1 Quantification of Hexagonal Boron Nitride impurities in Boron Nitride

2 Nanotubes via FT-IR Spectroscopy

3 Supplemental Information

4 Haley Harrison,^a Jason T. Lamb,^b Kyle S. Nowlin,^d Andrew J. Guenthner,^c Kamran B. Ghiassi,^c Ajit D.

- 5 Kelkar,^d Jeffrey R. Alston^{d*}SI Figures
- 6

7

8 Figure SI 1. FT-IR transmission spectra of boron oxide overlaid on as received BNNTs and

9 h-BN.

- 1
- 2 Figure SI 2. Schematic diagram of ultrasonically assisted diffusion separation of BNNTs and
- 3 h-BN.
- 4
- 5
- 5
- 6
- 7

- 9 Figure SI 3. TEM micrographs of BNNT samples. From Left to Right, as-received BNNTs
- 10 (AR-BNNTs), oxidized and washed BNNTs (OW-BNNTs), and Triton X-100 separated
- 11 BNNTs (TX-BNNTs). The red scale bar for each image is 200 nm.

2 Useful Literature Images Provided for Analysis Perspective

1

- 6 (BNNTs). Reproduced from Chee Huei et al.¹ Vibrational modes along the tube axis (LO) of
- 7 a BNNT correspond to ~1369 cm⁻¹, while circumferential or tangential vibration modes (T)
- 8 tangent to the axis are at ~1545 cm⁻¹. Out-of-plane radial buckling modes are at ~809 cm⁻¹.
- 9

10

11

- 12 Figure SI 5. HRSEM image from Okan et al. Figure 9b sample BNNT-3 & Figure 9d sample
- 13 BNNT-5. Representative SEM images of the BN structures formed during the synthesis
- 14 described in the study.⁴

- 1
- 2
- 3

4 Boron Oxide and Boric Acid

boric acid in $Ar_{(g)}$ at 400 °C.² A notable observation is the presence of a 2 θ diffraction near 7

8 27°, which has been assigned to boron oxide (b) but overlaps similar peaks for boric acid

9 (a), and peaks commonly assigned to (002) h-BN in many studies (Figures 6 and 7 of the

- 10 main text).
- 11
- 12

60

40

20, degree

25.5 26.0 26.5 27.0

20, degree

28.0

27.5

 $3a_i$ and 3b in Kumari et al.⁵ a_i) The diffraction peaks corresponding to the (002), (100), 16

(101), (102), (004), and (110) planes are all clearly shown and is characteristic of highly 17

18 ordered h-BN structure. b) The (002) peak is symmetric and narrow at a $2\theta = 26.75^{\circ}$ with

19 a FWHM of 0.36°.

- 3 Figure SI 8. XRD spectra reproduced from Thomas et al.⁶ and Figure 1 in Balint et al.³
- 4 Resolution of the characteristic peaks of h-BN increase in order from A D; showing the
- 5 effects of three-dimensional ordering, from turbostratic boron nitride to complete three-
- 6 dimensional order, respectively.

2 Boron Nitride Nanotube (BNNTs)

5 Diffraction peaks of (002) h-BN are observed at $2\theta = 27.7^{\circ}$, 28°, and 28.4° for BNNT-1,

6 BNNT-2, and BNNT-3, respectively. A diffraction peak of (100) h-BN is observed at $2\theta \approx$

7 41° in BNNT-1. B₂O₃ is observed in BNNT-1 at $2\theta \approx 14^{\circ}$, while unreacted Boron in BNNT-1

8 and BNNT-2 is observed between $2\theta = 15^{\circ} - 25^{\circ}$. b) A diffraction peak of Fe-B, a high

9 temperature (750 °C) side product appears at $2\theta \approx 27^{\circ}$ for BNNT-5, compared to BNNT-1

10 produced at a lower temperature (600 °C).⁴

11

12

13

14

2 Figure SI 10. XRD patterns of BNNTs i-iii) as-synthesized, dispersed, and acid washed,

- 3 respectively; iv-vi) oxidized at 750 °C, 800 °C, and 850 °C, respectively; vii) sample (v)
- 4 washed with hot water.⁷ Typical diffraction peak of (002) h-BN appears around $2\theta \approx 31^{\circ}$ in

5 all samples, and B_2O_3 is observed at $2\theta \approx 16^\circ$ for oxidized samples.

- and c) further oxidized in air up to 900 °C. Peak designations are X: Fe; O:Fe₂O₃ and *: B₂O₃,
- 12 although not including 20 angles below 20° in the spectra, to show the $20 \approx 15^{\circ}$ formation
- 13 of boron oxide is a crucial omission from this data.⁸

1	Figure SI	
2		
3 4 5 6	1.	Chee Huei L, Jiesheng W, Vijaya KK, Jian YH, Yoke Khin Y. Effective growth of boron nitride nanotubes by thermal chemical vapor deposition. <i>Nanotechnology</i> 2008, 19 (45): 455605.
7 8 9	2.	Atasoy A. The aluminothermic reduction of boric acid. <i>International Journal of Refractory Metals and Hard Materials</i> 2010, 28 (5): 616-622.
10 11 12 13	3.	Balint MG, Petrescu MI. An attempt to identify the presence of polytype stacking faults in hBN powders by means of X-ray diffraction. <i>Diamond and Related Materials</i> 2009, 18 (9): 1157-1162.
14 15 16 17 18 19	4.	Saner Okan B, Kocabaş ZÖ, Nalbant Ergün A, Baysal M, Letofsky-Papst I, Yürüm Y. Effect of Reaction Temperature and Catalyst Type on the Formation of Boron Nitride Nanotubes by Chemical Vapor Deposition and Measurement of Their Hydrogen Storage Capacity. <i>Industrial & Engineering Chemistry Research</i> 2012, 51 (35): 11341-11347.
20 21 22 23 24	5.	Kumari S, Sharma OP, Gusain R, Mungse HP, Kukrety A, Kumar N <i>, et al.</i> Alkyl-Chain- Grafted Hexagonal Boron Nitride Nanoplatelets as Oil-Dispersible Additives for Friction and Wear Reduction. <i>ACS Applied Materials & Interfaces</i> 2015, 7 (6): 3708- 3716.
25 26 27 28	6.	Thomas J, Weston NE, O'Connor TE. Turbostratic1 Boron Nitride, Thermal Transformation to Ordered-layer-lattice Boron Nitride. <i>Journal of the American Chemical Society</i> 1962, 84 (24): 4619-4622.
29 30 31	7.	Chen H, Chen Y, Yu J, Williams JS. Purification of boron nitride nanotubes. <i>Chemical Physics Letters</i> 2006, 425 (4–6): 315-319.
32 33 34 35	8.	Chen Y, Zou J, Campbell SJ, Caer GL. Boron nitride nanotubes: Pronounced resistance to oxidation. <i>Applied Physics Letters</i> 2004, 84 (13): 2430-2432.