H), 1.78 – 1.58 (m, 5H), 1.57 – 1.40 (m, 4H)., 1.32 (ddd, *J* = 14.4, 11.8, 7.6 Hz, 1H), 1.25 – 1.14 (m, 3H), 1.09 (t, *J* = 7.1 Hz, 18H), 0.93 (dd, *J* = 6.7, 1.1 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 207.2, 96.5, 87.3, 73.7, 45.9, 38.0, 30.3, 29.1, 27.9, 25.9, 25.8, 22.4, 22.2, 18.7 (two carbons), 11.6.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₂H₄₁Si: 333.2978, found: 333.2967. [α]²⁴_D = -30.4 (*c* = 0.5, CHCl₃); 92% ee, from (*R*,*S*)-L1.

1-cyclobutyl-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 37). The title compound was prepared according to the GP-3 from

cyclobutanecarbaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow 10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 103 mg, 77% yield, > 20:1 dr, 92% ee; (*S*,*R*)-**L1**: 103 mg, 77% yield, > 20:1 dr, 92% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (1% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.5 min (major), 3.9 min (minor).

¹H NMR (600 MHz, CDCl₃) δ 4.92 (td, *J* = 7.5, 1.4 Hz, 1H), 3.92 (d, *J* = 6.1 Hz, 1H), 2.64 – 2.55 (m, 1H), 1.97 – 1.79 (m, 7H), 1.78 – 1.71 (m, 1H), 1.63 (dp, *J* = 13.4, 6.7 Hz, 1H), 1.49 (brs, 1H), 1.22 – 1.14 (m, 3H), 1.08 (dd, *J* = 7.5, 3.7 Hz, 18H), 0.95 – 0.90 (m, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 206.9, 94.9, 87.1, 72.8, 41.3, 38.3, 29.1, 24.8, 23.3, 22.3, 22.2, 18.7 (two carbons), 17.6, 11.6.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₁H₃₉Si: 319.2821, found: 319.2823. [α]²⁴_D = –31.6 (*c* = 0.5, CHCl₃); 92% ee, from (*R*,*S*)-L1.

tert-butyl 3-(1-hydroxy-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1-yl)azetidine-1-carboxylate (Figure 3, entry 38). The title compound was prepared according to the **GP-3** from *tert*-butyl 3-formylazetidine-1-carboxylate, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow 10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 150 mg, 86% yield, 18:1 dr, 91% ee; (*S*,*R*)-**L1**: 150 mg, 86% yield, 18:1 dr, 91% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.4 min (major), 4.0 min (minor).

¹H NMR (600 MHz, CDCl₃) δ 4.96 (dd, *J* = 7.4, 6.5 Hz, 1H), 4.15 (d, *J* = 4.5 Hz, 1H), 3.89 (ddd, *J* = 15.0, 13.0, 7.6 Hz, 3H), 3.71 (s, 1H), 2.85 – 2.76 (m, 1H), 1.90 (t, *J* = 7.2 Hz, 2H), 1.73 (s, 1H), 1.64 (td, *J* = 13.4, 6.7 Hz, 1H), 1.44 (s, 9H), 1.23 – 1.16 (m, 3H), 1.08 (dd, *J* = 7.4, 3.2 Hz, 18H), 0.93 (dd, *J* = 8.2, 6.7 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 206.9, 156.4, 94.5, 87.7, 79.2, 71.0, 51.3, 38.1, 34.6, 29.7, 29.0, 28.4, 22.3 (two carbons), 18.7 (two carbons), 11.6.

HRMS (ESI) m/z $[M + Na]^+$ calcd for C₂₅H₄₇SiNO₃Na: 460.3223, found: 460.3212.

 $[\alpha]^{24_{\rm D}} = -7.6$ (*c* = 0.5, CHCl₃); 91% ee, from (*R*,*S*)-L1.

1-cyclopropyl-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 39). The title compound was prepared according to the **GP-3** from cyclopropanecarbaldehyde, enyne **1** and DHP ester **2**, purified by flash column chromatography on silica gel: $5 \rightarrow 10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-L1: 90 mg, 70% yield, 20:1 dr, 90% ee; (*S*,*R*)-L1: 90 mg, 70% yield, 20:1 dr, 90% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.1 min (major), 3.5 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 5.02 – 4.94 (m, 1H), 3.47 (d, *J* = 7.3 Hz, 1H), 2.04 – 1.87 (m, 2H), 1.65 (tt, *J* = 13.4, 6.7 Hz, 1H), 1.59 (brs, 1H), 1.24 – 1.14 (m, 4H), 1.09 (dd, *J* = 7.3, 5.4 Hz, 18H), 0.93 (d, *J* = 6.7 Hz, 6H), 0.53 – 0.45 (m, 2H), 0.41 – 0.34 (m, 1H), 0.32 – 0.27 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 207.8, 96.8, 87.3, 73.9, 38.2, 29.1, 22.4, 22.3, 18.8, 18.7, 18.4, 11.7, 3.3, 2.7.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₀H₃₇Si: 305.2664, found: 305.2653. [α]²⁴_D = –46.4 (*c* = 0.5, CHCl₃); 90% ee, from (*R*,*S*)-L1.

tert-butyl ((2S)-3-hydroxy-8-methyl-1-phenyl-4-(triisopropylsilyl)nona-4,5-dien-2-yl)carbamate (Figure 3, entry 40&41). The title compound was prepared according to the GP-3 from *tert*-butyl (*S*)-(1-oxo-3-phenylpropan-2yl)carbamate, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $10\rightarrow15\%$ EtOAc in hexanes.

(*R*,*S*)-L1: 140 mg, 70% yield, 99:1 dr; (*S*,*R*)-L1: 124 mg, 62% yield, 1:99 dr.

HPLC analysis: The dr was determined on a CHIRALPAK AD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.6 min (major), 6.3 min (minor).

NMR spectra for product from (*R*,*S*)-L1:

¹H NMR (500 MHz, C₆D₆, 60 °C) δ 7.41 – 7.31 (m, 2H), 7.22 (t, *J* = 7.6 Hz, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 5.00 (dd, *J* = 17.1, 8.5 Hz, 2H), 4.28 (s, 1H), 4.12 (s, 1H), 3.19 (s, 1H), 3.12 – 3.01 (m, 1H), 2.11 (t, *J* = 6.8 Hz, 2H), 1.98 (s, 1H), 1.77 – 1.61 (m, 1H), 1.52 (s, 9H), 1.20 – 1.09 (m, 21H), 1.05 (dd, *J* = 9.7, 6.7 Hz, 6H).

¹³C NMR (126 MHz, C₆D₆, 60 °C) δ 205.9, 154.7, 138.3, 129.0, 127.6, 125.5, 95.5, 88.0, 77.6, 68.5, 67.6, 55.5, 37.4, 28.3, 27.6, 21.5, 21.2, 17.9, 11.0.

NMR spectra for product from (*S*,*R*)-L1:

¹H NMR (500 MHz, C₆D₆, 60 °C) δ 7.27 (d, *J* = 7.3 Hz, 2H), 7.18 (s, 1H), 7.15 (s, 1H), 7.06 (t, *J* = 7.4 Hz, 1H), 4.90 (td, *J* = 7.5, 2.5 Hz, 1H), 4.74 (brs, 1H), 4.48 (s, 1H), 4.21 (t, *J* = 9.4 Hz, 1H), 3.20 (dd, *J* = 14.2, 3.4 Hz, 1H), 2.86 (s, 1H), 2.55 (brs, 1H), 2.01 – 1.91 (m, 2H), 1.59 (dp, *J* = 13.3, 6.7 Hz, 1H), 1.40 – 1.24 (m, 12H), 1.19 (dd, *J* = 7.4, 4.3 Hz, 18H), 0.88 (dd, *J* = 6.6, 4.4 Hz, 6H).

¹³C NMR (126 MHz, C₆D₆, 60 °C) δ 206.0, 154.9, 138.6, 128.7, 127.6, 125.4, 95.0, 86.8, 78.0, 72.1, 56.3, 37.3, 28.3, 27.4, 21.4, 21.3, 18.1 (two carbons), 11.3.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₃₀H₅₀SiNO₂: 484.3611, found: 484.3609.

 $[\alpha]^{24}$ _D = -40.8 (*c* = 0.5, CHCl₃); 99:1 dr, from (*R*,*S*)-L1.

tert-butyl ((2*R*)-3-hydroxy-8-methyl-1-phenyl-4-(triisopropylsilyl)nona-4,5-dien-2-yl)carbamate (Figure 3, entry 42&43). The title compound was prepared according to the **GP-3** from *tert*-butyl (*R*)-(1-oxo-3-phenylpropan-2yl)carbamate, enyne **1** and DHP ester **2**, purified by flash column chromatography on silica gel: $10 \rightarrow 15\%$ EtOAc in hexanes.

(*R*,*S*)-**L1**: 128 mg, 64% yield, 99:1 dr; (*S*,*R*)-**L1**: 140 mg, 70% yield, 1:99 dr.

HPLC analysis: The dr was determined on a CHIRALPAK IC-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 4.2 min (major), 3.8 min (minor).

NMR spectra for product from (*R*,*S*)-L1:

¹H NMR (500 MHz, C₆D₆, 60 °C) δ 7.27 (d, *J* = 7.4 Hz, 2H), 7.18 (s, 1H), 7.15 (s, 1H), 7.06 (t, *J* = 7.4 Hz, 1H), 4.90 (td, *J* = 7.5, 2.5 Hz, 1H), 4.75 (brs, 1H), 4.49 (s, 1H), 4.21 (t, *J* = 9.5 Hz, 1H), 3.20 (dd, *J* = 14.2, 3.5 Hz, 1H), 2.86 (s, 1H), 2.57 (brs, 1H), 1.97 (dd, *J* = 11.0, 4.6 Hz, 2H), 1.59 (dp, *J* = 13.4, 6.7 Hz, 1H), 1.39 – 1.28 (m, 12H), 1.19 (dd, *J* = 7.4, 4.4 Hz, 18H), 0.88 (dd, *J* = 6.6, 4.4 Hz, 6H).

¹³C NMR (126 MHz, C₆D₆, 60 °C) δ 206.0, 155.0, 138.6, 128.7, 127.6, 125.4, 95.0, 86.8, 78.0, 72.1, 56.3, 37.3, 28.3, 27.4, 21.4, 21.3, 18.1 (two carbons), 11.3.

NMR spectra for product from (*S*,*R*)-L1:

¹H NMR (500 MHz, C₆D₆, 60 °C) δ 7.31 (d, *J* = 7.3 Hz, 2H), 7.18 – 7.14 (m, 2H), 7.06 (t, *J* = 7.4 Hz, 1H), 5.01 – 4.88 (m, 2H), 4.21 (s, 1H), 4.04 (brs, 1H), 3.12 (s, 1H), 3.00 (dd, *J* = 12.7, 9.2 Hz, 1H), 2.04 (t, *J* = 6.8 Hz, 2H), 1.98 (brs, 1H), 1.64 (dp, *J* = 12.9, 6.5 Hz, 1H), 1.45 (s, 9H), 1.13 – 1.02 (m, 21H), 0.98 (dd, *J* = 9.7, 6.7 Hz, 6H).

¹³C NMR (126 MHz, C₆D₆, 60 °C) δ 206.0, 154.7, 138.3, 129.0, 127.6, 125.5, 95.5, 87.9, 77.6, 67.6, 55.5, 39.1, 37.4, 28.3, 27.6, 21.6, 21.2, 17.9, 11.0.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₃₀H₅₀SiNO₂: 484.3611, found: 484.3610.

 $[\alpha]^{24}$ _D = -17.6 (*c* = 0.5, CHCl₃); 99:1 dr, from (*R*,*S*)-L1.

tert-butyl ((2*S*)-3-hydroxy-8-methyl-4-(triisopropylsilyl)nona-4,5-dien-2-yl)carbamate (Figure 3, entry 44&45). The title compound was prepared according to the **GP-3** from *tert*-butyl (*S*)-(1-oxopropan-2-yl)carbamate, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $10\rightarrow15\%$ EtOAc in hexanes.

(*R*,*S*)-**L1**: 113 mg, 67% yield, 99:1 dr; (*S*,*R*)-**L1**: 102 mg, 60% yield, 1:99 dr.

HPLC analysis: The dr was determined on a CHIRALPAK AD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.2 min (major), 4.1 min (minor).

NMR spectra for product from (*R*,*S*)-L1:

¹H NMR (500 MHz, C₆D₆, 60 °C) δ 4.86 (td, *J* = 7.5, 1.4 Hz, 1H), 4.75 (d, *J* = 7.4 Hz, 1H), 3.98 – 3.96 (m, 2H), 2.12 (s, 1H), 1.97 (t, *J* = 7.1 Hz, 2H), 1.63 – 1.53 (m, 1H), 1.44 (s, 9H), 1.27 – 1.20 (m, 6H), 1.15 (d, *J* = 7.4 Hz, 18H), 0.93 (t, *J* = 6.9 Hz, 6H).

¹³C NMR (126 MHz, C₆D₆, 60 °C) δ 206.2, 155.0, 95.1, 87.1, 77.6, 72.3, 50.0, 37.2, 28.3, 27.6, 21.5, 21.2, 18.5, 18.0 (two carbons), 11.2.

NMR spectra for product from (*S*,*R*)-L1:

¹H NMR (500 MHz, C₆D₆, 60 °C) δ 4.95 (d, *J* = 8.5 Hz, 1H), 4.84 (td, *J* = 7.6, 2.6 Hz, 1H), 4.36 (s, 1H), 4.07 (dd, *J* = 8.1, 5.7 Hz, 1H), 2.02 (d, *J* = 5.1 Hz, 1H), 1.92 – 1.81 (m, 2H), 1.57 – 1.49 (m, 1H), 1.44 (s, 9H), 1.32 – 1.22 (m, 3H), 1.17 – 1.11 (m, 21H), 0.86 (dd, *J* = 6.7, 2.4 Hz, 6H).

