Supporting Information

Multiple knockout mouse and embryonic stem cell models reveal the role of *miR-124a* in neuronal maturation

Taro Chaya^{1,#}, Yamato Maeda^{1,#}, Ryo Sugimura¹, Daisuke Okuzaki², Satoshi Watanabe¹, Leah R. Varner¹, Daisuke Motooka², Daichi Gyoten¹, Haruka Yamamoto¹, Hidemasa Kato³, Takahisa Furukawa^{1,*}

[#]These authors contributed equally to this work.

¹Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.

²Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan

³Department of Functional Histology, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan

Corresponding author:

^{*}Author for correspondence

E-mail: takahisa.furukawa@protein.osaka-u.ac.jp

Laboratory for Molecular and Developmental Biology, Institute for Protein Research,

Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan

Phone: +81-6-6879-8631

Fax: +81-6-6879-8633

Material included:

Fig. S1: Generation of $miR-124a-2^{-/-}$ and $-3^{-/-}$ mice.

Fig. S2: Coronal sections from the WT control, $miR-124a-2^{-/-}$, and $-3^{-/-}$ brains.

Fig. S3: Thickness of the cerebral cortex in the WT control and $miR-124a-1^{-/-}$ mouse brains.

Fig. S4: Gene expression analysis of glial markers in the *miR-124a-1/2* DKO mouse brain.

Fig. S5: Expression levels of genes encoding transcription regulators in the miR-124a-1/2 DKO mouse brain.

Fig. S6: The genomic DNA sequences of mutant alleles in *miR-124a-1/2/3* TKO ES clones #21, #71, and #93.

Fig. S7: Phase-contrast view of *miR-124a-1/2/3* TKO cells during induced neuronal differentiation.

Fig. S8: Gene expression analysis of glial markers in neuronal differentiation-induced *miR-124a-1/2/3* TKO cells.

Table S1: Sequences of DNA oligonucleotides $(5' \rightarrow 3')$

A miR-124a-2

Figure S1. Generation of *miR-124a-2^{-/-}* and $-3^{-/-}$ mice.

(A, B) Diagrams of the targeting vectors and the $miR-124a-2^{-/-}$ and $-3^{-/-}$ alleles. The $miR-124a-2^{-/-}$ (A) and $-3^{-/-}$ (B) alleles are shown. Genomic regions encoding $miR-124a-2^{-}$ 2 and -3 precursors are replaced by floxed *PGK-neo* cassettes.

(C-F) Southern blot analysis of genomic structure of *miR-124a-2* and *-3* loci. BamHI- (C, D, F) or EcoRV/MssI-digested (E) genomic DNA was hybridized with 5'(C, E) and 3'

probes (D, F) for *miR-124a-2* (C, D) and *-3* loci (E, F). The 5' probe of *miR-124a-2* detected 18.5-kb WT and 8.2-kb mutant bands (C). The 3' probe of *miR-124a-2* detected 18.5-kb WT and 10.3-kb mutant bands (D). The 5' probe of *miR-124a-3* detected 33.0-kb WT and 12.5-kb mutant bands (E). The 3' probe of *miR-124a-3* detected 15.8-kb WT and 13.1-kb mutant bands (F).

Figure S2. Coronal sections from the WT control, $miR-124a-2^{-/-}$, and $-3^{-/-}$ brains.

Nissl staining of serial brain sections arranged from rostral to caudal of the WT control, $miR-124a-2^{-/-}$, and $-3^{-/-}$ mice at 2M. Scale bar, 1 mm.

Figure S3. Thickness of the cerebral cortex in the WT control and $miR-124a-1^{-/-}$ mouse brains.

The thickness of the cerebral cortex in the WT control and $miR-124a-1^{-/-}$ brains was measured (n = 3 per each genotype). Data are presented as the mean \pm SD. **p < 0.01 (unpaired t-test).

Figure S4. Gene expression analysis of glial markers in the *miR-124a-1/2* DKO mouse brain.

Gene expression levels of *Gfap*, *Vim*, *S100b*, and *Aldh111* (radial glia and/or astrocyte markers) in the control and *miR-124a-1/2* DKO brains at E17.5. n.s., not significant (unpaired t-test), n = 3 per genotype.

