
Electronic Supporting Information

Raman Spectroscopy to unravel Magnetic Properties of Iron 

Oxide Nanocrystals for Bio-related Applications

Martín Testa-Anta, Miguel A. Ramos-Docampo, Miguel Comesaña-Hermo, 

Beatriz Rivas-Murias, Verónica Salgueiriño *

Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain.

Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR CNRS 7086, 75013, Paris, France

1. Description of the Raman equipment

Figure S1 illustrates schematically the main parts of a Raman spectrometer. The sample (a 

monocrystal or powder of nanocrystals) is placed on a glass slide and illuminated by a 

monochromatic light source (laser) through a microscope objective. According to the scheme, this 

microscope objective collects both the incident and the scattered light and regulates as well the 

laser power illuminating the sample. To detect the small fraction of the Raman scattered radiation, 

the elastically-scattered light is first cut out by a filter, which is often a holographic notch or 

dielectric edge filter, such that the Raman scattered light can be subsequently focused by different 

optics and then split into its component wavelengths using a grating monochromator. At that point, 

a charge-coupled device (CCD) is used for detecting the intensity of the Raman scattered light. 
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Eventually, this signal is transferred to a computer where it is processed, displayed and stored by 

means of a specific software, which also controls the instrument and its motors. 

Figure S1. Scheme of a Raman spectrometer and microscope (using a visible laser) showing the 

path for the incoming (red) and scattered (blue) light.

For a Raman spectrum to be accurately registered, the adjustment of the laser excitation 

wavelength is crucial,1 given the fact that it determines the excitation efficiency, the fluorescence, 

and the heat absorption of the sample. Since the Raman scattering efficiency is proportional to -4 

(see equation 7 in the article, showing the Raman scattering intensity to be proportional to the 

fourth power of the incident light frequency ( )), the scan time becomes reduced as the laser 𝜈0

wavelength decreases, while keeping constant all other conditions. Nevertheless, fluorescence 

emission processes may also interfere with the Raman scattering in the final spectra. Since the 
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fluorescence interference occurs at a lower energy than that of the excitation frequency, longer 

excitation wavelengths will give rise to better results in this regard.2

Furthermore, heat absorption is also an important process that can take place while registering a 

Raman spectrum, especially in the case of dark samples. In general, when using longer excitation 

wavelengths more light is absorbed and more heat is transferred to the sample, offering therefore 

broader Raman modes that can appear shifted to lower frequencies. Over a threshold, the 

transferred heat can modify the sample under study, inducing for example oxidation processes or 

structural transitions,3-5 or even damaging the sample completely. 

Typical commercial lasers used for Raman spectroscopy provide the following wavelengths: 

532 nm (frequency doubled Nd:YAG and Nd:YVO4 diode), 633 nm (He-Ne laser), 785 nm (Near 

Infrared (NIR) diode laser), 830 nm (GaAlAs) and 1064 nm (Nd:Y3Al5O12). 

The spectra registered using different excitation wavelength can present slightly different 

features stemming from the following linked factors: a) the optical confocal depth, that decreases 

with decreasing wavelength for a given material, b) absorption, since a decrease in the laser 

wavelength can lead to an increase in absorption and consequent reduction of the penetration 

depth, and c) Raman cross section, the Raman intensity of a given material, depending on the 

exciting wavelength can lead to resonant Raman effects.6

2. Application of Group Theory to a discrete molecule AB4

Aiming to clarify how group theory can be applied so as to figure out the optical phonon modes 

that will be Raman active for a particular crystal lattice, the theoretical concepts explained in 

Section 2.2 are herein detailed step-by-step. For simplicity, and owing to the large number of atoms 

present within a typical spinel unit cell, a discrete molecule has been selected to this end. Namely, 
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a tetrahedral molecule AB4 (for example, methane (CH4) or carbon tetrachloride (CCl4)) will be 

used to determine the symmetry of the corresponding Raman active modes.