¹³C NMR (126 MHz, C₆D₆, 60 °C) δ 206.2, 155.1, 95.7, 87.8, 78.4, 72.2, 50.7, 37.7, 28.8, 28.1, 22.0, 21.8, 18.6 (two carbons), 13.5, 11.8.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₄H₃₆SiNO₂: 408.3298, found: 408.3294.

 $[\alpha]^{24}$ _D = -42.4 (*c* = 0.5, CHCl₃); 99:1 dr, from (*R*,*S*)-L1.

tert-butyl ((4*S*)-5-hydroxy-2,10-dimethyl-6-(triisopropylsilyl)undeca-6,7dien-4-yl)carbamate (Figure 3, entry 46&47). The title compound was prepared according to the **GP-3** from *tert*-butyl (*S*)-(4-methyl-1-oxopentan-2yl)carbamate, enyne **1** and DHP ester **2**, purified by flash column chromatography on silica gel: $10\rightarrow15\%$ EtOAc in hexanes. (*R*,*S*)-**L1**: 128 mg, 69% yield, 99:1 dr; (*S*,*R*)-**L1**: 108 mg, 58% yield, 1:99 dr.

HPLC analysis: The dr was determined on a CHIRALPAK AD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.0 min (major), 4.5 min (minor).

NMR spectra for product from (*R*,*S*)-L1:

¹H NMR (500 MHz, C₆D₆, 60 °C) δ 4.90 (td, *J* = 7.4, 1.9 Hz, 1H), 4.60 (d, *J* = 8.9 Hz, 1H), 4.08 (s, 1H), 3.96 (s, 1H), 2.02 (t, *J* = 6.9 Hz, 3H), 1.75 (dddd, *J* = 13.2, 11.5, 6.9, 4.5 Hz, 1H), 1.65 – 1.54 (m, 2H), 1.44 (s, 9H), 1.39 – 1.34 (m, 1H), 1.29 – 1.24 (m, 3H), 1.17 (dd, *J* = 7.4, 2.1 Hz, 18H), 1.03 (d, *J* = 6.5 Hz, 3H), 0.95 (t, *J* = 6.7 Hz, 9H).

¹³C NMR (126 MHz, C₆D₆, 60 °C) & 205.8, 155.1, 95.6, 87.7, 77.5, 71.5, 52.1, 43.0, 37.3, 28.3, 27.6, 24.4, 22.8, 21.5, 21.4, 21.2, 18.1, 18.0, 11.2.

NMR spectra for product from (*S*,*R*)-**L1**:

¹H NMR (500 MHz, C₆D₆, 60 °C) δ 4.86 (td, *J* = 7.5, 2.3 Hz, 2H), 4.38 (s, 1H), 4.06 (dd, *J* = 14.0, 6.9 Hz, 1H), 2.09 (d, *J* = 5.8 Hz, 1H), 1.94 (dd, *J* = 10.7, 4.1 Hz, 2H), 1.80 – 1.69 (m, 1H), 1.58 (dt, *J* = 13.4, 6.7 Hz, 1H), 1.53 – 1.49 (m, 1H), 1.44 (s, 9H), 1.31 (dq, *J* = 14.1, 7.1 Hz, 3H), 1.18 (dd, *J* = 7.4, 1.4 Hz, 18H), 1.03 (d, *J* = 6.5 Hz, 3H), 0.95 (d, *J* = 6.7 Hz, 3H), 0.89 (t, *J* = 6.6 Hz, 6H).

¹³C NMR (126 MHz, C₆D₆, 60 °C) δ 205.9, 155.0, 95.0, 86.9, 77.8, 72.5, 53.0, 37.3, 36.4, 28.3, 27.5, 24.3, 23.2, 21.4 (two carbons), 21.1, 18.1 (two carbons), 11.2.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₇H₅₂SiNO₂: 450.3767, found: 450.3768.

 $[\alpha]^{24}$ = -61.6 (*c* = 0.5, CHCl₃); 99:1 dr, from (*R*,*S*)-L1.

tert-butyl (2*S*)-2-(1-hydroxy-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1-yl)pyrrolidine-1-carboxylate (Figure 3, entry 48&49). The title compound was prepared according to the **GP-3** from *tert*-butyl (*S*)-2-formylpyrrolidine-1carboxylate, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $10\rightarrow15\%$ EtOAc in hexanes.

(*R*,*S*)-L1: 93 mg, 52% yield, 99:1 dr; (*S*,*R*)-L1: 81 mg, 45% yield, 1:99 dr.

HPLC analysis: The dr was determined on a CHIRALPAK AD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.2 min (major), 3.5 min (minor).

NMR spectra for product from (*R*,*S*)-L1:

¹H NMR (500 MHz, C₆D₆, 60 °C) δ 4.88 (brs, 1H), 4.77 (td, *J* = 7.4, 3.0 Hz, 1H), 4.24 – 4.14 (m, 1H), 3.47 (s, 1H), 3.32 (dt, *J* = 10.6, 6.9 Hz, 1H), 2.05 (dt, *J* = 12.6, 6.3 Hz, 1H), 1.98 – 1.86 (m, 2H), 1.78 – 1.64 (m, 2H), 1.63 – 1.51 (m, 1H), 1.48 (s, 9H), 1.43 – 1.33 (m, 5H), 1.23 (dd, *J* = 11.2, 7.4 Hz, 18H), 0.88 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (126 MHz, C₆D₆, 60 °C) δ 206.2, 154.0, 94.0, 85.2, 78.0, 70.2, 61.7, 47.1, 37.5, 28.4, 27.7, 25.4, 23.7, 21.5, 21.3, 18.2 (two carbons), 11.3.

NMR spectra for product from (*S*,*R*)-**L1**:

¹H NMR (500 MHz, C₆D₆, 60 °C) δ 4.89 (s, 1H), 4.79 (td, *J* = 7.4, 2.8 Hz, 1H), 4.19 – 4.10 (m, 1H), 3.48 (s, 1H), 3.36 (dt, *J* = 10.5, 7.0 Hz, 1H), 2.11 – 2.00 (m, 1H), 1.97 – 1.86 (m, 2H), 1.82 – 1.65 (m, 2H), 1.56 (td, *J* = 13.3, 6.6 Hz, 1H), 1.47 (s, 9H), 1.42 – 1.32 (m, 4H), 1.21 (dd, *J* = 9.5, 7.5 Hz, 18H), 0.88 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (126 MHz, C₆D₆, 60 °C) δ 206.1, 153.9, 94.4, 85.6, 77.9, 70.0, 61.3, 47.1, 37.4, 28.3, 27.7, 24.9, 23.7, 21.5, 21.3, 18.2 (two carbons), 11.4.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₆H₄₈SiNO₂: 434.3454, found: 434.3459.

 $[\alpha]^{24}$ _D = -101.6 (*c* = 0.5, CHCl₃); 99:1 dr, from (*R*,*S*)-L1.

6-methyl-1-((S)-4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)-2-

(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 3, entry 50&51). The title compound was prepared according to the **GP-3** from (*S*)-4-(prop-1-en-2-yl)cyclohex-1-ene-1-carbaldehyde, enyne 1 and DHP ester 2, purified by flash column chromatography on silica gel: $5 \rightarrow 10\%$ EtOAc in hexanes.

(*R*,*S*)-**L1**: 137 mg, 85% yield, 99:1 dr; (*S*,*R*)-**L1**: 138 mg, 86% yield, 1:99 dr.

HPLC analysis: The dr was determined on a CHIRALCEL OD-3 column (1% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.6 min (major), 3.8 min (minor).

NMR spectra for product from (*R*,*S*)-L1:

¹H NMR (500 MHz, CDCl₃) δ 5.73 (d, *J* = 2.2 Hz, 1H), 5.07 (td, *J* = 7.7, 2.1 Hz, 1H), 4.71 (dd, *J* = 6.8, 1.1 Hz, 2H), 4.48 (s, 1H), 2.22 – 1.83 (m, 9H), 1.73 (s, 3H), 1.66 (dt, *J* = 13.3, 6.7 Hz, 1H), 1.42 (ddd, *J* = 24.1, 11.7, 5.5 Hz, 1H), 1.21 – 1.13 (m, 3H), 1.08 (d, *J* = 7.2 Hz, 9H), 1.05 (d, *J* = 7.3 Hz, 9H), 0.94 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 205.8, 150.0, 138.4, 123.9, 108.5, 96.0, 88.6, 74.2, 41.2, 38.2, 30.6, 29.1, 27.5, 23.6, 22.4, 22.2, 20.8, 18.7, 18.6, 11.6.

NMR spectra for product from (*S*,*R*)-**L1**:

¹H NMR (500 MHz, CDCl₃) δ 5.72 (s, 1H), 5.08 (td, *J* = 7.5, 2.0 Hz, 1H), 4.71 (s, 2H), 4.47 (s, 1H), 2.21 – 1.82 (m, 9H), 1.73 (s, 3H), 1.66 (tt, *J* = 13.4, 6.8 Hz, 1H), 1.46 (qd, *J* = 11.9, 5.4 Hz, 1H), 1.21 – 1.13 (m, 3H), 1.09 (d, *J* = 7.2 Hz, 9H), 1.05 (d, *J* = 7.3 Hz, 9H), 0.94 (dd, *J* = 6.6, 1.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 205.8, 149.9, 138.5, 124.4, 108.6, 95.8, 88.7, 73.9, 41.2, 38.2, 30.7, 29.1, 27.7, 23.6, 22.4, 22.3, 20.7, 18.8, 18.6, 11.7.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₆H₄₅Si: 385.3290, found: 385.3307.

 $[\alpha]^{24}$ = -98.4 (*c* = 0.5, CHCl₃); 99:1 dr, from (*R*,*S*)-L1.

6-ethyl-1-phenyl-2-(triisopropylsilyl)octa-2,3-dien-1-ol (Figure 4, entry 52). The title compound was prepared according to the GP-3 from benzaldehyde, enyne 1 and DHP ester S1, purified by flash column chromatography on silica gel: $5\rightarrow$ 10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 137 mg, 89% yield, 20:1 dr, 95% ee; (*S*,*R*)-**L1**: 137 mg, 89% yield, 20:1 dr, 94% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.5 min (major), 4.4 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.35 (m, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.26 – 7.22 (m, 1H), 5.16 – 5.11 (m, 1H), 5.10 – 5.04 (m, 1H), 2.31 (d, *J* = 6.0 Hz, 1H), 2.07 – 1.93 (m, 2H), 1.31 – 1.23 (m, 4H), 1.22 – 1.10 (m, 4H), 1.06 (d, *J* = 7.0 Hz, 9H), 0.93 (d, *J* = 7.2 Hz, 9H), 0.84 (td, *J* = 7.4, 1.2 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 206.7, 143.6, 128.2, 127.6, 127.3, 98.1, 88.7, 72.8, 41.5, 32.2, 25.4, 25.3, 18.7, 18.5, 11.7, 11.1, 11.0.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₅H₄₁Si: 369.2978, found: 369.2933. [α]²⁴_D = –129.6 (*c* = 0.5, CHCl₃); 95% ee, from (*R*,*S*)-L1.

5-cyclohexyl-1-phenyl-2-(triisopropylsilyl)penta-2,3-dien-1-ol (Figure 4, entry 53). The title compound was prepared according to the GP-3 from benzaldehyde, enyne 1 and DHP ester S2, purified by flash column chromatography on silica gel: $5\rightarrow$ 10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 119 mg, 75% yield, 18:1 dr, 95% ee; (*S*,*R*)-**L1**: 119 mg, 75% yield, 18:1 dr, 94% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.7 min (major), 5.3 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.34 (m, 2H), 7.31 (dd, *J* = 10.2, 4.8 Hz, 2H), 7.24 (ddd, *J* = 7.3, 4.0, 1.3 Hz, 1H), 5.12 (s, 1H), 5.06 (ddd, *J* = 9.1, 7.1, 2.1 Hz, 1H), 2.34 (s, 1H), 2.01 – 1.83 (m, 2H), 1.71 – 1.62 (m, 5H), 1.23 – 1.09 (m, 7H), 1.06 (d, *J* = 7.3 Hz, 9H), 0.93 (t, *J* = 8.8 Hz, 9H), 0.91 – 0.78 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 206.6, 143.6, 128.1, 127.5, 127.1, 98.0, 88.7, 72.7,

38.5, 36.6, 33.1, 33.0, 26.4, 26.3, 26.2, 18.7, 18.4, 11.6.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₆H₄₁Si: 381.2978, found: 381.3005. [α]²⁴_D = –139.6 (*c* = 0.5, CHCl₃); 95% ee, from (*R*,*S*)-L1.

1-phenyl-5-(tetrahydro-2*H*-pyran-4-yl)-2-(triisopropylsilyl)penta-2,3dien-1-ol (Figure 4, entry 54). The title compound was prepared according to the GP-3 from benzaldehyde, enyne 1 and DHP ester S3, purified by flash column chromatography on silica gel: $10\rightarrow15\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 75 mg, 47% yield, 15:1 dr, 93% ee; (*S*,*R*)-**L1**: 75 mg, 47% yield, 15:1 dr, 92% ee.

HPLC analysis: The ee was determined on a CHIRALPAK AD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 9.9 min (major), 10.7 min (minor).

