Supporting Information

Parameters Affecting Synthesis of Carbon Dots for Quantitation of Copper lons

Yu-Syuan Lin,^{†,+} Yaling Lin,^{†,+} Arun Prakash Periasamy,[†] Jinshun Cang[‡] and Huan-Tsung Chang^{*,†,§}

[†]Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan

[‡] Department of Chemical Engineering, Yancheng Institute of Industry Technology, Yancheng, Jiangsu 224005, China

[§]Department of Chemistry, Chung Yuan Christian University, Taoyuan City 32023, Taiwan

⁺These authors contributed equally to this work

Corresponding Author: Professor Huan-Tsung Chang, Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan. Tel and fax: 011-886-2-33661171. E-mail: changht@ntu.edu.tw

Table of Contents

Page No.

Table S1 Elemental compositions (%) of four types of C dots before and after reaction with Cu^{2+} ions.	S-3
Table S2. Quantitation of Cu ²⁺ ions using different nanomaterial probes.	S-4
Fig. S1 TEM and HRTEM images of C dots	S-5
Fig. S2 FTIR spectra of C dots	S-6
Fig. S3 XPS spectra of C dots	S-7
Fig. S4 Raman spectra of C dots	S-8
Fig. S5 pH stability and salt tolerance of C dots	S-9
Fig. S6 Selectivity of C dots toward the detection of Cu ²⁺ ions	S-10
Fig. S7 CV curves and EIS spectra of bare GCE recorded in phosphate buffer (20 mM, pH 3.0) under different conditions	S-11
Fig. S8 Real sample analysis	S-12
References	S-13

Cu Iolis.						
Elements	C dots	Cl-C dots	Br-C dots	I-C dots	I-C dots + Cu^{2+}	
С	68.79	66.40	57.00	59.70	44.84	
Ν	14.52	15.35	17.73	15.30	6.50	
0	16.33	17.61	23.96	23.33	47.15	
Ι	_a	-	-	1.46	0.55	
Br	-	-	0.95	-	-	
Cl	0.37	0.64	0.23	0.21	0.22	

Table S1. Elemental compositions (%) of four types of C dots before and after reaction with Cu^{2+} ions.

^a not detected

Probe	Linear range (µM)	LOD (µM)	Ref.
^a CdSe@C-TPEA	1-100	1	1
^b ZnS QDs	26-260	7.1	2
°Probe L	4-12	1.8	3
^d B, N-C dots	1-25	0.3	4
Cys-CdS QDs	2-10	1.5	5
C dots	5.16-20	1.72	6
Petroleum coke C dots	0.25-10	0.029	7
N-C dots	0.6-30	0.19	8
I-C dots	0.3-3	0.22	This study

Table S2. Quantitation of Cu^{2+} ions using different nanomaterial probes.

^aTPEA: N-(2-aminoethyl)-N,N,N'tris(pyridin-2-ylmethyl)ethane-1,2-diamine.

^bQDs: quantum dots.

^cProbe L prepared from 4-bromo-1,8 naphthalene anhydride and 2-thiophene formaldehyde. ^dB, N-C dots prepared from aminophenylboronic acid

eCQD: carbon quant

Fig. S1. TEM images of (A) C dots, (B) Cl-C dots, (C) Br-C dots, and (D) I-C dots. Insets:

HRTEM images of the corresponding C dots.

Fig. S2. FTIR spectra of (a) histidine, (b) C dots, (c) Cl-C dots, (d) Br-C dots, (e) I-C dots, and (f) I-C dots after reaction with 100 μ M Cu²⁺ ions.

Fig. S3. Deconvoluted (A) C1s and (B) N1s core level XPS spectra of (a) C dots, (b) Cl-C dots, (c) Br-C dots, and (d) I-C dots. (C) Deconvoluted $Cu_{2p3/2}$ core level spectra of I-C dots after reaction with 100 μ M Cu²⁺ ions.

Fig. S4. Raman spectra of (A) C dots, (B) Cl-C dots, (C) Br-C dots, and (D) I-C dots.

Fig. S5. Effects of (A) pH (3.0–11.0) and (B) NaCl concentration (0–3.0 M) on the stability of (a) C dots, (b) Cl-C dots, (c) Br-C dots, and(d) I-C dots. C dots: 0.01X; phosphate solutions: 20 mM; excitation and emission wavelengths: 420 and 505 nm, respectively.

Fig. S6. Selectivity of (a) C dots, (b) Cl-C dots, (c) Br-C dots, and (d) I-C dots toward the detection of Cu^{2+} ions (100 μ M) over the other metal ions (100 μ M) in phosphate buffer (20 mM, pH 3.0). The concentrations of the four C dots used are all 0.01X. Other conditions are the same as in Fig. 2.

Fig. S7. (A) CV curves and (B) EIS spectra of bare GCE recorded in phosphate buffer (20 mM, pH 3.0) under different conditions. (A) I-C dots were dispersed in phosphate buffer (20 mM, pH 3.0) solution (a) without and (b-f) with containing Cu^{2+} and Fe^{3+} (200 μ M). Cu^{2+} ion concentrations (μ M) used are (b) 100, (c) 200, (d) 300, (e) 400, and (f) 500. Fe³⁺ was added as a control. Scan rate for CV curves is 50 mV s⁻¹. (B) EIS spectra were recorded over the frequency range from 0.01 to 10000 Hz at an amplitude of 5 mV in N₂ saturated phosphate buffer (a) without I-C dots, (b) with I-C dots, and (c) with I-C dots and 100 μ M Cu²⁺ ions. Inset in (B): Magnified view of high frequency region of EIS spectra.

Fig. S8. Linearity of relative PL intensity at 505 nm of I-C dots (0.001X) toward the quantitation of Cu^{2+} ions in (A) tap water, (B) lake water, and (C) seawater. Samples were mixed with phosphate buffer (20 mM, pH 3.0), and standard Cu^{2+} solutions. Other conditions are the same as in Fig. 2.

References

- (1) A. Zhu, Q. Qu, X. Shao, B. Kong, Y. Tian, Angew. Chem. 2012, 124, 7297 7301.
- (2) M. Koneswaran, R. Narayanaswamy, Sens. Act. B. 2009, 139, 104–109.
- (3) G. He, C. Liu, X. Liu, Q. Wang, A. Fan, S. Wang, X. Qian, *PloS one*. 2017, 12. e0186994.
- (4) M. C. Rong, K. X. Zhang, Y. R. Wang, X. Chen, Chin. Chem. Lett. 2017. 28, 1119–1124.
- (5) C. Boonme, T. Noipa, T. Tuntulani, W. Ngeontae, *Spectrochim. Acta Mol. Biomol. Spectrosc.* 2013, **169**, 161–168.
- (6) X. F. Hou, F. Zeng, F. K. Du and S. Z. Wu, *Nanotechnology*, 2013, 24, 335502.
- (7) Y. Wang, W.-T. Wu, M.-B. Wu, H.-D. Sun, H. Xie, C. Hu, X.-Y. Wu and J.-H. Qiu, *New Carbon Mater.*, 2015, **30**, 550–559.
- (8) L. Zhao, H. Li, Y. Xu, H. Liu, T. Zhou, N. Huang, Y. Li and L. Ding, *Anal. Bioanal. Chem.*, 2018, **410**, 4301–4309.