All lignin converted graphene quantum dots / graphene nanosheet hetero-junction for high-rate and boosted specific capacitance supercapacitor

Zheyuan Ding, Xiuwen Mei and Xiluan Wang*

Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University,

Beijing, 100083, P. R. China

*Corresponding author. Tel: +86-10-62336903. E-mail: wangxiluan@bjfu.edu.cn

Fig. S1 The enlarged AFM figure of GQDs/Gr in Fig.1 (a-d) AFM profile of GQDs/BL-G within different directions (randomly chosen), indicative of the GQDs located on the porous graphene.

Fig. S2 (a) AFM image and (b) corresponding profile of GQDs/Gr.

Fig. S3 The XRD pattern of GQDs/Gr.

Fig. S4 (a) CV curve at scan rate from 5-200 mV s⁻¹ (b-c) Galvanostatic charge/discharge curves under different current densities ranging from 0.2-50 A g^{-1}

Fig. S5 (a) Energy density and power density of GQDs/Gr (Power density of 225 W kg⁻¹ and energy density of 35.1 Wh kg⁻¹) compared with other biomass based supercapacitor

Table S1. Electrochemical performance of biomass-based supercapacitors.

Product	Resources	Specific capacitance (F g ⁻¹) and Cycling Stability (%)	Relaxation	Conductivity	Ref.
			time constant	Resistance	
			(τ 0)	(Ω)	
GQDs/Gr	Lignin	404.6 F g ⁻¹ (0.1 A g ⁻¹)	0.3 s	0.344	This
hetero-junction		97 % (10,000 cycles)			work
Activated	Lignin	102.3 F $g^{-1}(1 \text{ A } g^{-1})$	1.25 s	0.391	S 1
Carbon		Not given			

carbon fiber	Lignin	155 F g ⁻¹ (0.1 A g ⁻¹) 94%(6,000 cycles)	-	-	S2
Electrospun Lignin carbon fiber		267.32 F g ⁻¹ (5 A g ⁻¹) 96.7%(5,000 cycles)	-	-	S3
Porous carbons Lignin		208 F g ⁻¹ (0.1 A g ⁻¹) 96%(1500 cycles)	-	~1.6	S4
Porous carbons	Lignin and melamine	337 F g ⁻¹ (0.5 A g ⁻¹) 98% (3000 cycles)	-	0.6	S5
Lignosulfonate/ Graphene	Lignosulf onate and GO	408 F g ⁻¹ (1 A g ⁻¹) 84% (10,000 cycles)	0.56 s	0.4	S 6
Porous carbon nanospheres	Resorcinol and formaldeh yde resin	402.5 F g ⁻¹ (1 A g ⁻¹) 96% (5,000 cycles)	3 s	-	S7
Porous nitrogen- doped carbon	lignin- derived byproduct	312 F g ⁻¹ (1 A g ⁻¹) 98 % (20,000 cycles)	0.49 s	0.29	S8
N,S-codoped porous carbon	willow catkin	298 F g ⁻¹ (0.5 A g ⁻¹) 98% (10,000 cycles)	4.54 s	0.6	S9
porous carbon nanosheet	Soybean milk powder	240.7 F g ⁻¹ (1 A g ⁻¹) 89.3% (5000 cycles)	~1 s	0.6	S10
1D carbon nanobelts	Tofu	262 F g ⁻¹ (0.5 A g ⁻¹) 102% (10,000 cycles)	0.9 s	0.3	S11
Activated carbon	Bark	155 F g ⁻¹ (0.5 A g ⁻¹) 96% (10,000 cycles)	1.62 s	0.9	S12
Nitrogen-doped ginger straw carbon	straw	122 F g ⁻¹ (0.5 A g ⁻¹) 82.7% (10,000 cycles)	2.6 s	5.4	S13
Sheet-like porous carbon	Walnut shell	330 F g ⁻¹ (0.1 A g ⁻¹) 95 % (10,000 cycles)	0.25 s	-	S14

Graphene-like Lotus		340 F g^{-1} (0.5 A g^{-1})	-	0.45	S15	
Porous Active		98% (10,000 cycles)				
Carbon						
vertically	Bark	398 F g^{-1} (0.5 A g^{-1})	0.59 s	0.36	S16	
aligned graphene		96.3% (10,000 cycles)				
nanosheet arrays						

Table S2. Electrochemical performance of GQDs strategy modified carbon -based supercapacitors.

Product	Resources	Specific capacitance (F g ⁻¹)	Relaxation time constant (τ0)	Ref.
GQDs/Gr hetero-	Lignin	404.6 F g ⁻¹ (0.1 A g ⁻¹)	0.3 s	This work
junction				
GQDs/Porous carbon	Pluronic	315 F g ⁻¹ (1 A g ⁻¹)	5.62 s	S17
GQDs/Carbon	PAN	335 F g ⁻¹ (1 A g ⁻¹)	0.44 s	S18
nanofiber				
GQDs/Microporous	Coal	270 F g^{-1} (0.1 A g^{-1})	16 s	S19
carbons				
GQDs/Porous carbon	Coal	230 F g^{-1} (1 A g^{-1})	-	S20
nanosheets				
GQDs/Activated	Glucosamine	$388 \text{ F g}^{-1} (1 \text{ A g}^{-1})$	0.68 s	S21
Carbon				
CDs/ graphene	Citric acid	338 F g^{-1} (1 A g^{-1})	-	S22
CDs/ graphene oxide	Glucose and	264 F g^{-1} (1 A g^{-1})	-	S23
hydrogel	GO			