Figure S5. Expression levels of genes encoding transcription regulators in the *miR-124a-1/2* DKO mouse brain.

Quantitative RT-PCR analysis of the *Tardbp*, *Srebf2*, *Nupr1*, and *Klf6* mRNAs in the control and *miR-124a-1/2* DKO brains at E17.5. Data are presented as the mean \pm SD. n.s., not significant (unpaired t-test), n = 3 per genotype.

miR-124a-1

WT:	5' TGTCCATACAATTAAGGCACGCGGTGAATGCCCAAGAATGGGGCTG 3' Mai	ture miR-124a		
#01 3110101.		etion		
#ZI AIIEIEI:	5' TGTCCATACAATTAAGGTGAATGCCAAGAATGGGGCTG 3'	ertion		
Allele2:	5' TGTCCATACAATTAAGGTTGGACGCGGTGAATGCCAAGAATGGGGCTG 3'	SILIOIT		
#71 Allele1:	5' TGTCCATACAATTAAGGC-GGCGGTGAATGCCAAGAATGGGGCTG 3'			
Allele2:	5' TGTCCATACAATTATGCCAAGAATGGGGCTG 3'			
#93 Allele1:	5' TGTCCATACAATTAAGGTGAATGCCAAGAATG 3'			
Allele2:	5/ TETCCATACAATTAAC-ACCCCCTCAATCCCCAACAATCCCCCCTC 3/			
ATTELEZ.	J IGICCAIACANTIAND ACCOUNTINGCOMMANDOUGCIG J			
miR-124a-2	2			
WT:	5' CGGACCTTGATTTAATGTCATACAATTAAGGCACGCGGTGAATGCCAAGAGCGGAGCC	FACGGCTGCACTTGAA 3'		
#01 311-1-1				
#21 Allelel:	5' CGGACCTTGATTTAATGTCATACAATTAAGGCGGTGAATGCCAAGAGCGGAGCC	PACGGCTGCACTTGAA 3		
Allele2:	5'307 bp del	3'		
#71 010101	5/ CCCACC	27		
#/I AlleleI.	5' CGGACC CACGCGGTGAATGCCAAGAGCGGAGCC	3'		
Allele2:	5 362 pb det 3	3'		
#93 Allele1:	5' CGGACCTTGATTTAATGTCATACAATTAAGGCGGTGAATGCCAAGAGCGGAGCC	FACGGCTGCACTTGAA 3'		
Allele2:	5'704 bp del	3'		
miR-124a-3				
111111-12-40-0				
WT:	5' CTATACAATTAAGGCACGCGGTGAATGCCAAGAG 3'			
#21 Allele1:	5' CTATACAATTAAGGCGGTGAATGCCAAGAG 3'			
Allele2:	5' 183 bp del 3'			
#71 Allele1:	5' CTATACAATTAAGGTGAATGCCAAGAG 3'			
Allele2:	5' 3'			
#93 Allele1.				

#93 Allele1: 5' CTATACAATTAT---ACGCGGTGAATGCCAAGAG 3' Allele2: 5' CTATACAATTAATTGCAGTAGGGCACCCCTCGGTGAATGCCAAGAG 3'

Figure S6

Figure S6. The genomic DNA sequences of mutant alleles in *miR-124a-1/2/3* TKO ES clones #21, #71, and #93.

The mature miR-124a sequence is indicated in red. Deletion and insertion are shown in blue and green, respectively. Biallelic mutations in all three miR-124a genes were identified in clones #21, #71, and #93.

Figure S7

Figure S7. Phase-contrast view of *miR-124a-1/2/3* TKO cells during induced neuronal differentiation.

Neuronal differentiation from the control and *miR-124a-1/2/3* TKO ES cells was induced as shown in Figure 4B. 2i, MEKi and GSKi.

Expression levels of genes for glial markers (*Vim*, *S100b*, and *Aldh111*) in *miR-124a-1/2/3* TKO cells at the indicated time points were analyzed. RNA was purified from cells cultured in ES medium (KSR+2i), and neuronal differentiation medium (N2/B27) for 6 or 12 days. Box–whisker plots present the median (center line), ± 1.5 interquartile range

(box) and minimal and maximal values (whiskers). $p^* < 0.05$, $p^* < 0.01$ (two-way ANOVA followed by Bonferroni test), n = 4 per cell line. 2i, MEKi and GSKi.