A general procedure to carry out this task involves the following steps:

i) Determine the point group of the molecule under consideration and its corresponding 

character table. Assuming a perfectly symmetric tetrahedral AB4 molecule (see Figure S2a), the 

system belongs to the point group Td. The corresponding character table is shown in Table S-I.7

Table S-I. Character table for the Td point group.

Td

( )4̅3m
E 8C3 3C2 6S4 6σd (h=24)

A1 1 1 1 1 1 x2+y2+z2

A2 1 1 1 -1 -1

E 2 -1 2 0 0 (2z2-x2-y2,x2-y2)

T1 3 0 -1 1 -1 (Rx,Ry,Rz)

T2 3 0 -1 -1 1 (x,y,z) (xy,xz,yz)

ii) Choose a vector basis  to describe the molecule, and determine a reducible 𝑣

representation of the system in terms of that basis. A simple vector basis  to describe the 𝑣

system can be defined by the three coordinate axes on each atom comprising the molecule (as 

schematically shown in Figure S2b).
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Figure S2. Scheme of a discrete AB4 molecule belonging to the Td point group (a) and of the 

Cartesian coordinates used as vector basis to describe the atomic displacements (b).

A reducible representation in terms of the basis  can be determined by analyzing the effect of 𝑣

each symmetry operation  within the point group on the coordinate axes of each atom, according 𝑅

to the following equation (eq. 12 in Section 2.2):

𝜒(𝑅) = 𝜔(𝑅)( ± 1 + 2𝑐𝑜𝑠𝜃)             (𝑒𝑞. 𝑆1)

where  is the character of the reducible representation for the symmetry operation ,  𝜒(𝑅) 𝑅 𝜔(𝑅)

the number of atoms that remain invariant under the same operation and  the rotation angle.𝜃

1) Identity operation, E

Figure S3. Scheme of the identity operation, E.
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- Number of invariant/unshifted atoms: 5 (atoms A, B1, B2, B3 and B4).

- The identity operation can be regarded as a 0º proper rotation. Then:

𝜒(𝐸) = 𝜔(𝐸)(1 + 2𝑐𝑜𝑠𝜃) = 5 ∙ (1 + 2cos (0°)) = 15

2) Three-fold proper rotation, C3

Figure S4. Scheme of the three-fold proper rotation, C3.

- Number of invariant/unshifted atoms: 2 (atoms A and B2).

- A three-fold proper rotation implies a 120º rotation angle. Then:

𝜒(𝐶3) = 𝜔(𝐶3)(1 + 2𝑐𝑜𝑠𝜃) = 2 ∙ (1 + 2cos (120°)) = 0

3) Two-fold proper rotation, C2

Figure S5. Scheme of the two-fold proper rotation, C2.
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- Number of invariant/unshifted atoms: 1 (atom A).

- A two-fold proper rotation implies a 180º rotation angle. Then:

𝜒(𝐶2) = 𝜔(𝐶2)(1 + 2𝑐𝑜𝑠𝜃) = 1 ∙ (1 + 2cos (180°)) =‒ 1

4) Four-fold improper rotation, S4

Figure S6. Scheme of the four-fold improper rotation, S4.

- Number of invariant/unshifted atoms: 1 (atom A).

- A four-fold improper rotation implies a 90º improper rotation angle. Then:

𝜒(𝑆4) = 𝜔(𝑆4)( ‒ 1 + 2𝑐𝑜𝑠𝜃) = 1 ∙ ( ‒ 1 + 2cos (90°)) =‒ 1

5) Diagonal/dihedral reflection plane, σd

Figure S7. Scheme of the diagonal/dihedral reflection plane, σd.
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- Number of invariant/unshifted atoms: 3 (atoms A, B3 and B4).