¹H NMR (500 MHz, CDCl₃) & 7.37 – 7.33 (m, 2H), 7.33 – 7.28 (m, 2H), 7.24 (ddt, *J* = 5.2, 3.9, 2.0 Hz, 1H), 5.16 (s, 1H), 4.97 (ddd, *J* = 8.8, 7.0, 2.1 Hz, 1H), 3.94 – 3.83 (m, 2H), 3.29 (tdd, *J* = 11.7, 6.7, 2.1 Hz, 2H), 2.34 (d, *J* = 4.4 Hz, 1H), 1.91 (ddq, *J* = 14.1, 8.1, 7.0 Hz, 2H), 1.54 – 1.43 (m, 2H), 1.40 – 1.30 (m, 1H), 1.24 – 1.11 (m, 5H), 1.07 (d, *J* = 7.3 Hz, 9H), 0.97 (d, *J* = 7.3 Hz, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 207.3, 143.6, 128.1, 127.5, 127.0, 98.3, 87.1, 72.8, 67.9 (two carbons), 36.0, 35.7, 32.7, 32.6, 18.6, 18.5, 11.6.

HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₅H₄₀SiO₂Na: 423.2695, found: 423.2695. [α]²⁴_D = -110.4 (*c* = 0.5, CHCl₃); 93% ee, from (*R*,*S*)-L1.

tert-butyl 4-(5-hydroxy-5-phenyl-4-(triisopropylsilyl)penta-2,3-dien-1-yl)piperidine-1-carboxylate (Figure 4, entry 55). The title compound was prepared according to the **GP-3** from benzaldehyde, enyne 1 and DHP ester **S4**, purified by flash column chromatography on silica gel: $10\rightarrow15\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 93 mg, 47% yield, 15:1 dr, 92% ee; (*S*,*R*)-**L1**: 93 mg, 47% yield, 15:1 dr, 92% ee.

HPLC analysis: The ee was determined on a CHIRALPAK AD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 14.3 min (major), 11.3 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.32 (m, 2H), 7.32 – 7.28 (m, 2H), 7.26 – 7.22 (m, 1H), 5.16 (s, 1H), 4.99 – 4.92 (m, 1H), 4.02 (s, 2H), 2.59 (s, 2H), 2.26 (s, 1H), 1.98 – 1.81 (m, 2H), 1.59 – 1.48 (m, 2H), 1.45 (s, 9H), 1.25 (ddt, *J* = 14.8, 11.4, 3.8 Hz, 1H), 1.19 – 1.10 (m, 3H), 1.07 (d, *J* = 7.3 Hz, 9H), 0.97 (d, *J* = 7.3 Hz, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 207.3, 154.8, 143.6, 128.1, 127.5, 127.0, 98.4, 87.2, 79.2, 72.8, 43.9, 43.6, 36.8, 35.6, 31.7, 29.6, 28.4, 18.7, 18.5, 11.6.

HRMS (ESI) m/z [M + Na]⁺ calcd for C₃₀H₄₉SiNO₃Na: 522.3380, found: 522.3381.

 $[\alpha]^{24}$ = -91.6 (*c* = 0.5, CHCl₃); 92% ee, from (*R*,*S*)-L1.

5-cyclopentyl-1-phenyl-2-(triisopropylsilyl)penta-2,3-dien-1-ol (Figure 4, entry 56). The title compound was prepared according to the GP-3 from benzaldehyde, enyne 1 and DHP ester S5, purified by flash column chromatography on silica gel: $5\rightarrow$ 10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 119 mg, 78% yield, 16:1 dr, 95% ee; (*S*,*R*)-**L1**: 119 mg, 78% yield, 16:1 dr, 95% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.7 min (major), 4.9 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.35 (m, 2H), 7.31 (dd, *J* = 10.2, 4.8 Hz, 2H), 7.26 – 7.21 (m, 1H), 5.13 (s, 1H), 5.08 (td, *J* = 7.7, 2.1 Hz, 1H), 2.35 (s, 1H), 2.10 – 1.97 (m, 2H), 1.85 – 1.65 (m, 3H), 1.64 – 1.45 (m, 4H), 1.18 – 1.09 (m, 5H), 1.06 (d, *J* = 7.2 Hz, 9H), 0.93 (d, *J* = 7.3 Hz, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 206.4, 143.6, 128.1, 127.5, 127.2, 98.1, 89.6, 72.6, 40.6, 35.0, 32.3, 32.2, 25.2, 25.1, 18.7, 18.4, 11.6.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₅H₃₉Si: 367.2821, found: 367.2795. [α]²⁴_D = -150.4 (*c* = 0.5, CHCl₃); 95% ee, from (*R*,*S*)-L1.

5-(cyclopent-3-en-1-yl)-1-phenyl-2-(triisopropylsilyl)penta-2,3-dien-1-ol (**Figure 4, entry 57).** The title compound was prepared according to the **GP-3** from benzaldehyde, enyne **1** and DHP ester **S8**, purified by flash column chromatography on silica gel: 5→10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 99 mg, 65% yield, 16:1 dr, 92% ee; (*S*,*R*)-**L1**: 99 mg, 65% yield, 16:1 dr, 94% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.9 min (major), 5.1 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, *J* = 7.2 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.24 (dd, *J* = 10.1, 4.2 Hz, 1H), 5.65 – 5.60 (m, 2H), 5.14 (s, 1H), 5.08 – 5.02 (m, 1H), 2.49 – 2.36 (m, 2H), 2.31 (brs, 1H), 2.28 – 2.19 (m, 1H), 2.17 – 2.02 (m, 2H), 2.01 – 1.90 (m, 2H), 1.18 – 1.09 (m, 3H), 1.06 (d, *J* = 7.2 Hz, 9H), 0.94 (d, *J* = 7.3 Hz, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 206.8, 143.5, 129.8, 129.7, 128.2, 127.6, 127.2, 98.2, 89.0, 72.7, 38.6, 38.4, 37.6, 35.4, 18.7, 18.5, 11.7.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₅H₃₇Si: 365.2664, found: 365.2664. [α]²⁴_D = -130.0 (*c* = 0.5, CHCl₃); 92% ee, from (*R*,*S*)-L1.

6,6-dimethyl-1-phenyl-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 4, entry 58). The title compound was prepared according to the GP-3 from benzaldehyde, enyne 1 and DHP ester S6, purified by flash column chromatography on silica gel: $5\rightarrow$ 10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 132 mg, 89% yield, >20:1 dr, 96% ee; (*S*,*R*)-**L1**: 130 mg, 88% yield, >20:1 dr, 96% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.4 min (major), 3.9 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.34 (m, 2H), 7.31 (dd, *J* = 10.2, 4.8 Hz, 2H), 7.27 – 7.21 (m, 1H), 5.15 – 5.09 (m, 2H), 2.33 (s, 1H), 2.03 – 1.90 (m, 2H), 1.16 – 1.09 (m, 3H), 1.06 (d, *J* = 7.0 Hz, 9H), 0.92 (d, *J* = 7.2 Hz, 9H), 0.88 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 206.8, 143.5, 128.2, 127.6, 127.3, 97.6, 87.1, 72.7, 43.3, 31.0, 29.2, 18.7, 18.4, 11.6.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₄H₃₉Si: 355.2821, found: 355.2810. [α]²⁴_D = –154.8 (*c* = 0.5, CHCl₃); 96% ee, from (*R*,*S*)-L1.

6-(benzyloxy)-1-phenyl-2-(triisopropylsilyl)hexa-2,3-dien-1-ol (Figure 4, entry 59a). The title compound was prepared according to the GP-3 from benzaldehyde, enyne 1 and DHP ester S7, purified by flash column chromatography on silica gel: $5\rightarrow$ 10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-L1: 73 mg, 42% yield, >20:1 dr, 84% ee; (*S*,*R*)-L1: 72 mg, 42% yield, >20:1

dr, 86% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (10% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 4.8 min (major), 6.2 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.17 (m, 10H), 5.16 – 5.07 (m, 2H), 4.47 (s, 2H), 3.44 – 3.31 (m, 2H), 2.67 (d, *J* = 6.9 Hz, 1H), 2.40 – 2.19 (m, 2H), 1.15 – 1.08 (m, 3H), 1.05 (d, *J* = 6.9 Hz, 9H), 0.92 (d, *J* = 7.1 Hz, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 207.2, 143.7, 138.2, 128.3, 128.1, 127.7, 127.6, 127.5, 127.1, 98.9, 86.3, 72.9, 72.7, 69.6, 29.4, 18.6, 18.4, 11.6.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₈H₃₉SiO: 419.2770, found: 419.2771.

 $[\alpha]^{24}$ = -122.4 (*c* = 0.5, CHCl₃); 85% ee, from (*R*,*S*)-L1.

2-(benzyloxy)-1-phenylethan-1-ol (Figure 4, entry 59b). The title compound was prepared according to the **GP-3** from benzaldehyde, enyne **1** and DHP ester **S7**, purified by flash column chromatography on silica gel: $5\rightarrow$ 15% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-L1: 25 mg, 28% yield, 76% ee; (*S*,*R*)-L1: 26 mg, 28% yield, 76% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (10% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 8.7 min (major), 9.6 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.27 (m, 10H), 4.94 (d, *J* = 8.8 Hz, 1H), 4.65 – 4.57 (m, 2H), 3.65 (dd, *J* = 9.8, 3.2 Hz, 1H), 3.52 (t, *J* = 9.4 Hz, 1H), 2.85 (d, *J* = 1.7 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 140.2, 137.8, 128.5, 128.4, 127.9 (two carbons), 127.8, 126.2, 75.8, 73.4, 72.9.

The NMR data matched the reports (5).

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₁₅H₁₅O: 211.1123, found: 211.1106. [α]²⁴_D = +28.8 (*c* = 0.5, CHCl₃); 76% ee, from (*R*,*S*)-L1.

2-(*tert*-butyldimethylsilyl)-6-methyl-1-phenylhepta-2,3-dien-1-ol (Figure 4, entry 60). The title compound was prepared according to the GP-3 from benzaldehyde, enyne S9 and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow$ 10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-L1: 92 mg, 73% yield, 10:1 dr, 92% ee; (*S*,*R*)-L1: 99 mg, 78% yield, 10:1 dr, 91% ee.
HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 4.3 min (major), 6.8 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.29 (m, 4H), 7.28 – 7.23 (m, 1H), 5.17 – 5.14 (m, 1H), 5.12 (td, *J* = 7.5, 2.5 Hz, 1H), 2.31 (d, *J* = 5.2 Hz, 1H), 2.00 – 1.86 (m, 2H), 1.62 (td, *J* = 13.3, 6.7 Hz, 1H), 0.90 (t, *J* = 6.9 Hz, 6H), 0.86 (s, 9H), 0.01 (s, 3H), -0.13 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 205.6, 143.4, 128.2, 127.6, 127.1, 100.0, 89.2, 73.0, 38.1, 29.0, 26.7, 22.4, 22.2, 17.9, -5.2, -5.5.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₀H₃₁Si: 299.2195, found: 299.2208. [α]²⁴_D = -158.4 (*c* = 0.5, CHCl₃); 92% ee, from (*R*,*S*)-L1.

6-methyl-1-phenyl-2-(triethylsilyl)hepta-2,3-dien-1-ol (Figure 4, entry 61). The title compound was prepared according to the **GP-3** from benzaldehyde, enyne **S10** and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 98 mg, 77% yield, 8:1 dr, 93% ee; (*S*,*R*)-**L1**: 93 mg, 783yield, 8:1 dr, 94% ee.

HPLC analysis: The ee was determined on a CHIRALPAK AD-3 column (1% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 8.8 min (major), 8.1 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.30 (m, 4H), 7.28 – 7.23 (m, 1H), 5.16 – 5.09 (m, 2H), 2.38 (d, *J* = 3.2 Hz, 1H), 1.97 (t, *J* = 7.1 Hz, 2H), 1.64 (dp, *J* = 13.3, 6.7 Hz, 1H), 0.93 (dd, *J* = 6.6, 4.0 Hz, 6H), 0.84 (t, *J* = 7.9 Hz, 9H), 0.54 – 0.37 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 204.4, 143.3, 128.2, 127.7, 127.0, 99.2, 88.9, 72.8, 38.4, 29.0, 22.4, 22.3, 7.2, 3.3.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₀H₃₁Si: 299.2195, found: 299.2195. [α]²⁴_D = –173.6 (*c* = 0.5, CHCl₃); 93% ee, from (*R*,*S*)-L1.

6-methyl-1-phenyl-2-(trimethylsilyl)hepta-2,3-dien-1-ol (Figure 4, entry 62). The title compound was prepared according to the GP-3 from benzaldehyde, enyne S11 and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow$ 10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 65 mg, 60% yield, 6:1 dr, 95% ee; (*S*,*R*)-**L1**: 65 mg, 60% yield, 6:1 dr, 95% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (1% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 6.8 min (major), 9.0 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.30 (m, 4H), 7.29 – 7.24 (m, 1H), 5.18 (d, *J* = 2.7 Hz, 1H), 5.15 (td, *J* = 7.4, 2.8 Hz, 1H), 1.96 (t, *J* = 7.0 Hz, 2H), 1.70 – 1.58 (m, 1H), 0.93 (dd, *J* = 6.6, 4.4 Hz, 6H), -0.04 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 204.6, 144.2, 129.2, 128.7, 128.1, 103.4, 90.1, 74.0, 39.2, 29.9, 23.4, 23.2, -0.0.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₁₇H₂₅Si: 257.1725, found: 257.1729. [α]²⁴_D = –145.6 (*c* = 0.5, CHCl₃); 95% ee, from (*R*,*S*)-L1.

2-(diisopropylsilyl)-6-methyl-1-phenylhepta-2,3-dien-1-ol (Figure 4, entry 63). The title compound was prepared according to the **GP-3** from benzaldehyde, enyne **S15** and DHP ester **2**, purified by flash column chromatography on silica gel: $5 \rightarrow 10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-L1: 82 mg, 65% yield, 16:1 dr, 96% ee; (*S*,*R*)-L1: 82 mg, 65% yield, 16:1 dr, 94% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 4.3 min (major), 4.7 min (minor).