Table S1. Sequences of DNA oligonucleotides (5' \rightarrow 3')

Southern blotting probe	Sequence	Reference
miR-124a-2 5probe 51	GAAGTTGCACCTCTCCAGTGTTCCAGTG	
miR-124a-2 5probe 31	GTCACACTGATAACATCCCTCAGTGCTC	
miR-124a-2 3probe 51	GCTTCTACCCTGAAGACATAGACATG	
miR-124a-2 3probe 31	AGCAGAAGTAGAAATCGGCTTCTCTCAG	
miR-124a-3 5probe 51	ATTTCTGCCCCGCTCGAGAGCACAGCTC	
miR-124a-3 5probe 31	GCAGTGAGGAAGGATGGCTTGGGCCATG	
miR-124a-3 3probe 51	CGATGTTGTCCACGACTCCGTACAGGCA	
miR-124a-3 3probe 31	GCTCACAGCTGTCTATGGGCAAGCTGTC	
qPCR primer		
NeuroD1-F	TCCAGGGTTATGAGATCGTCA	
NeuroD1-R	TCGCTGTATGATTTGGTCATG	
GAD2-F	GTGGAAGCTGAGTGGAGTAGAGAG	
GAD2-R	GTCTCCTGTGTCATAGGACAGGTC	
Vglut1-F	TGCCAGCATCTTGATGGGCATTTC	
Vglut1-R	CTATGAGGAACACGTACTGCCAC	
Gfap-F	GTTAAGCTAGCCCTGGACATCGAG	
Gfap-R	GATCTGGAGGTTGGAGAAAGTCTG	
Nanog-F	GAACTCTCCTCCATTCTGAACCTG	
Nanog-R	AGACCATTGCTAGTCTTCAACCAC	
Tui1-F	GACTTGGAACCTGGAACCATGGAC	
Tui1-R	CAGTTGTTGCCAGCACCACTCTGA	
Man2-F	GACAATGCTCACCACGTACCTGGA	
Map2-1		
Itab1 E		
Itab1 B		
mvim-QPCR-31		
mvim-QPCR-31		
mS1000-QPCR-51		
mS100b-QPCR-31		
mAldn111-QPCR-51		
mAldh111-QPCR-31		
mTardbp-QPCR-51	GIGIGACIGIAAACIICCCAACIC	
mTardbp-QPCR-31	TACAACGICCAACAAACACCTTTC	
mSrebf2-QPCR-51	ATCCTACCAAGCACACTGATTGAG	
mSrebf2-QPCR-31	CAGACTCTGGGCACGATTTAAGAA	
mNupr1-QPCR-51	GAATATGATCAGTACAGCCTGGC	46
mNupr1-QPCR-31	CAGAGTTCTGGAACTTGGTCAGC	46
mKlf6-QPCR-51	ACCCGACATGGATGTGCTCCCAAT	47
mKlf6-QPCR-31	GCAGGGCTCACTCTGAAGATA	47
Rpl4-F	GATATGCCATCTGTTCTGCCCT	
Rpl4-R	CTTGCCAGCTCTCATTCTCTGA	
Ormetrust		
	CCCCTCCACATCTCTCAATATATTCCCCTAACACAA	
mTardbp-ORF-Sall-Si	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
mTardbp-ORF-NotI-31	GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	
CRISPR		
mir124-1-sgRNA-F	GTCGACTAATACGACTCACTATAGGTCCATACAATTAAGGCACG	
mir124-2-sgRNA-F	GTCGACTAATACGACTCACTATAGTGTCATACAATTAAGGCACG	
mir124-3-sgRNA-F	GTCGACTAATACGACTCACTATAGGTCTATACAATTAAGGCACG	
sgRNA-R	GGATCCAAAAGCACCGACTCGGTGCC	
Construing		
miP 124a 2 tail E	TACCTCCCCTCTAAATCCCATC	
miR-124a-2-tall-F		
miR-124a-2-lall-R		
min-124a-3-tall-F	GTGATACTCATGACATCCCTTCGT	
prin I-lox-neo-F	ATATGATCGGAATTGGTCTCCCG	