- A diagonal reflection plane can be regarded as a 0º improper rotation. Then:

𝜒(𝜎𝑑) = 𝜔(𝜎𝑑)( ‒ 1 + 2𝑐𝑜𝑠𝜃) = 3 ∙ ( ‒ 1 + 2cos (0°)) = 3

The as-obtained reducible representation is summarized in Table S-II.

Table S-II. Reducible representation of the AB4 molecule.

E 8C3 3C2 6S4 6σd

ω 5 2 1 1 3

Γ3N 15 0 -1 -1 3

iii) Apply the reduction formula in order to express the reducible representation in terms 

of the irreducible representations contained in the point group. The reducible representation, 

, can be now expressed as a linear combination of the irreducible representations,  (included Γ3𝑁 Γ𝑖
(𝑖)

in the Td point group), applying the reduction formula (eq. 13-14 in Section 2.2):

Γ3𝑁 = ∑
𝑖

𝑎𝑖Γ𝑖
(𝑖)     ;    𝑎𝑖 =

1
ℎ∑

𝑅

𝜒(𝑅) ∙ 𝑔(𝑅) ∙ 𝜒𝑖
(𝑖)(𝑅)      (𝑒𝑞. 𝑆2)

where  and  are the characters of the reducible and the i-th irreducible representation 𝜒(𝑅) 𝜒𝑖
(𝑖)(𝑅)

for the symmetry operation  respectively,  the number of symmetry operations  of the same 𝑅 𝑔(𝑅) 𝑅

class, and  the order of the group.ℎ
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The order  of the group represents the total number of symmetry operations within the group, ℎ

and can be readily calculated by taking into account the number of symmetry operations  of the 𝑅

same class included in the Td point group:

ℎ = ∑
𝑅

𝑔(𝑅) = 𝑔(𝐸) + 𝑔(𝐶3) + 𝑔(𝐶2) + 𝑔(𝑆4) + 𝑔(𝜎𝑑) = 1 + 8 + 3 + 6 + 6 = 24

The calculation of the coefficients for each irreducible representation (according to eq. S2) is 

shown below:

𝑎𝐴1
=

1
24

(15 ∙ 1 ∙ 1 + 0 ∙ 8 ∙ 1 + ( ‒ 1) ∙ 3 ∙ 1 + ( ‒ 1) ∙ 6 ∙ 1 + 3 ∙ 6 ∙ 1) = 1

𝑎𝐴2
=

1
24

(15 ∙ 1 ∙ 1 + 0 ∙ 8 ∙ 1 + ( ‒ 1) ∙ 3 ∙ 1 + ( ‒ 1) ∙ 6 ∙ ( ‒ 1) + 3 ∙ 6 ∙ ( ‒ 1)) = 0

𝑎𝐸 =
1

24
(15 ∙ 1 ∙ 2 + 0 ∙ 8 ∙ ( ‒ 1) + ( ‒ 1) ∙ 3 ∙ 2 + ( ‒ 1) ∙ 6 ∙ 0 + 3 ∙ 6 ∙ 0) = 1

𝑎𝑇1
=

1
24

(15 ∙ 1 ∙ 3 + 0 ∙ 8 ∙ 0 + ( ‒ 1) ∙ 3 ∙ ( ‒ 1) + ( ‒ 1) ∙ 6 ∙ 1 + 3 ∙ 6 ∙ ( ‒ 1)) = 1

𝑎𝑇2
=

1
24

(15 ∙ 1 ∙ 3 + 0 ∙ 8 ∙ 0 + ( ‒ 1) ∙ 3 ∙ ( ‒ 1) + ( ‒ 1) ∙ 6 ∙ ( ‒ 1) + 3 ∙ 6 ∙ 1) = 3

Therefore, the reducible representation can be reduced as follows:

Γ3𝑁 = 𝑎𝐴1
𝐴1 + 𝑎𝐴2

𝐴2 + 𝑎𝐸𝐸 + 𝑎𝑇1
𝑇1 + 𝑎𝑇2

𝑇2 = 𝐴1 + 𝐸 + 𝑇1 + 3𝑇2

iv) Identify which of the previous irreducible representations correspond to molecular 

vibrations. The previous expression constitutes the mechanical representation of the system, 

which includes the normal modes for all the molecular motions. Indeed, taking into account the 

degeneracy of each irreducible representation, the tetrahedral AB4 molecule displays 15 degrees 

of freedom, in agreement with the 3N degrees of freedom expected for this system. Among them, 

three represent pure translations of the molecule, since all the atoms involved are displaced along 

the same direction at once, and are included under one T2 mode. When considering a crystal lattice, 
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these normal modes are usually referred to as acoustic modes, since they propagate as sound waves 

through the crystal. They can be easily identified from the first order terms in the character table, 

which in the case of the Td point group correspond to one triple-degenerate T2 mode (see Table S-

I). Additionally, for non-linear molecules three rotational degrees of freedom are also present. As 

it can be inferred from the character table, they are comprised under one T1 mode.

By subtracting the translational ( ) and rotational ( ) modes from the reducible Γ𝑡𝑟𝑎𝑛𝑠 = 𝑇2 Γ𝑟𝑜𝑡 = 𝑇1

representation, we end up with the irreducible representations corresponding to the vibrational 

modes of the AB4 molecule:

Γ𝑣𝑖𝑏 = Γ3𝑁 ‒ Γ𝑡𝑟𝑎𝑛𝑠 ‒ Γ𝑟𝑜𝑡 = 𝐴1 + 𝐸 + 2𝑇2

For these vibrational modes to be Raman active a change in the polarizability is needed, whereas 

the selection rule for IR spectroscopy requires a change in dipolar moment. The quadratic terms 

in the character table lead to a change of the polarizability tensor, and hence determine the Raman 

active modes. These terms are associated to the ,  and  irreducible representations, thereby 𝐴1 𝐸 𝑇2

rendering the four vibrational modes ( ) active in Raman spectroscopy. On the other 𝐴1 + 𝐸 + 2𝑇2

hand, the terms displaying linear symmetry are the ones implying a change in dipole moment, 

meaning that only two vibrational modes ( ) will be detectable through IR spectroscopy.2𝑇2

Further insight into the nature of these vibrational modes can be gained reconsidering the 

theoretical analysis performed. In fact, instead of describing the atomic displacements (under each 

symmetry operation) in terms of the three coordinate axes on each atom, the use of internal 

coordinates allows to discern between the stretching and/or bending origin of these vibrational 

modes. These internal coordinates are based on the displacement of one atom with respect to 

another (generally the central atom) along the bond direction, as schematically shown in Figure 

S8.
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Figure S8. Scheme of the internal coordinates used as vector basis to describe the atomic 

displacements.

A reducible representation in terms of this new basis can be generated analyzing the effect of 

each symmetry operation  on the displacement vectors , ,  and .𝑅 𝑟1 𝑟2 𝑟3 𝑟4

1) Identity operation, E

- Number of invariant bonds: 4 ( , ,  and )𝑟1 𝑟2 𝑟3 𝑟4

2) Three-fold proper rotation, C3

- Number of invariant bonds: 1 ( )𝑟2

3) Two-fold proper rotation, C2

- Number of invariant bonds: 0

4) Four-fold improper rotation, S4

- Number of invariant bonds: 0

5) Diagonal/dihedral reflection plane, σd

- Number of invariant bonds: 2 (  and )𝑟3 𝑟4

Since the application of the symmetry operations does not modify the displacement vectors 

corresponding to the invariant bonds, the contribution of each symmetry operation (per invariant 
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bond) to the reducible representation is always 1. Therefore, the character of the reducible 

representation for the symmetry operation  is equal to the number of bonds that remain invariant 𝑅

under the same operation. Furthermore, bearing in mind the basis  considered, which was defined 𝑣

in terms of the relative displacement of each atom with respect to the central atom, the reducible 

representation does no longer represent the normal modes of all the molecular motions, but just 

the stretching vibrational modes of the AB4 molecule. This reducible representation, denoted by 

, is summarized in Table S-III.Γ𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔

Table S-III. Reducible representation of the AB4 molecule as determined from the system internal 

coordinates.