¹H NMR (500 MHz, CDCl₃) 8 7.36 – 7.29 (m, 4H), 7.27 – 7.22 (m, 1H), 5.18 (d, *J* = 2.2 Hz, 1H), 5.10 (td, *J* = 7.6, 2.7 Hz, 1H), 3.54 (s, 1H), 2.38 (s, 1H), 1.99 – 1.89 (m, 2H), 1.69 – 1.55 (m, 1H), 0.99 (d, *J* = 2.1 Hz, 3H), 0.96 – 0.89 (m, 17H).

¹³C NMR (126 MHz, CDCl₃) δ 205.0, 143.1, 128.1, 127.6, 126.9, 97.2, 88.9, 74.1, 38.2, 28.9, 22.3, 22.2, 18.6 (two carbons), 18.5, 18.4, 11.3, 10.9.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₀H₃₁Si: 299.2195, found: 299.2190. [α]²⁴_D = -103.2 (*c* = 0.5, CHCl₃); 96% ee, from (*R*,*S*)-L1.

6-Methyl-1-phenyl-2-(1-((trimethylsilyl)oxy)cyclohexyl)hepta-2,3-dien-1ol (Figure 4, entry 64). The title compound was prepared according to the GP-3 from benzaldehyde, enyne S16 and DHP ester 2, purified by flash column chromatography on silica gel: 5→10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-L1: 82 mg, 45% yield, > 20:1 dr, 97% ee; (*S*,*R*)-L1: 82 mg, 45% yield, >

20:1 dr, 97% ee.

The following HPLC and NMR data were collected after deprotection by TBAF.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (10% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 4.7 min (major), 5.0 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.36 (d, *J* = 7.3 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 5.52 (s, 1H), 5.14 (td, *J* = 7.5, 1.7 Hz, 1H), 3.25 (s, 1H), 2.16 (s, 1H), 1.89 – 1.80 (m, 1H), 1.77 – 1.68 (m, 4H), 1.67 – 1.44 (m, 6H), 1.43 – 1.27 (m, 2H), 0.77 (d, *J* = 6.6 Hz, 3H), 0.73 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 202.0, 143.2, 128.0, 127.2, 126.5, 113.8, 95.0, 73.6, 72.4, 38.2, 38.1, 37.6, 28.5, 25.6, 22.4, 22.2, 22.1.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₀H₂₇O: 283.2062, found: 283.2078. [α]²⁴_D = +7.2 (*c* = 0.5, CHCl₃); 97% ee, from (*R*,*S*)-L1.

2-(*tert*-butyl)-6-methyl-1-phenylhepta-2,3-dien-1-ol (Figure 4, entry 65). The title compound was prepared according to the **GP-3** from benzaldehyde, enyne **S12** and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-L1: 82 mg, 80% yield, 20:1 dr, 80% ee; (*S*,*R*)-L1: 81 mg, 79% yield, 20:1 dr, 78% ee.

HPLC analysis: The ee was determined on a CHIRALPAK IC-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 5.9 min (major), 5.4 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.34 (m, 2H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.26 – 7.21 (m, 1H), 5.36 (td, *J* = 7.4, 1.2 Hz, 1H), 5.20 (s, 1H), 2.12 (brs, 1H), 1.83 (t, *J* = 7.1 Hz, 2H), 1.53 (dp, *J* = 13.3, 6.7 Hz, 1H), 1.07 (s, 9H), 0.86 (dd, *J* = 9.6, 6.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 200.3, 144.0, 128.1, 127.3, 126.8, 118.0, 96.0, 71.0, 38.6, 33.4, 30.0, 28.7, 22.4, 22.3.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₁₈H₂₅: 241.1956, found: 241.1954. [α]²⁴_D = -136.8 (*c* = 0.5, CHCl₃); 80% ee, from (*R*,*S*)-L1.

6-methyl-1,2-diphenylhepta-2,3-dien-1-ol (Figure 4, entry 66). The title compound was prepared according to the **GP-3** from benzaldehyde, enyne **S13** and DHP ester **2**, purified by flash column chromatography on silica gel: $5\rightarrow10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 70 mg, 63% yield, 11:1 dr, 98% ee; (*S*,*R*)-**L1**: 70 mg, 63% yield, 11:1 dr, 98% ee.

HPLC analysis: The ee was determined on a CHIRALPAK AS-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 5.1 min (major), 4.8 min (minor).

¹H NMR (600 MHz, CDCl₃) δ 7.44 (d, *J* = 7.2 Hz, 2H), 7.38 – 7.34 (m, 2H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.27 – 7.22 (m, 3H), 7.16 (t, *J* = 7.4 Hz, 1H), 5.71 – 5.64 (m, 2H), 2.32 (d, *J* = 3.7 Hz, 1H), 2.05 – 1.94 (m, 2H), 1.65 (dp, *J* = 13.3, 6.7 Hz, 1H), 0.91 (dd, *J* = 11.5, 6.7 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 203.0, 142.1, 134.8, 128.2, 128.1, 127.5, 126.7, 126.6 (two carbons), 109.8, 96.7, 72.3, 38.1, 28.3, 22.1 (two carbons).

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₀H₂₁: 261.1643, found: 261.1622. [α]²⁴_D = -46.8 (*c* = 0.5, CHCl₃); 98% ee, from (*R*,*S*)-L1.

N-(4-(1-hydroxy-6-methyl-2-(o-tolyl)hepta-2,3-dien-1-

yl)phenyl)acetamide (Figure 4, entry 67). The title compound was prepared according to the **GP-3** from *N*-(4-formylphenyl)acetamide, enyne **S14** and DHP ester 2, purified by flash column chromatography on silica gel: $20 \rightarrow 50\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 95 mg, 68% yield, 7:1 dr, 96% ee; (*S*,*R*)-**L1**: 97 mg, 69% yield, 7:1 dr, 95% ee.

SFC analysis: The ee was determined on a CHIRALCEL IG-3 column (20% *i*-PrOH in CO₂, 2.0 mL/min); retention times for compound obtained using (R,S)-L1: 3.9 min (major), 3.0 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 8.4 Hz, 2H), 7.15 – 7.03 (m, 5H), 5.48 (td, *J* = 7.5, 2.7 Hz, 1H), 5.35 (s, 1H), 2.40 (brs, 1H), 2.18 – 2.12 (m, 6H), 2.04 – 1.97 (m, 2H), 1.67 (dp, *J* = 13.4, 6.7 Hz, 1H), 0.92 (dd, *J* = 6.6, 5.1 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 200.1, 168.1, 137.9, 137.3, 136.5, 134.8, 132.0, 130.3, 128.9, 127.3, 125.6, 119.2, 108.7, 95.1, 74.2, 38.1, 28.6, 24.7, 22.3 (two carbons), 20.1.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₃H₂₆NO: 332.2014, found: 332.2052.

 $[\alpha]^{24}$ _D = -22.0 (*c* = 0.5, CHCl₃); 96% ee, from (*R*,*S*)-L1.

(*Z*)-12-methyl-8-(*o*-tolyl)trideca-3,8,9-trien-7-ol (Figure 4, entry 68). The title compound was prepared according to the **GP-3** from (*Z*)-hept-4-enal, enyne **S14** and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 78 mg, 65% yield, 4:1 dr, 93% ee; (*S*,*R*)-**L1**: 78 mg, 65% yield, 4:1 dr, 95% ee.

HPLC analysis: The ee was determined on a CHIRALPAK IC-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 4.3 min (major), 4.0 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.25 – 7.15 (m, 4H), 5.46 – 5.35 (m, 2H), 5.30 (ddd, *J* = 10.7, 9.8, 7.2 Hz, 1H), 4.41 – 4.34 (m, 1H), 2.35 (s, 3H), 2.27 – 2.10 (m, 2H), 2.09 – 1.97 (m, 4H), 1.78 (d, *J* = 5.5 Hz, 1H), 1.75 – 1.64 (m, 2H), 1.61 – 1.49 (m, 1H), 0.94 (dd, *J* = 10.2, 4.2 Hz, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 200.6, 136.4, 135.6, 132.3, 130.5, 128.6, 128.4, 127.2, 125.8, 108.5, 94.2, 71.7, 38.3, 36.0, 28.7, 23.4, 22.4, 22.3, 20.5, 20.4, 14.4.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₁H₂₉: 281.2269, found: 281.2267. [α]²⁴_D = -60.4 (*c* = 0.5, CHCl₃); 93% ee, from (*R*,*S*)-L1.

8-methyl-1-phenyl-4-(*o*-tolyl)nona-4,5-dien-3-ol (Figure 4, entry 69). The title compound was prepared according to the **GP-3** from 3-phenylpropanal, enyne **S14** and DHP ester 2, purified by flash column chromatography on silica gel: $5\rightarrow10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 92 mg, 72% yield, 4:1 dr, 94% ee; (*S*,*R*)-**L1**: 92 mg, 72% yield, 4:1 dr, 94% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (R,S)-L1: 6.6 min (major), 5.5 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.21 (m, 2H), 7.18 (ddt, J = 14.9, 9.4, 4.9

Hz, 7H), 5.44 (td, *J* = 7.5, 2.5 Hz, 1H), 4.44 – 4.36 (m, 1H), 2.90 – 2.78 (m, 1H), 2.69 (ddd, *J* = 13.7, 10.4, 6.2 Hz, 1H), 2.33 (s, 3H), 2.03 (td, *J* = 7.2, 2.9 Hz, 2H), 1.99 – 1.90 (m, 1H), 1.84 (d, *J* = 5.5 Hz, 1H), 1.82 – 1.74 (m, 1H), 1.70 (td, *J* = 13.3, 6.7 Hz, 1H), 0.96 – 0.89 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 200.6, 142.1, 136.4, 135.5, 130.6, 128.7, 128.5, 128.4, 127.3, 125.9, 125.8, 108.4, 94.4, 71.4, 38.3, 37.7, 32.0, 28.7, 22.4 (two carbons), 20.5.

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₂₃H₂₇: 303.2113, found: 303.2112. $[\alpha]^{24_D} = -34.8 \ (c = 0.5, CHCl_3); 94\%$ ee, from (*R*,*S*)-L1.

2,4-dimethyl-1-phenyl-2-((triisopropylsilyl)ethynyl)pentan-1-ol (Figure 4, entry 70). The title compound was prepared according to the above equation, purified by flash column chromatography on silica gel: $5\rightarrow10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 62 mg, 42% yield, 1:1 dr; (*S*,*R*)-**L1**: 63 mg, 42% yield, 1:1 dr.

¹H NMR (500 MHz, CDCl₃, mixture of two isomers) δ 7.44 – 7.37 (m, 2H), 7.34 – 7.25 (m, 3H), 4.46 (dd, *J* = 8.9, 4.4 Hz, 1H), 2.74 (d, *J* = 4.3 Hz, 0.5H), 2.56 (d, *J* = 4.7 Hz, 0.5H), 1.98 – 1.82 (m, 1H), 1.63 (dd, *J* = 13.6, 5.9 Hz, 0.5H), 1.45 (dd, *J* = 13.6, 6.2 Hz, 0.5H), 1.27 (s, 1.5H), 1.18 (dd, *J* = 13.6, 5.7 Hz, 0.5H), 1.07 (dt, *J* = 16.2, 4.6 Hz, 25H), 0.98 (d, *J* = 6.7 Hz, 1.5H), 0.94 (d, *J* = 6.7 Hz, 1.5H), 0.90 (d, *J* = 6.7 Hz, 1.5H).

¹³C NMR (126 MHz, CDCl₃, mixture of two isomers) δ 139.9, 139.6, 128.0 (two carbons), 127.7, 127.6 (two carbons), 127.5, 112.8, 112.7, 85.2, 84.7, 80.4, 80.0, 46.7, 44.5, 43.2, 42.8, 25.4, 25.3, 24.9 (two carbons), 24.6, 24.5, 24.0, 22.1, 18.6, 11.3.

When the secondary alkyl-DHP bearing unsymmetric alkyl group was evaluated, the diastereoselectivity was low (as above showed).

¹H NMR (500 MHz, CDCl₃, mixture of two isomers) δ 7.42 – 7.34 (m, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.28 – 7.21 (m, 1H), 5.13 (d, *J* = 3.1 Hz, 1H), 5.07 (t, *J* = 7.5 Hz, 1H), 2.32 (s, 1H), 2.14 – 1.96 (m, 1H), 1.95 – 1.78 (m, 1H), 1.20 – 1.03 (m, 16H), 0.93 (dd, *J* = 7.2, 1.6 Hz, 10H), 0.90 – 0.82 (m, 6H).

¹³C NMR (126 MHz, CDCl₃, mixture of two isomers) δ 206.8, 206.7, 143.6

(two carbons), 128.2 (two carbons), 127.6 (two carbons), 127.2 (two carbons), 98.1, 98.0, 88.8 (two carbons), 72.7 (two carbons), 35.9, 35.8, 35.5, 35.4, 29.2, 29.0, 19.2, 19.0, 18.7, 18.5, 11.7, 11.6, 11.5.

General procedure 4 (GP-4): Asymmetric 1,4-functionalization of 1,3enynes with RBF₃K.

Preparation of the catalyst solution: In a nitrogen-filled glovebox, and oven-dried 20 mL vial with a magnetic stir bar, were charged the $CrCl_2$ (5.0 mg, 0.04 mmol, 10 mol%) and (*S*,*R*)-**L1** (23.2 mg, 0.048 mmol, 12 mol%). Then 8.0 mL THF was added and the vial was closed with a PTFE septum cap, and then stirred at room temperature for 2 h.

