Supporting Information

One-step facile synthesis of nickel-chromium layered double hydroxides nanoflakes for high-performance supercapacitors

Zuo Chen,^{‡a} Hao Deng,^{‡a} Man Zhang,^a Zhiyu Yang,^a Di Hu,^a Yuchen Wang^a and Kai Yan^{*a, b}

^a School of Environmental Science and Engineering, Sun Yat-sen University, 135

Xingang Xi Road, Guangzhou 510275, P. R. China

^b Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, P. R. China

[‡]These Authors contribute equally to this work.

* Corresponding author E-mail: yank9@mail.sysu.edu.cn

Cleaning of Ni foam

The nickel foam should be cleaned before being loaded with the active materials. The nickel foams were ultrasonic treated for 1 h in 1 M HCl, then washed with ethanol (10 mL) and deionized water (10 mL) for three times, respectively. Finally, the Ni foam was dried at 70 °C for 12 h in vacuum.

Table S1. Textural properties of Ni₁Cr₁-LDNs, Ni₂Cr₁-LDNs and Ni₃Cr₁-LDNs.

Simples	S _{BET} (m ² g ⁻¹)	V _{total} (cm ³ g ⁻¹)	Size adsor (Å)
Ni ₁ Cr ₁ -LDNs	62.541	0.065	18.053
Ni ₂ Cr ₁ -LDNs	73.416	0.073	28.061
Ni ₃ Cr ₁ -LDNs	63.286	0.068	21.067

Fig. S1 XRD patterns of Ni_3Cr_1 -LDNs, Ni_2Cr_1 -LDNs, Ni_1Cr_1 -LDNs, Ni_1Cr_2 -LDNs and Ni_2Cr_1 -LDHs.

Fig. S2 SEM images of the synthesized Ni_2Cr_1 -LDHs (a) and (b); Ni_2Cr_1 -LDNs (c) and (d).

Fig. S3 SEM image of the Ni_2Cr_1 -LDNs (a) and the corresponding EDS mapping of

O (b), Cr (c) and Ni (d) elements.

Fig. S4 (a) AFM image and (b) the corresponding height profile of Ni₂Cr₁-LDNs.

Fig. S5 (a) AFM image and (b) the corresponding height profile of Ni_1Cr_1 -LDNs.

Fig. S6 Transmission Electron Microscopy image of Ni_1Cr_1 -LDNs.

Fig. S7 N_2 adsorption/desorption isotherms of Ni_1Cr_1 -LDNs, Ni_2Cr_1 -LDNs and Ni_3Cr_1 -LDNs.

Fig. S8 (a) CV curves of Ni₂Cr₁-LDNs and pure nickel foam at the scan rate of 30 mV s⁻¹ in 6 M KOH, (b) CV curves of Ni₂Cr₁-LDNs, Ni(OH)₂ and Cr(OH)₃ at the scan rate of 30 mV s⁻¹ in 6 M KOH, (c) GCD curves of Ni₂Cr₁-LDNs, Ni(OH)₂ and Cr(OH)₃ at current densities of 2 A g⁻¹, (d) GCD curves of Ni₂Cr₁-LDNs at various current densities from 2 to 10 A g⁻¹.

Fig. S9 (a) CV curves of AC at different scan rates from 5 to 50 mV s⁻¹, (b) GCD curves of AC at various current densities from 1 to 10 A g⁻¹.

For

$$\log k_{s} = a \log(1-a) + (1-a) \log a - \log \frac{RT}{nFv} - \frac{a(1-a)nF\Delta Ep}{2.303RT}$$
(5)

where the values of T, n, R, F and a is 298, 1, 8.314, 96500 and 0.42, respectively.