Supporting References

- S1. D. Saha, Y. Li, Z. Bi, J. Chen, J. K. Keum, D. K. Hensley, H. A. Grappe, H. M. Meyer III, S. Dai and M. P. Paranthaman, *Langmuir*, 2014, **30**, 900-910.
- S2. P. Schlee, O. Hosseinaei, D. Baker, A. Landmér, P. Tomani, M. J. Mostazo-López, D. Cazorla-Amorós, S. Herou and M.-M. Titirici, *Carbon*, 2019, 145, 470-480.
- S3. Z. Dai, P.-G. Ren, Y.-L. Jin, H. Zhang, F. Ren and Q. Zhang, *Journal of Power Sources*, 2019, 437, 226937.
- S4. H. Li, D. Yuan, C. Tang, S. Wang, J. Sun, Z. Li, T. Tang, F. Wang, H. Gong and C. He, Carbon,

2016, 100, 151-157.

- S5. L. Zhu, F. Shen, R. L. Smith, L. Yan, L. Li and X. Qi, *Chemical Engineering Journal*, 2017, **316**, 770-777.
- S6. F. Li, X. Wang and R. Sun, Journal of Materials Chemistry A, 2017, 5, 20643-20650.
- S7. B. Chang, Y. Guo, Y. Li, H. Yin, S. Zhang, B. Yang and X. Dong, *Journal of Materials Chemistry A*, 2015, **3**, 9565-9577.
- S8.L. Zhang, T. You, T. Zhou, X. Zhou and F. Xu, ACS applied materials & interfaces, 2016, 8, 13918-13925.
- S9. Y. Li, G. Wang, T. Wei, Z. Fan and P. Yan, Nano Energy, 2016, 19, 165-175.
- S10. M. Chen, D. Yu, X. Zheng and X. Dong, Journal of Energy Storage, 2019, 21, 105-112.
- S11. T. Ouyang, K. Cheng, F. Yang, L. Zhou, K. Zhu, K. Ye, G. Wang and D. Cao, *Journal of Materials Chemistry A*, 2017.
- S12. N. Yadav and S. Hashmi, Sustainable Energy & Fuels, 2020, 1730-1746.
- S13. Y. Zheng, H. Wang, S. Sun, G. Lu, H. Liu, M. Huang, J. Shi, W. Liu and H. Li, Sustainable Energy & Fuels, 2020.
- S14. T. Shang, Y. Xu, P. Li, J. Han, Z. Wu, Y. Tao and Q.-H. Yang, Nano Energy, 2020, 70, 104531.
- S15. S. Y. Lu, M. Jin, Y. Zhang, Y. B. Niu, J. C. Gao and C. M. Li, *Advanced Energy Materials*, 2017, 1702545.
- S16. Z. Sun, M. Zheng, H. Hu, H. Dong, Y. Liang, Y. Xiao, B. Lei and Y. Liu, *Chemical Engineering Journal*, 2018, 336, 550-561.
- S17. W. Tian, J. Zhu, Y. Dong, J. Zhao, J. Li, N. Guo, H. Lin, S. Zhang and D. Jia, *Carbon*, 2020, 161, 89-96.
- S18. J. Zhao, J. Zhu, Y. Li, L. Wang, Y. Dong, Z. Jiang, C. Fan, Y. Cao, R. Sheng and A. Liu, ACS Applied Materials & Interfaces, 2020, 12, 11669–11678.
- S19. S. Zhang, J. Zhu, Y. Qing, L. Wang, J. Zhao, J. Li, W. Tian, D. Jia and Z. Fan, Advanced Functional Materials, 2018, 28, 1805898.
- S20. S. Zhang, J. Zhu, Y. Qing, C. Fan, L. Wang, Y. Huang, R. Sheng, Y. Guo, T. Wang and Y. Pan, *Materials today energy*, 2017, 6, 36-45.
- S21. Y. Qing, Y. Jiang, H. Lin, L. Wang, A. Liu, Y. Cao, R. Sheng, Y. Guo, C. Fan and S. Zhang, Journal of Materials Chemistry A, 2019, 7, 6021-6027.
- S22. G. Yuan, X. Zhao, Y. Liang, L. Peng, H. Dong, Y. Xiao, C. Hu, H. Hu, Y. Liu and M. Zheng, Journal of Colloid and Interface Science, 2019, 536, 628–637.
- S23. H. Feng, P. Xie, S. Xue, L. Li, X. Hou, Z. Liu, D. Wu, L. Wang and P. K. Chu, Journal of Electroanalytical Chemistry, 2018, 808, 321-328.
- S24. V. Sahu, S. Grover, G. Singh and R. K. Sharma, RSC Advances, 2016, 6, 35014-35023.
- S25. P. Hao, Z. Zhao, Y. Leng, J. Tian, Y. Sang, R. I. Boughton, C. P. Wong, H. Liu and B. Yang, *Nano Energy*, 2015, **15**, 9-23.
- S26. M. S. Balathanigaimani, W.-G. Shim, M.-J. Lee, C. Kim, J.-W. Lee and H. Moon, *Electrochemistry Communications*, 2008, **10**, 868-871.
- S27. G. Zhao, C. Chen, D. Yu, L. Sun, C. Yang, H. Zhang, Y. Sun, F. Besenbacher and M. Yu, *Nano Energy*, 2018, 47, 547-555.