Catalytic asymmetric radical 1,4-functionalization of 1,3-enynes: In a nitrogen-filled glovebox, to the prepared catalyst solution were added the 1,3-enynes (0.8 mmol, 2.0 equiv), the aldehydes (0.4 mmol, 1.0 equiv), the potassium trifluoroborate (0.8 mmol, 2.0 equiv), 2,6-dimethylpyridine hydrochloride (0.4 mmol, 1.0 equiv), and photocatalyst 3,6-di-tert-butyl-9-mesityl-10-methylacridin-10-ium tetrafluoroborate (4.1 mg, 0.008 mmol, 2 mol%) sequentially. Then the vial was closed with a PTFE septum cap, and taken out of the glovebox. Then, the reaction was irradiated with two 20 W 160-440 nm LED for 12 hours (tube 5 cm away from lights, fans for cooling, 30-35 °C). After that, the reaction mixture was concentrated and run through a short silica gel pad with hexanes/EtOAc (3:1) as the eluent. Then the solvent was removed under the reduced pressure. The diastereoselectivity was determined via ¹H NMR analysis of the crude reaction mixture. and the residue was purified by flash chromatography to provide the desired product and the ewas determined via HPLC analysis.

1,5-dicyclohexyl-2-(triisopropylsilyl)penta-2,3-dien-1-ol (Figure 5, entry 71). The title compound was prepared according to the **GP-4** from cyclohexanecarbaldehyde, enyne **1** and potassium cyclohexyltrifluoroborate, purified by flash column chromatography on silica gel: $5\rightarrow10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 111 mg, 69% yield, 18:1 dr, 97% ee; (*S*,*R*)-**L1**: 111 mg, 69% yield, 18:1 dr, 96% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (1% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.4 min (major), 3.6 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 4.96 (ddd, *J* = 8.4, 6.9, 1.7 Hz, 1H), 3.78 (s, 1H), 2.00 – 1.85 (m, 3H), 1.82 – 1.61 (m, 9H), 1.30 – 1.12 (m, 11H), 1.08 (dd, *J* = 9.0, 7.4 Hz, 18H), 1.04 – 0.86 (m, 5H).

¹³C NMR (126 MHz, CDCl₃) δ 206.2, 95.8, 87.5, 74.2, 43.3, 38.7, 36.5, 33.2, 33.1, 31.2, 26.5 (four carbons), 26.3 (two carbons), 26.2, 18.7 (two carbons), 11.7.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₆H₄₇Si: 387.3447, found: 387.3443. [α]²⁴_D = -42.0 (*c* = 0.5, CHCl₃); 97% ee, from (*R*,*S*)-L1.

1-cyclohexyl-5-cyclopentyl-2-(triisopropylsilyl)penta-2,3-dien-1-ol (Figure 5, entry 72). The title compound was prepared according to the GP-4 from cyclohexanecarbaldehyde, enyne **1** and potassium cyclopentyltrifluoroborate, purified by flash column chromatography on silica gel: $5 \rightarrow 10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 106 mg, 68% yield, 16:1 dr, 97% ee; (*S*,*R*)-**L1**: 106 mg, 68% yield, 16:1 dr, 98% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (1% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.4 min (major), 3.6 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 5.02 – 4.94 (m, 1H), 3.79 (s, 1H), 2.11 – 1.97 (m, 2H), 1.93 – 1.81 (m, 2H), 1.82 – 1.73 (m, 4H), 1.71 – 1.57 (m, 4H), 1.56 – 1.40 (m, 4H), 1.23 – 1.12 (m, 9H), 1.11 – 1.05 (m, 18H).

¹³C NMR (126 MHz, CDCl₃) δ 206.0, 96.0, 88.4, 74.2, 43.3, 40.7, 34.9, 32.4, 32.3, 31.2, 26.5 (three carbons), 26.2, 25.2, 25.1, 18.7 (two carbons), 11.7.

HRMS (ESI) m/z [M – H₂O + H]⁺ calcd for C₂₅H₄₅Si: 373.3290, found: 373.3282. [α]²⁴_D = -36.4 (*c* = 0.5, CHCl₃); 97% ee, from (*R*,*S*)-L1.

General procedure 5 (GP-5): Radical Difunctionalization of 1,3-Enynes with NHPI ester.

Preparation of the catalyst solution: In a nitrogen-filled glovebox, and oven-dried 20 mL vial with a magnetic stir bar, were charged the CrCl₂ (9.5 mg, 0.08 mmol, 20 mol%) and (S,R)-L1 (46.4 mg, 0.096 mmol, 24 mol%). Then 8.0 mL THF was added and the vial was closed with a PTFE septum cap, and then stirred at room temperature for 2 h.

Catalytic asymmetric radical difunctionalization of 1,3-envnes: In a nitrogen-filled glovebox, to the prepared catalyst solution were added the 1,3enynes (0.6 mmol, 1.5 equiv), the aldehydes (0.4 mmol, 1.0 equiv), the NHPI ester (0.8)mmol, 2.0 equiv), diethyl 1,4-dihydro-2,6-dimethyl-3,5pyridinedicarboxylate (0.8)mmol, 2.0 equiv), and photocatalyst Ir(dF(CF₃)ppy)₂(bpy)]PF₆ (8.2 mg, 0.008 mmol, 2 mol%) sequentially. Then the vial was closed with a PTFE septum cap, and taken out of the glovebox. Then, the reaction was irradiated with two 20 W 160-440 nm LED for 12 hours (tube 5 cm away from lights, fans for cooling, 30-35 °C). After that, the reaction mixture was concentrated and run through a short silica gel pad with hexanes/EtOAc (3:1) as the eluent. Then the solvent was removed under the reduced pressure. The diastereoselectivity was determined via ¹H NMR analysis of the crude reaction mixture. and the residue was purified by flash chromatography to provide the desired product and the ee was determined via HPLC analysis.

6-methyl-1-phenyl-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 5, entry 1). The title compound was prepared according to the GP-5 from benzaldehyde, enyne 1 and NHPI ester S17, purified by flash column chromatography on silica gel: $5 \rightarrow 10\%$ EtOAc in hexanes, colorless liquid.

(*R*,*S*)-L1: 91 mg, 64% yield, >20:1 dr, 90% ee; (*S*,*R*)-L1: 91 mg, 64% yield, >20:1 dr, 90% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.7 min (major), 4.6 min (minor).

2,8-dimethyl-4-(triisopropylsilyl)nona-4,5-dien-3-ol (Figure 5, entry 31). The title compound was prepared according to the **GP-5** from isobutyraldehyde, enyne 1 and NHPI ester **S17**, purified by flash column chromatography on silica gel: $5\rightarrow$ 10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 71 mg, 55% yield, 20:1 dr, 96% ee; (*S*,*R*)-**L1**: 71 mg, 55% yield, 20:1 dr, 96% ee.

HPLC analysis: The ee was determined on a CHIRALPAK OD-3 column (1% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.5 min (major), 3.3 min (minor).

5-cyclohexyl-1-phenyl-2-(triisopropylsilyl)penta-2,3-dien-1-ol (Figure 5, entry 53). The title compound was prepared according to the GP-5 from benzaldehyde, enyne 1 and NHPI ester S18, purified by flash column chromatography on silica gel: $5\rightarrow$ 10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 116 mg, 73% yield, >20:1 dr, 90% ee; (*S*,*R*)-**L1**: 115 mg, 72% yield, 20:1 dr, 89% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.8 min (major), 5.5 min (minor).

6,6-dimethyl-1-phenyl-2-(triisopropylsilyl)hepta-2,3-dien-1-ol (Figure 5, entry 58). The title compound was prepared according to the GP-5 from benzaldehyde, enyne 1 and NHPI ester S19, purified by flash column chromatography on silica gel: $5\rightarrow$ 10% EtOAc in hexanes, colorless liquid.

(*R*,*S*)-**L1**: 111 mg, 75% yield, >20:1 dr, 89% ee; (*S*,*R*)-**L1**: 110 mg, 75% yield, >20:1 dr, 89% ee.

HPLC analysis: The ee was determined on a CHIRALCEL OD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound obtained using (*R*,*S*)-L1: 3.5 min (major), 3.9 min (minor).

Desilylation and cyclization reaction:

(1*R*,3*R*)-6-methyl-1-phenylhepta-2,3-dien-1-ol (Figure 5c, 73): A solution of the compound 63 (680 mg, 2.2 mmol, 1.0 equiv) in 15 mL THF was cooled to – 78 °C, TBAF (3.3 mL, 3.3 mmol, 1.5 equiv, 1.0 M in THF) was added dropwise

under argon atmosphere. The mixture was stirred at -78 °C for 2 h. After completion of the reaction, 1.0 mL H₂O was added cautiously at -78 °C. The resulting mixture was extracted with EtOAc (2×20 mL), and the organic phase was combined and dried with anhydrous MgSO₄, and concentrated. The resulting mixture was purified by flash chromatography (hexanes/ethyl acetate), which furnished the compound **73**, colorless liquid, 382 mg, 86% yield, > 20:1 dr, 96% ee.

HPLC analysis: The ee was determined on a CHIRALPAK OD-3 column (5% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound **73**: 5.6 min (major), 6.8 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.33 (m, 4H), 7.31 – 7.26 (m, 1H), 5.43 – 5.37 (m, 1H), 5.36 – 5.29 (m, 1H), 5.23 (dd, *J* = 6.0, 2.1 Hz, 1H), 2.14 (brs, 1H), 1.99 – 1.92 (m, 2H), 1.73 – 1.63 (m, 1H), 0.93 (dd, *J* = 6.6, 2.3 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 202.7, 143.1, 128.5, 127.7, 126.2, 95.5, 93.7, 72.3, 38.3, 28.5, 22.2 (two carbons).

HRMS (ESI) m/z $[M - H_2O + H]^+$ calcd for C₁₄H₁₇: 185.1330, found: 185.1326. $[\alpha]^{24}_D = -55.6$ (c = 0.5, CHCl₃).

(2*R*,5*R*)-3-bromo-2-isobutyl-5-phenyl-2,5-dihydrofuran (Figure 5c, 74): NBS (85 mg, 0.48 mmol, 1.2 equiv) in 1.0 mL MeCN was added to the solution of the compound 73 (83 mg, 0.4 mmol, 1.0 equiv) in 2.0 mL MeCN and 0.2 mL H₂O under argon atmosphere. The mixture was stirred at rt for 4 h. After completion of the reaction, the mixture was concentrated, purified by flash chromatography (hexanes/ethyl acetate), which furnished compound 74, colorless liquid, 67 mg, 60% yield, >20:1 dr, 96% ee.

HPLC analysis: The ee was determined on a CHIRALPAK OJ-3 column (1% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound **74**: 5.3 min (major), 5.5 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.36 (ddd, *J* = 7.1, 4.3, 1.6 Hz, 2H), 7.33 – 7.29 (m, 3H), 5.99 (t, *J* = 1.9 Hz, 1H), 5.70 (dd, *J* = 4.2, 1.6 Hz, 1H), 4.88 – 4.80 (m, 1H), 2.02 – 1.89 (m, 1H), 1.74 (ddd, *J* = 13.9, 9.3, 2.7 Hz, 1H), 1.58 – 1.49 (m, 1H), 0.98 (t, *J* = 6.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 140.8, 129.4, 128.5, 128.1, 126.6, 121.6, 86.9, 85.6, 44.1, 24.8, 23.8, 21.6.

HRMS (ESI) m/z [M – Br]⁺ calcd for C₁₄H₁₇O: 201.1279, found: 201.1277. [α]²⁴_D = +45.6 (*c* = 0.5, CHCl₃).

(2*R*,5*R*)-2-isobutyl-5-phenyl-2,5-dihydrofuran (Figure 5c, 75): The compound 73 (83 mg, 0.4 mmol, 1.0 equiv) was added to the solution of AgNO₃ (13.6 mg, 0.08 mmol, 20 mol%) in 3.0 mL acetone and 2.0 mL H₂O under argon atmosphere. The mixture was stirred at rt for 12 h. After completion of the reaction, the mixture was concentrated, purified by flash chromatography (hexanes/ethyl acetate), which furnished compound 75, colorless liquid, 68 mg, 84% yield, >20:1 dr, 96% ee.

HPLC analysis: The ee was determined on a CHIRALPAK OJ-3 column (3% *i*-PrOH in hexane, 1.0 mL/min); retention times for compound **75**: 5.4 min (major), 6.2 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.30 (m, 4H), 7.29 – 7.25 (m, 1H), 5.92 (ddd, *J* = 6.0, 2.3, 1.4 Hz, 1H), 5.86 – 5.79 (m, 1H), 5.75 (dd, *J* = 4.0, 2.0 Hz, 1H), 5.01 – 4.94 (m, 1H), 1.94 – 1.80 (m, 1H), 1.63 (ddd, *J* = 14.2, 8.1, 6.3 Hz, 1H), 1.49 (ddd, *J* = 13.3, 7.7, 5.4 Hz, 1H), 0.97 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 142.3, 130.8, 129.9, 128.4, 127.6, 126.5, 87.6, 84.9, 46.2, 25.2, 23.3, 22.5.

HRMS (ESI) m/z [M + H]⁺ calcd for C₁₄H₁₉O: 203.1436, found: 203.1432. [α]²⁴_D = +142.0 (*c* = 0.5, CHCl₃).

General procedure 6 (GP-6): Asymmetric radical 1,4-functionalization of 1,3-enynes with DHP esters.

Preparation of the catalyst solution: In a nitrogen-filled glovebox, and oven-dried 4 mL vial with a magnetic stir bar, were charged the CrCl₂ (1.3 mg, 0.01 mmol, 10 mol%) and (S,R)-L1 (5.8 mg, 0.012 mmol, 12 mol%). Then 2.0 mL THF was added and the vial was closed with a PTFE septum cap, and then stirred at room temperature for 2 h.

Catalytic asymmetric radical 1,4-functionalization of 1,3-enynes: In a nitrogen-filled glovebox, to the prepared catalyst solution were added the 1,3-enyne (0.15 mmol, 1.5 equiv), the aldehyde (0.1 mmol, 1.0 equiv), the DHP ester (0.15 mmol, 1.5 equiv), and 4-CzIPN (1.6 mg, 0.002 mmol, 2 mol%) sequentially. Then the vial was closed with a PTFE septum cap, and taken out of the glovebox. Then, the reaction was irradiated with two 20 W 160-440 nm LED for 12 hours (tube 5 cm away from lights, fans for cooling, 30-35 °C). After that, the reaction mixture was concentrated and run through a short silica gel pad with hexanes/EtOAc (3:1) as the eluent. Then the solvent was removed under the reduced pressure. The yield and diastereoselectivity were determined via ¹H NMR analysis of the crude reaction mixture. The ee was determined via HPLC analysis after further purification by prep-TLC.