E 8C3 3C2 6S4 6σd

Invariant bonds 4 1 0 0 2

Γstretching 4 1 0 0 2

The previous reducible representation can be expressed again in terms of the irreducible 

representations upon applying the reduction formula:

𝑎𝐴1
=

1
24

(4 ∙ 1 ∙ 1 + 1 ∙ 8 ∙ 1 + 0 ∙ 3 ∙ 1 + 0 ∙ 6 ∙ 1 + 2 ∙ 6 ∙ 1) = 1

𝑎𝐴2
=

1
24

(4 ∙ 1 ∙ 1 + 1 ∙ 8 ∙ 1 + 0 ∙ 3 ∙ 1 + 0 ∙ 6 ∙ ( ‒ 1) + 2 ∙ 6 ∙ ( ‒ 1)) = 0

𝑎𝐸 =
1

24
(4 ∙ 1 ∙ 2 + 1 ∙ 8 ∙ ( ‒ 1) + 0 ∙ 3 ∙ 2 + 0 ∙ 6 ∙ 0 + 2 ∙ 6 ∙ 0) = 0

𝑎𝑇1
=

1
24

(4 ∙ 1 ∙ 3 + 1 ∙ 8 ∙ 0 + 0 ∙ 3 ∙ ( ‒ 1) + 0 ∙ 6 ∙ 1 + 2 ∙ 6 ∙ ( ‒ 1)) = 0

𝑎𝑇2
=

1
24

(4 ∙ 1 ∙ 3 + 1 ∙ 8 ∙ 0 + 0 ∙ 3 ∙ ( ‒ 1) + 0 ∙ 6 ∙ ( ‒ 1) + 2 ∙ 6 ∙ 1) = 1

Γ𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔 = 𝑎𝐴1
𝐴1 + 𝑎𝐴2

𝐴2 + 𝑎𝐸𝐸 + 𝑎𝑇1
𝑇1 + 𝑎𝑇2

𝑇2 = 𝐴1 + 𝑇2
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The previous results indicate that, among the four vibrational modes of the AB4 molecule, two 

of them ( ) correspond to stretching vibrations. 𝐴1 + 𝑇2

The bending vibrations can be easily determined by subtracting the stretching modes to the total 

number of vibrational modes:

Γ𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = Γ𝑣𝑖𝑏 ‒ Γ𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔 = 𝐸 + 𝑇2

Thus, the application of group theory to an AB4 molecule belonging to the Td point group 

predicts four Raman active ( ) and two IR active ( ) modes, typically labelled as 𝐴1 + 𝐸 + 2𝑇2 2𝑇2

, ,  and .6 Out of these vibrational modes,  and  correspond to purely 𝜐1(𝐴1) 𝜐2(𝐸) 𝜐3(𝑇2) 𝜐4(𝑇2) 𝜐1 𝜐3

stretching vibrations, whereas  and  involve bending vibrations, as shown in Figure S9.𝜐2 𝜐4

Figure S9. Scheme of the four vibrational modes of an AB4 molecule belonging to the Td point 

group.

3. Normal vibrations of the five Raman active modes in the cubic spinel structure
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Considering a primitive unit cell of the spinel structure, which comprises 14 atoms and three 

individual units (two AO4 units and one B4 group) displaying tetrahedral symmetry (point group 

Td), group theory predicts five Raman active modes, with schemes shown in Figure S10.

Figure S10. Schemes of the different vibration modes of the spinel structure (adapted from 

reference 8).
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