SUPPLEMENTARY INFORMATION

Enhanced Charge Separation in g-C₃N₄ – BiOI Heterostructures

for Visible Light Driven Photoelectrochemical Water Splitting

Kazi Alam,^{1†} Pawan Kumar,^{1†} Piyush Kar,¹ Ujwal Thakur,¹ Sheng Zeng,¹ Kai Cui² and Karthik Shankar¹

¹ Department of Electrical & Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9 Canada

² Nanotechnology Research Centre, National Research Council of Canada, Edmonton, Canada T6G 2M9

*corresponding author's email address: kshankar@ualberta.ca

†These authors contributed equally

Applied bias photon-to-current efficiency (ABPE):

The ABPE% was calculated by using following folrmula:

ABPE (%) = $[J (\text{mA cm}^{-2}) \times (1.23 - V_b)/P (\text{mW cm}^{-2})] \times 100 \dots$ Eqn- (1) Where, *J* is the current density, V_b is applied voltage at RHE scale and P is power density of the incident light.

The applied voltage on Ag/AgCl scale was converted RHE scale by using following expression.

 $V_{RHE} = V_{Ag/AgCl} + 0.059 \text{ pH} + V_{Ag/AgCl}^{0}$Eqn - (2)

Where; $V_{Ag/AgCl}^{0} = 0.197 V.$

Figure S1. Equivalent circuit used to model the EIS Nyquist plots for $g-C_3N_4$ -S, $g-C_3N_4$, BiOI, $g-C_3N_4$ -S/BiOI, and $g-C_3N_4$ /BiOI films. EIS data was obtained using AM1.5 G one sun illumination, in the frequency range of 0.1 to 10000 Hz, and at a potential of -0.2 V *vs* Ag/AgCl.

Figure S2. Photocurrent response under 425 nm LED light (54.15 W cm⁻²) during on-off cycle for (a) g-C₃N₄-S (black), (b) g-C₃N₄(blue), (c) BiOI (red), (d) g-C₃N₄-S/BiOI (wine red) and (e) g-C₃N₄/BiOI (green)

Figure S3. Mott-Schottky plots of bulk $g-C_3N_4$ (blue), $g-C_3N_4-S$ (black), 40% BiOI/ $g-C_3N_4$ (green), 60% BiOI/ $g-C_3N_4-S$ (wine red), and BiOI (red).

Figure S4. Tauc plots for the determination of the effective optical bandgaps of $g-C_3N_4$ -S (black), bulk $g-C_3N_4$ (blue), BiOI (red), $g-C_3N_4$ -S/BiOI (wine) and $g-C_3N_4$ /BiOI (olive green).

Figure S5. UV-Vis absorption spectra collected in diffuse reflectance mode (DR) mode for g- C_3N_4 -S/BiOI and g- C_3N_4 /BiOI heterostructures before (wine red and green) and after (orange and light green) several photoelectrochemical cycles respectively.

Figure S6. X-Ray diffractograms of $g-C_3N_4$ -S/BiOI and $g-C_3N_4$ /BiOI heterostructures before (wine red and green) and after (orange and light green) several photoelectrochemical cycles.

Figure S7. Photoelectrochemical re-use data for (a) $g-C_3N_4$ -S/BiOI (orange) and (b) $g-C_3N_4$ /BiOI (light green).

Figure S8. ABPE % *vs* RHE plot under AM1.5G light irradiation (100 mW cm⁻²) for g-C₃N₄-S/BiOI (wine red), g-C₃N₄/BiOI (green), g-C₃N₄-S (black), g-C₃N₄ (blue), BiOI (g-C₃N₄-S).