Supplementary Table 1 Effect of reaction parameters on the reaction of asymmetric 1,4-functionalization of 1,3-enynes^a

Ph-CHO + TIPS 1 (1.5 equiv)	to mo i-Pr EtOOC Me N Me H 2 (1.5 equiv) 10 mo 12 mol 2 mol THF (t 12 h, "standar	bl% CrCl ₂ % (<i>S</i> , <i>R</i>)– L1 % 4-CzIPN 0.05 M), rt blue LED rd condition	Ph [.] TI s″	OH PS 3	H -i-Pr <i>i</i> -Pr <i>i</i> -Pr <i>i</i> -Pr <i>i</i> -Pr <i>i</i> -Pr <i>i</i> -Pr <i>i</i> -Pr <i>i</i> -Pr <i>i</i> -Pr <i>i</i> -Pr
optny	variation from "standard conditions"	viold [%]	dr ^b	00 ⁰ [9/]	
entry					Ph Ph
1	None without CrCL	>95	20:1	94	N HN
2	without 4-CzIPN	<2		_	Ph (<i>S,R</i>)– L1 Ph
3 4	without blue LED	<2	_	_	CN
5	L2 , instead of (<i>S</i> , <i>R</i>)– L1	>95	20:1	92	
6	L3, instead of (S,R)–L1	84	3.1:1	47	, N HN √
7	L4 . instead of (S,R) –L1	68	1.6:1	19	Ř L2 : R = Ph Ŕ
8	L5 , instead of (S,R) – L1	52	5.5:1	34	L3 : R = Bn
9	L6 , instead of (S,R) – L1	71	1.8:1	46	
10	L7 , instead of (S,R) – L1	79	2.8:1	93	
11	DME, instead of THF	72	10:1	94	Ph L3 Ph
12	MeCN. instead of THF	85	20:1	95	Ph Ph
13	EtOAc, instead of THF	>95	20:1	94	
14	Ir(dF(CF ₃)ppy) ₂ (dtbpy)]PF ₆ instead of 4-CzIPN	>95	11:1	88	L4
15	5 mol% CrCl ₂ , 6 mol% (<i>S,R</i>)– L1	74	20:1	94	
16	0.1M, instead of 0.05M, in THF	>95	12:1	93	, N NHMs
17	1.2, instead of 1.5, equiv 1 and 2	80	20:1	94	Ph L6
18	1.2, instead of 1.5, equiv 1	90	18:1	93	
19	1.0 equiv H ₂ O was added	<2	_	_	N O
20	1 mL air (added via syringe)	55	14:1	87	Ň
					I7 Ph

^{*a*} Yields were determined via ¹H NMR analysis with 1,3,5-trimethoxybenzene as the internal standard. ^{*b*} Drs were determined via ¹H NMR analysis of the crude product. ^{*c*} Ee was determined by HPLC analysis. ^{*d*} The aldehyde was full consumed.

1.6 Preliminary Mechanistic Study

Preparation of the catalyst solution: In a nitrogen-filled glovebox, and oven-dried 20 mL vial with a magnetic stir bar, were charged the $CrCl_2$ (5.0 mg, 0.04 mmol, 10 mol%) and (*S*,*R*)-**L1** (23.2 mg, 0.048 mmol, 12 mol%). Then 8.0 mL THF was added and the vial was closed with a PTFE septum cap, and then stirred at room temperature for 2 h.

Catalytic asymmetric radical difunctionalization of 1,3-enynes: In a nitrogen-filled glovebox, to the prepared catalyst solution were added the 1,3-enyne (0.6 mmol, 1.5 equiv), the aldehyde (0.4 mmol, 1.0 equiv), the DHP ester (0.6 mmol, 1.5 equiv), methyl 2-((phenylsulfonyl)methyl)acrylate (192 mg, 0.8 mmol, 2.0 equiv), and 4-CzIPN (6.4 mg, 0.008 mmol, 2 mol%) sequentially. Then the vial was closed with a PTFE septum cap, and taken out of the glovebox. Then, the reaction was irradiated with one 20 W 160-440 nm LED for 12 hours (tube 5 cm away from lights, fans for cooling, 30-35 °C). After that, the reaction mixture was concentrated and run through a short silica gel pad with hexanes/EtOAc (3:1) as the eluent. Then the solvent was removed under the reduced pressure. The product **76** was isolated by flash chromatography with 42% yield.

Data for product 76:

Radical trapping experiment

¹H NMR (500 MHz, CDCl₃) δ 6.13 (d, *J* = 1.6 Hz, 1H), 5.47 (d, *J* = 1.1 Hz, 1H), 3.73 (s, 3H), 2.18 (d, *J* = 7.0 Hz, 2H), 1.71 – 1.58 (m, 5H), 1.49 – 1.37 (m, 1H), 1.27 – 1.07 (m, 3H), 0.92 – 0.78 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 168.0, 139.1, 125.7, 51.7, 39.9, 36.5, 33.0, 26.5, 26.2.

HRMS (APCI) m/z [M + H]⁺ calcd for C₁₁H₁₉O₂: 183.1385, found: 183.1389.

Quantum Yield Analysis

Determination of the light intensity at 440 nm:

Following a literature procedure of Yoon (6), the photon flux of the spectrophotometer was determined by standard ferrioxalate actinometry. A 0.15 M solution of ferrioxalate was prepared by dissolving 2.21 g of potassium ferrioxalate hydrate in 30 mL of 0.05 M H₂SO₄. A buffered solution of phenanthroline was prepared by dissolving 50 mg of phenanthroline and 11.25 g of sodium acetate in 50 mL of 0.5 M H₂SO₄. Both solutions were stored in the

dark. To determine the photon flux of the spectrophotometer, 2.0 mL of the ferrioxalate solution was placed in a cuvette and irradiated for 90.0 seconds at $\lambda = 440$ nm with an emission slit width at 10.0 nm. After irradiation, 0.35 mL of the phenanthroline solution was added to the cuvette. The solution was then allowed to rest for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm. A non-irradiated sample was also prepared and the absorbance at 510 nm measured. Conversion was calculated using eq 1.

mol Fe²⁺ =
$$\frac{V \bullet \Delta A}{I \bullet \epsilon}$$
 (1)

Where V is the total volume (0.00235 L) of the solution after addition of phenanthroline, ΔA is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, l is the path length (1.000 cm), and ε is the molar absorptivity at 510 nm (11,100 L mol–1 cm–1). The photon flux can be calculated using eq 2.

photon flux =
$$\frac{\text{mol Fe}^{2+}}{\Phi \cdot t \cdot f}$$
 (2)

Where Φ is the quantum yield for the ferrioxalate actinometer (1.01 for a 0.15 M solution at λ = 436 nm), t is the time (90.0 s), and f is the fraction of light absorbed at λ = 436 nm (0.99833, *vide infra*). The photon flux was calculated to be 4.5936 × 10⁻⁹ einstein s⁻¹.

Sample calculation:

mol Fe²⁺ =
$$\frac{0.00235 \text{ L} \cdot 1.969}{1.0 \text{ cm} \cdot 11100 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}} = 4.1686 \times 10^{-7} \text{ mol}$$

photon flux = $\frac{4.1686 \times 10^{-7} \text{ mol}}{1.01 \cdot 90.0 \text{ s} \cdot 0.99833} = 4.5936 \times 10^{-9} \text{ einstein s}^{-1}$

Determination of the reaction quantum yield:

Preparation of the catalyst solution: In a nitrogen-filled glovebox, and oven-dried 4 mL vial with a magnetic stir bar, were charged the CrCl₂ (1.3 mg, 0.01 mmol, 10 mol%) and (S,R)-L1 (5.8 mg, 0.012 mmol, 12 mol%). Then 2.0 mL THF was added and the vial was closed with a PTFE septum cap, and then stirred at room temperature for 2 h.

Catalytic asymmetric radical difunctionalization of 1,3-enynes: In a nitrogen-filled glovebox, to the prepared catalyst solution were added the 1,3-enyne **1** (0.15 mmol, 1.5 equiv), benzaldehyde (0.1 mmol, 1.0 equiv), the DHP ester **2** (0.15 mmol, 1.5 equiv), and 4-CzIPN (1.6 mg, 0.002 mmol, 2 mol%)

sequentially. Then the vial was closed with a PTFE septum cap, and taken out of the glovebox. The reaction mixture was stirred and irradiated with a single blue LED (20 W, $\lambda_{max} = 440$ nm) for 13 min. After irradiation, the yield was determined by GC-FID analysis using dodecane as an internal standard. The yield was determined to be 1.3% (1.25×10⁻⁶ mol). The reaction quantum yield (Φ) was determined using eq. 3 where the photon flux is 4.5936×10⁻⁹ einsteins s⁻¹ (determined by actinometry as described above), *t* is the reaction time (780 s) and *f*_R is the fraction of incident light absorbed by the reaction mixture. An absorption spectrum of the reaction mixture gave an absorbance value of > 3 at 440 nm, indicating that essentially all the incident light (*f*_R > 0.999) is absorbed by the photocatalyst.

$$\Phi = \frac{n \text{ (product)}}{\text{photon flux } \bullet \text{ t} \bullet \text{ f}} \quad (3)$$

The reaction quantum yield (Φ) was thus determined to be Φ = 0.35.

Light on-off experiments

Supplementary Figure 2. Light on-off experiments

Preparation of the catalyst solution: In a nitrogen-filled glovebox, and oven-dried 20 mL vial with a magnetic stir bar, were charged the $CrCl_2$ (5.0 mg, 0.04 mmol, 10 mol%) and (*S*,*R*)-**L1** (23.2 mg, 0.048 mmol, 12 mol%). Then 8.0 mL THF was added and the vial was closed with a PTFE septum cap, and then stirred at room temperature for 2 h.

Catalytic asymmetric radical difunctionalization of 1,3-enynes: In a nitrogen-filled glovebox, to the prepared catalyst solution were added the 1,3-enyne **1** (0.6 mmol, 1.5 equiv), benzaldehyde (0.4 mmol, 1.0 equiv), the DHP ester **2** (0.6 mmol, 1.5 equiv), dodecane (0.2 mmol), and 4-CzIPN (6.4 mg, 0.008 mmol, 2 mol%) sequentially. Then the vial was closed with a PTFE septum cap, and taken out of the glovebox. Then, the reaction was irradiated with one 20 W 160-440 nm LED for 1 hour (tube 5 cm away from lights, fans for cooling, 30-35 °C). After that, light was turned off, sample (200 µL) was taken with a syringe and analyzed by GC to determine the yields. And the reaction was stirred in the dark for 1 hour. And sample (200 µL) was taken with a syringe and analyzed by GC to determine the yields on-off experiments were conducted for another three times.

Stern-Volmer fluorescence quenching experiments

A Hitachi F-7000 fluoresence spectrometer was used to record the emission intensities. All 4-CzIPN solutions were excited at 440 nm and the emission intensity at 531 nm was observed. THF was degassed with a stream of N₂ for 30 min. In a typical experiment, the emission spectrum of a 2×10⁻⁵ M solution of 4-CzIPN in THF was collected. Then, appropriate amount of quencher was added to the measured solution in a quartz cuvette and the emission spectrum of the sample was collected. I₀ and I represent the intensities of the emission in the absence and presence of the quencher at 531 nm.

Supplementary Figure 3. Emission spectra of 2×10^{-5} M 4-CzIPN at λ_{ex} = 440nm showing the quenching effect of increasing of enyne **1**.

Supplementary Figure 4. Emission spectra of 2×10^{-5} M 4-CzIPN at λ_{ex} = 440nm showing the quenching effect of increasing of DHP ester **2**.

Supplementary Figure 5. The Stern-Volmer plot.

1.7 Assignment of the Absolute Configuration

Supplementary Figure 6. Thermal ellipsoid plot at the 50% probability level. Hydrogen atoms are omitted for clarity. Metrical parameters for the structure of **12** are available free of charge from the Cambridge Crystallographic Data Centre (https://www.ccdc.cam.ac.uk/) under reference number CCDC 2130059.

N-(4-((1*S*,3*S*)-1-hydroxy-6-methyl-2-(triisopropylsilyl)hepta-2,3-dien-1yl)phenyl)acetamide (Figure 3, entry 12). X-ray quality crystals were obtained by slow evaporation of a saturated solution in CH₂Cl₂/hexanes of a sample synthesized with (*S*,*R*)-L1. A single crystal of C₂₅H₄₁NO₂Si was selected and mounted in a nylon loop in parabar oil. All measurements were performed on a Bruker Photon III diffractometer with filtered Cu-K α radiation at a temperature of 100 K. Using Olex2 (7), the structure was solved with the ShelXS structure solution program (*8*) using Direct Methods and refined with the ShelXL refinement package (9) using Least Squares minimization. The absolute stereochemistry was determined on the basis of the absolute structure parameter. Crystal data, data collection parameters, and structure refinement details are given in Supplementary Table 2.

Supplementary Table 2. Crystal data and structure refineme	ent for 12 .
--	---------------------

Identification code	cu-full-no7_a		
Empirical formula	C6.25 H10.25 N0.25 O0.50 Si0.25		
Formula weight	103.92		
Temperature	100(2) K		
Wavelength	1.54178 Å		
Crystal system	Orthorhombic		
Space group	P212121		
Unit cell dimensions	a = 8.5909(3) Å	a= 90°.	
	b = 11.9281(5) Å	b= 90°.	
	c = 26.4715(13) Å	g = 90°.	

Volume	2712.6(2) Å ³		
Z	16		
Density (calculated)	1.018 Mg/m ³		
Absorption coefficient	0.888 mm ⁻¹		
F(000)	912		
Crystal size	0.54 x 0.08 x 0.065 mm ³		
Theta range for data collection	3.339 to 66.797°.		
Index ranges	-10<=h<=9, -14<=k<=14, -30<=l<=31		
Reflections collected	28257		
Independent reflections	4809 [R(int) = 0.1119]		
Completeness to theta = 66.797°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7528 and 0.5118		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4809 / 2 / 278		
Goodness-of-fit on F ²	1.048		
Final R indices [I>2sigma(I)]	R1 = 0.0647, wR2 = 0.1717		
R indices (all data)	R1 = 0.0984, wR2 = 0.1981		
Absolute structure parameter	-0.01(3)		
Extinction coefficient	0.0038(9)		
Largest diff. peak and hole	0.336 and -0.196 e.Å ⁻³		

Supplementary Figure 7. Thermal ellipsoid plot at the 50% probability level. Hydrogen atoms are omitted for clarity. Metrical parameters for the structure of **42** are available free of charge from the Cambridge Crystallographic Data Centre (https://www.ccdc.cam.ac.uk/) under reference number CCDC 2130062.

tert-butyl ((2*R*,3*S*,5*S*)-3-hydroxy-8-methyl-1-phenyl-4-(triisopropylsilyl)nona-4,5-dien-2-yl)carbamate (Figure 3, entry 42). X-ray quality crystals were obtained by slow evaporation of a saturated solution in CH₂Cl₂/hexanes of a sample synthesized with (*S*,*R*)-L1. A single crystal of $C_{30}H_{51}NO_3Si$ was selected and mounted in a nylon loop in parabar oil. All measurements were performed on a Bruker Photon III diffractometer with filtered Mo-K α radiation at a temperature of 100 K. Using Olex2 (5), the structure was solved with the ShelXS structure solution program (6) using Direct Methods and refined with the ShelXL refinement package (7) using Least Squares minimization. The absolute stereochemistry was determined on the basis of the absolute structure parameter. Crystal data, data collection parameters, and structure refinement details are given in Supplementary Table 3.

Identification code	mo_ZFH_0930_3962_0m_a			
Empirical formula	C30 H51 N O3 Si			
Formula weight	501.80			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Orthorhombic			
Space group	P212121			
Unit cell dimensions	a = 10.7957(7) Å	a= 90°.		
	b = 11.6038(6) Å	b= 90°.		
	c = 24.5221(15) Å	g = 90°.		
Volume	3071.9(3) Å ³			
Z	4			
Density (calculated)	1.085 Mg/m ³			
Absorption coefficient	0.105 mm ⁻¹			
F(000)	1104			
Crystal size	0.1 x 0.04 x 0.03 mm ³			
Theta range for data collection	1.942 to 28.278°.			
Index ranges	-14<=h<=14, -15<=k<=12, -28<=l<=32			
Reflections collected	58595			
Independent reflections	7613 [R(int) = 0.0764]			
Completeness to theta = 25.242°	99.7 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.7457 and 0.6649			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	7613 / 2 / 333			
Goodness-of-fit on F ²	0.998			
Final R indices [I>2sigma(I)]	R1 = 0.0356, wR2 = 0.0814			
R indices (all data)	R1 = 0.0439, wR2 = 0.0869			
Absolute structure parameter	-0.02(5)			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.227 and -0.222 e.Å ⁻³			

Supplementary Table 3. Crystal data and structure refinement for 42.

1.8 NMR Spectra ¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 8. ¹H NMR spectrum of compound **S8** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 9. ¹³C NMR spectrum of compound S8

Supplementary Figure 10. ¹H NMR spectrum of compound **S15** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 11. ¹³C NMR spectrum of compound S15

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 12. ¹H NMR spectrum of compound **S16** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 13. ¹³C NMR spectrum of compound S16

Supplementary Figure 14. ¹H NMR spectrum of compound **3** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 15. ¹³C NMR spectrum of compound 3

Supplementary Figure 16. ¹H NMR spectrum of compound 4 ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 17. ¹³C NMR spectrum of compound 4

Supplementary Figure 18. ¹H NMR spectrum of compound **5** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 19. ¹³C NMR spectrum of compound 5

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 21. ¹³C NMR spectrum of compound **6** ¹⁹F NMR (471 MHz, room temperature, CDCl₃)

Supplementary Figure 22. ¹⁹F NMR spectrum of compound 6

Supplementary Figure 23. ¹H NMR spectrum of compound 7 ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 24. ¹³C NMR spectrum of compound 7

Supplementary Figure 25. ¹H NMR spectrum of compound **8** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 26. ¹³C NMR spectrum of compound 8

Supplementary Figure 27. ¹H NMR spectrum of compound **9** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 28. ¹³C NMR spectrum of compound 9

Supplementary Figure 29. ¹H NMR spectrum of compound **10** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 30. ¹³C NMR spectrum of compound 10

Supplementary Figure 31. ¹H NMR spectrum of compound **11** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 32. ¹³C NMR spectrum of compound 11

Supplementary Figure 33. ¹H NMR spectrum of compound **12** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 34. ¹³C NMR spectrum of compound 12

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 36. ¹³C NMR spectrum of compound **13** ¹⁹F NMR (471 MHz, room temperature, CDCl₃)

Supplementary Figure 37. ¹⁹F NMR spectrum of compound 13

Supplementary Figure 38. ¹H NMR spectrum of compound **14** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 39. ¹³C NMR spectrum of compound 14

Supplementary Figure 40. ¹H NMR spectrum of compound **15** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 41. ¹³C NMR spectrum of compound 15

Supplementary Figure 42. ¹H NMR spectrum of compound **16** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 43. ¹³C NMR spectrum of compound 16

Supplementary Figure 44. ¹H NMR spectrum of compound **17** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 45. ¹³C NMR spectrum of compound 17

Supplementary Figure 46. ¹H NMR spectrum of compound **18** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 47. ¹³C NMR spectrum of compound 18

Supplementary Figure 48. ¹H NMR spectrum of compound **19** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 49. ¹³C NMR spectrum of compound 19

Supplementary Figure 50. ¹H NMR spectrum of compound **20** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 51. ¹³C NMR spectrum of compound 20

Supplementary Figure 52. ¹H NMR spectrum of compound **21** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 53. ¹³C NMR spectrum of compound 21

Supplementary Figure 54. ¹H NMR spectrum of compound **22** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 55. ¹³C NMR spectrum of compound 22

Supplementary Figure 56. ¹H NMR spectrum of compound **23** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 57. ¹³C NMR spectrum of compound 23

Supplementary Figure 58. ¹H NMR spectrum of compound **24** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 59. ¹³C NMR spectrum of compound 24

Supplementary Figure 60. ¹H NMR spectrum of compound **25** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 61. ¹³C NMR spectrum of compound 25

Supplementary Figure 62. ¹H NMR spectrum of compound **26** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 63. ¹³C NMR spectrum of compound 26

Supplementary Figure 64. ¹H NMR spectrum of compound **27** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 65. ¹³C NMR spectrum of compound 27

Supplementary Figure 66. ¹H NMR spectrum of compound **28** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 67. ¹³C NMR spectrum of compound 28

Supplementary Figure 68. ¹H NMR spectrum of compound **29** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 69. ¹³C NMR spectrum of compound 29

Supplementary Figure 70. ¹H NMR spectrum of compound **30** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 71. ¹³C NMR spectrum of compound 30

Supplementary Figure 72. ¹H NMR spectrum of compound **31** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 73. ¹³C NMR spectrum of compound 31

Supplementary Figure 74. ¹H NMR spectrum of compound **32** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 75. ¹³C NMR spectrum of compound 32

Supplementary Figure 76. ¹H NMR spectrum of compound **33** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 77. ¹³C NMR spectrum of compound 33

Supplementary Figure 78. ¹H NMR spectrum of compound **34** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 79. ¹³C NMR spectrum of compound 34

Supplementary Figure 80. ¹H NMR spectrum of compound **35** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 81. ¹³C NMR spectrum of compound 35

Supplementary Figure 82. ¹H NMR spectrum of compound **36** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 83. ¹³C NMR spectrum of compound 36

Supplementary Figure 84. ¹H NMR spectrum of compound **37** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 85. ¹³C NMR spectrum of compound 37

Supplementary Figure 86. ¹H NMR spectrum of compound **38** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 87. ¹³C NMR spectrum of compound 38

Supplementary Figure 88. ¹H NMR spectrum of compound **39** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 89. ¹³C NMR spectrum of compound 39

Supplementary Figure 90. ¹H NMR spectrum of compound **40** ¹³C NMR (126 MHz, 60 °C, C₆D₆)

Supplementary Figure 91. ¹³C NMR spectrum of compound 40

Supplementary Figure 92. ¹H NMR spectrum of compound **41** ¹³C NMR (126 MHz, 60 °C, C₆D₆)

Supplementary Figure 93. ¹³C NMR spectrum of compound 41

Supplementary Figure 94. ¹H NMR spectrum of compound **42** ¹³C NMR (126 MHz, 60 °C, C₆D₆)

Supplementary Figure 95 ¹³C NMR spectrum of compound 42

Supplementary Figure 96. ¹H NMR spectrum of compound **43** ¹³C NMR (126 MHz, 60 °C, C₆D₆)

Supplementary Figure 97. ¹³C NMR spectrum of compound 43

Supplementary Figure 98. ¹H NMR spectrum of compound **44** ¹³C NMR (126 MHz, 60 °C, C₆D₆)

Supplementary Figure 99. ¹³C NMR spectrum of compound 44

Supplementary Figure 100. ¹H NMR spectrum of compound **45** ¹³C NMR (126 MHz, 60 °C, C₆D₆)

Supplementary Figure 101. ¹³C NMR spectrum of compound 45

Supplementary Figure 102. ¹H NMR spectrum of compound **46** ¹³C NMR (126 MHz, 60 °C, C₆D₆)

Supplementary Figure 103. ¹³C NMR spectrum of compound 46

Supplementary Figure 104. ¹H NMR spectrum of compound **47** ¹³C NMR (126 MHz, 60 °C, C₆D₆)

Supplementary Figure 105. ¹³C NMR spectrum of compound 47

Supplementary Figure 106. ¹H NMR spectrum of compound **48** ¹³C NMR (126 MHz, 60 °C, C₆D₆)

Supplementary Figure 107. ¹³C NMR spectrum of compound 48
¹H NMR (500 MHz, 60 °C, C₆D₆)

Supplementary Figure 108. ¹H NMR spectrum of compound **49** ¹³C NMR (126 MHz, 60 °C, C₆D₆)

Supplementary Figure 109. ¹³C NMR spectrum of compound 49

Supplementary Figure 110. ¹H NMR spectrum of compound **50** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 111. ¹³C NMR spectrum of compound 50

Supplementary Figure 112. ¹H NMR spectrum of compound **51** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 113. ¹³C NMR spectrum of compound 51

Supplementary Figure 114. ¹H NMR spectrum of compound **52** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 115. ¹³C NMR spectrum of compound 52

Supplementary Figure 116. ¹H NMR spectrum of compound **53** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 117. ¹³C NMR spectrum of compound 53

Supplementary Figure 118. ¹H NMR spectrum of compound **54** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 119. ¹³C NMR spectrum of compound 54

S-114

Supplementary Figure 120. ¹H NMR spectrum of compound **55** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 121. ¹³C NMR spectrum of compound 55

Supplementary Figure 122. ¹H NMR spectrum of compound **56** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 123. ¹³C NMR spectrum of compound 56

Supplementary Figure 124. ¹H NMR spectrum of compound **57** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 125. ¹³C NMR spectrum of compound 57

Supplementary Figure 127. ¹³C NMR spectrum of compound 58

Supplementary Figure 128. ¹H NMR spectrum of compound **59a** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 129. ¹³C NMR spectrum of compound 59a

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 130. ¹H NMR spectrum of compound **59a** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 131. ¹³C NMR spectrum of compound 59b

Supplementary Figure 132. ¹H NMR spectrum of compound **60** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 133. ¹³C NMR spectrum of compound 60

Supplementary Figure 134. ¹H NMR spectrum of compound **61** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 135. ¹³C NMR spectrum of compound 61

Supplementary Figure 136. ¹H NMR spectrum of compound **62** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 137. ¹³C NMR spectrum of compound 62

1.00E+09

Supplementary Figure 138. ¹H NMR spectrum of compound **63** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 139. ¹³C NMR spectrum of compound 63

Supplementary Figure 140. ¹H NMR spectrum of compound **64** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 141. ¹³C NMR spectrum of compound 64

Supplementary Figure 142. ¹H NMR spectrum of compound **65** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 143. ¹³C NMR spectrum of compound 65

Supplementary Figure 144. ¹H NMR spectrum of compound **66** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 145. ¹³C NMR spectrum of compound 66

¹H NMR (500 MHz, room temperature, CDCl₃)

Supplementary Figure 146. ¹H NMR spectrum of compound **67** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 147. ¹³C NMR spectrum of compound 67

Supplementary Figure 148. ¹H NMR spectrum of compound **68** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 149. ¹³C NMR spectrum of compound 68

Supplementary Figure 150. ¹H NMR spectrum of compound **69** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 151. ¹³C NMR spectrum of compound 69

Supplementary Figure 152. ¹H NMR spectrum of compound **70** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 153. ¹³C NMR spectrum of compound 70

Supplementary Figure 154. ¹H NMR spectrum of compound **71** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 155. ¹³C NMR spectrum of compound 71

84.99 2.016 2.016 2.016 2.016 2.016 2.016 2.0170

Supplementary Figure 156. ¹H NMR spectrum of compound **72** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 157. ¹³C NMR spectrum of compound 72

Supplementary Figure 158. ¹H NMR spectrum of compound **73** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 159. ¹³C NMR spectrum of compound 73

Supplementary Figure 160. ¹H NMR spectrum of compound **74** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 161. ¹³C NMR spectrum of compound 74

Supplementary Figure 162. ¹H NMR spectrum of compound **75** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 163. ¹³C NMR spectrum of compound 75

Supplementary Figure 164. ¹H NMR spectrum of compound **76** ¹³C NMR (126 MHz, room temperature, CDCl₃)

Supplementary Figure 165. ¹³C NMR spectrum of compound 76

1.9 Stereoselectivity Analysis

Supplementary Figure 166. HPLC Spectra of **3** obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 167. HPLC Spectra of **3** obtained from (*S*,*R*)-**L1**.

Supplementary Figure 168. HPLC Spectra of 4 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 169. HPLC Spectra of 4 obtained from (*S*,*R*)-L1.

Supplementary Figure 170. HPLC Spectra of 5 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 171. HPLC Spectra of 5 obtained from (*S*,*R*)-L1.

Supplementary Figure 172. HPLC Spectra of **6** obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 173. HPLC Spectra of 6 obtained from (*S*,*R*)-L1.

Supplementary Figure 175. HPLC Spectra of 7 obtained from (*S*,*R*)-**L1**.

Supplementary Figure 176. HPLC Spectra of **8** obtained from (*R*,*S*)-L1.

Supplementary Figure 177. HPLC Spectra of 8 obtained from (*S*,*R*)-L1.

Supplementary Figure 179. HPLC Spectra of 9 obtained from (*S*,*R*)-L1.

Supplementary Figure 181. HPLC Spectra of **10** obtained from (*S*,*R*)-**L1**.

Supplementary Figure 182. HPLC Spectra of **11** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 183. HPLC Spectra of 11 obtained from (*S*,*R*)-L1.

Supplementary Figure 184. HPLC Spectra of 12 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 185. HPLC Spectra of **12** obtained from (*S*,*R*)-**L1**.

Supplementary Figure 186. HPLC Spectra of **13** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 187. HPLC Spectra of 13 obtained from (*S*,*R*)-L1.

Supplementary Figure 189. HPLC Spectra of 14 obtained from (*S*,*R*)-L1.

3.00

Name

1 2 RT

3.975

4.00

Minutes Peak Results

Area

39695

4.450 3060442 574237

6.00

5.00

Height 7897 % Area

1.28

98.72

7.00

8.00

0.10-

0.00-

0.00

1.00

2.00

Supplementary Figure 190. HPLC Spectra of **15** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 191. HPLC Spectra of 15 obtained from (*S*,*R*)-L1.

Supplementary Figure 192. HPLC Spectra of **16** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 193. HPLC Spectra of 16 obtained from (*S*,*R*)-L1.

Supplementary Figure 194. HPLC Spectra of **17** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 195. HPLC Spectra of 17 obtained from (*S*,*R*)-L1.

(R,S)-L1: 94% ee; (S,R)-L1: 92% ee

Supplementary Figure 196. SFC Spectra of 18 obtained from (*R*,*S*)-L1.

Supplementary Figure 197. SFC Spectra of 18 obtained from (S,R)-L1.

Supplementary Figure 198. HPLC Spectra of 19 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 199. HPLC Spectra of **19** obtained from (*S*,*R*)-**L1**.

Supplementary Figure 200. HPLC Spectra of 20 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 201. HPLC Spectra of **20** obtained from (*S*,*R*)-**L1**.

Supplementary Figure 202. HPLC Spectra of 21 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 203. HPLC Spectra of 21 obtained from (*S*,*R*)-L1.

Supplementary Figure 204. HPLC Spectra of 22 obtained from (*R*,*S*)-L1.

Supplementary Figure 205. HPLC Spectra of 22 obtained from (*S*,*R*)-L1.

Supplementary Figure 206. HPLC Spectra of **23** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 207. HPLC Spectra of 23 obtained from (*S*,*R*)-L1.

Supplementary Figure 208. HPLC Spectra of 24 obtained from (R,S)-L1. Auto-Scaled Chromatogram

Supplementary Figure 209. HPLC Spectra of 24 obtained from (*S*,*R*)-L1.

Supplementary Figure 210. HPLC Spectra of **25** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 211. HPLC Spectra of 25 obtained from (*S*,*R*)-L1.

Supplementary Figure 212. HPLC Spectra of 26 obtained from (R,S)-L1. Auto-Scaled Chromatogram

Supplementary Figure 213. HPLC Spectra of 26 obtained from (*S*,*R*)-L1.

Supplementary Figure 214. HPLC Spectra of **27** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 215. HPLC Spectra of **27** obtained from (*S*,*R*)-**L1**.

Supplementary Figure 216. HPLC Spectra of 28 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 217. HPLC Spectra of 28 obtained from (*S*,*R*)-L1.

² 6.049 3477076 436010 93.54 **Supplementary Figure 219**. HPLC Spectra of **29** obtained from (*S*,*R*)-**L1**.

4.732

240010

35988

6.46

1

Supplementary Figure 220. HPLC Spectra of **30** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 221. HPLC Spectra of **30** obtained from (*S*,*R*)-**L1**.

Supplementary Figure 222. HPLC Spectra of **31** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 223. HPLC Spectra of 31 obtained from (*S*,*R*)-L1.

Supplementary Figure 224. HPLC Spectra of **32** obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 225. HPLC Spectra of 32 obtained from (*S*,*R*)-L1.

Supplementary Figure 226. HPLC Spectra of **33** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 227. HPLC Spectra of 33 obtained from (*S*,*R*)-L1.

Supplementary Figure 228. HPLC Spectra of 34 obtained from (R,S)-L1. Auto-Scaled Chromatogram

Supplementary Figure 229. HPLC Spectra of 34 obtained from (*S*,*R*)-L1.

Supplementary Figure 230. HPLC Spectra of **35** obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 231. HPLC Spectra of 35 obtained from (*S*,*R*)-L1.

Supplementary Figure 232. HPLC Spectra of **36** obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 233. HPLC Spectra of 36 obtained from (*S*,*R*)-L1.

Supplementary Figure 234. HPLC Spectra of **37** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 235. HPLC Spectra of 37 obtained from (*S*,*R*)-L1.

Supplementary Figure 236. HPLC Spectra of 38 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 237. HPLC Spectra of **38** obtained from (*S*,*R*)-**L1**.

Supplementary Figure 238. HPLC Spectra of 39 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 239. HPLC Spectra of 39 obtained from (*S*,*R*)-L1.

Supplementary Figure 240. HPLC Spectra of **41** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 241. HPLC Spectra of **40** obtained from (*S*,*R*)-**L1**.

Supplementary Figure 242. HPLC Spectra of 43 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 243. HPLC Spectra of 42 obtained from (*S*,*R*)-L1.

Supplementary Figure 244. HPLC Spectra of **45** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 245. HPLC Spectra of **44** obtained from (*S*,*R*)-**L1**.

Supplementary Figure 246. HPLC Spectra of **47** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 247. HPLC Spectra of 46 obtained from (*S*,*R*)-L1.

Supplementary Figure 248. HPLC Spectra of 49 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 249. HPLC Spectra of 48 obtained from (*S*,*R*)-L1.

Supplementary Figure 250. HPLC Spectra of 51 obtained from (R,S)-L1. Auto-Scaled Chromatogram

Supplementary Figure 251. HPLC Spectra of **50** obtained from (*S*,*R*)-**L1**.

Supplementary Figure 252. HPLC Spectra of **52** obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 253. HPLC Spectra of **52** obtained from (*S*,*R*)-**L1**.

Supplementary Figure 254. HPLC Spectra of 53 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 255. HPLC Spectra of 53 obtained from (*S*,*R*)-L1.

Supplementary Figure 256. HPLC Spectra of 54 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 257. HPLC Spectra of 54 obtained from (*S*,*R*)-L1.

Supplementary Figure 258. HPLC Spectra of 55 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 259. HPLC Spectra of 55 obtained from (*S*,*R*)-L1.

Figure 4, entry 56 (*R*,*S*)-L1: 95% ee; (*S*,*R*)-L1: 95% ee Auto-Scaled Chromatogram

Supplementary Figure 260. HPLC Spectra of 56 obtained from (R,S)-L1. Auto-Scaled Chromatogram

Supplementary Figure 261. HPLC Spectra of **56** obtained from (*S*,*R*)-**L1**.

Supplementary Figure 262. HPLC Spectra of 57 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 263. HPLC Spectra of **57** obtained from (*S*,*R*)-**L1**.

Supplementary Figure 264. HPLC Spectra of 58 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 265. HPLC Spectra of 58 obtained from (*S*,*R*)-L1.

Figure 4, entry 59a (*R*,*S*)-L1: 84% ee; (*S*,*R*)-L1: 86% ee

Auto-Scaled Chromatogram

Supplementary Figure 266. HPLC Spectra of 59a obtained from (R,S)-L1. Auto-Scaled Chromatogram

Supplementary Figure 267. HPLC Spectra of 59a obtained from (*S*,*R*)-L1.

Figure 4, entry 59b (*R*,*S*)-L1: 76% ee; (*S*,*R*)-L1: 76% ee

Supplementary Figure 268. HPLC Spectra of 59b obtained from (*R*,*S*)-L1.

Auto-Scaled Chromatogram

Supplementary Figure 269. HPLC Spectra of 59b obtained from (*S*,*R*)-L1.

Supplementary Figure 270. HPLC Spectra of **60** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 271. HPLC Spectra of **60** obtained from (*S*,*R*)-**L1**.

Supplementary Figure 272. HPLC Spectra of 61 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 273. HPLC Spectra of **61** obtained from (*S*,*R*)-**L1**.

Supplementary Figure 274. HPLC Spectra of 62 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 275. HPLC Spectra of 62 obtained from (*S*,*R*)-L1.

Supplementary Figure 276. HPLC Spectra of 63 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 277. HPLC Spectra of 63 obtained from (*S*,*R*)-L1.

OH

Supplementary Figure 278. HPLC Spectra of 64 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 279. HPLC Spectra of **64** obtained from (*S*,*R*)-**L1**.

Supplementary Figure 281. HPLC Spectra of 65 obtained from (*S*,*R*)-L1.

Supplementary Figure 282. HPLC Spectra of **66** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 283. HPLC Spectra of 66 obtained from (*S*,*R*)-L1.

Scheme 2, entry 67 (*R*,*S*)-L1: 96% ee; (*S*,*R*)-L1: 95% ee

Supplementary Figure 284. SFC Spectra of 67 obtained from (*R*,*S*)-L1.

Supplementary Figure 285. SFC Spectra of 67 obtained from (*S*,*R*)-L1.

Supplementary Figure 286. HPLC Spectra of 68 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 287. HPLC Spectra of 68 obtained from (*S*,*R*)-L1.

Supplementary Figure 288. HPLC Spectra of **69** obtained from (*R*,*S*)-**L1**. Auto-Scaled Chromatogram

Supplementary Figure 289. HPLC Spectra of 69 obtained from (*S*,*R*)-L1.

Supplementary Figure 290. HPLC Spectra of 71 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 291. HPLC Spectra of 71 obtained from (*S*,*R*)-L1.

Supplementary Figure 293. HPLC Spectra of 72 obtained from (*S*,*R*)-L1.

Figure 5c, 73 Auto-Scaled Chromatogram

Supplementary Figure 294. HPLC Spectra of 73 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 295. HPLC Spectra of **73** obtained from (*S*,*R*)-**L1**.

Figure 5c, 74

Supplementary Figure 296. HPLC Spectra of 74 obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 297. HPLC Spectra of 74 obtained from (*S*,*R*)-L1.

Auto-Scaled Chromatogram

Supplementary Figure 298. HPLC Spectra of **75** obtained from (*R*,*S*)-L1. Auto-Scaled Chromatogram

Supplementary Figure 299. HPLC Spectra of **75** obtained from (*S*,*R*)-**L1**.

II Supplementary References

(1) Nolin, K. A.; Ahn, R. W.; Kobayashi, Y.; Kennedy-Smith, J. J.; Toste, F. D.; Enantioselective Reduction of Ketones and Imines Catalyzed by (CN-Box)Re^v– Oxo Complexes. *Chem. Eur. J.* **2010**, *16*, 9555.

(2) Bai, Z.; Zhang, H.; Wang, H.; Yu, H.; Chen, G.; He, G.; Enantioselective Alkylamination of Unactivated Alkenes under Copper Catalysis. *J. Am. Chem. Soc.* **2021**, *143*, 1195.

(3) Cheng, J.-K.; Loh, T.-P.; Copper- and Cobalt-Catalyzed Direct Coupling of sp³ α-Carbon of Alcohols with Alkenes and Hydroperoxides. *J. Am. Chem. Soc.* **2015**, *137*, 42.

(4) Li, C.; Wang, J.; Barton, L. M.; Yu, S.; Tian, M.; Peters, D. S.; Kumar, M.; Yu, A. W.; Johnson, K. A.; Chatterjee, A. K.; Yan, M.; Baran, P. S.; Decarboxylative Borylation. *Science* **2017**, *356*, 1045.

(5) Xie, Q.; Dong, G.; Programmable Ether Synthesis Enabled by Oxa-Matteson Reaction. *J. Am. Chem. Soc.* **2022**, *144*, 8498.

(6) Cismesia, M. A.; Yonn, T. P.; Characterizing Chain Processes in Visible Light Photoredox Catalysis. *Chem. Sci.* **2015**, *6*, 5426.

(7) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a Complete Structure Solution, Refinement, and Analysis Program. *J. Appl. Cryst.* **2009**, *42*, 339.

(8) Sheldrick, G., SHELXT - Integrated Space-Group and Crystal-Structure Determination. *Acta Cryst. A* **2015**, *71*, 3.

(9) Sheldrick, G., Crystal Structure Refinement with SHELXL. *Acta Cryst. C* **2015**, *71*, 3.