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Integrated biosensor platform based on graphene transistor
arrays for real-time high-accuracy ion sensing



REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

- What are the noteworthy results? 

• In this manuscript, a highly integrated sensor based on graphene transistor arrays is 

constructed, demonstrating good capacity in the multi-channel measurement of 

different analytes on the same sensor. 

• With the profile-matching calibration, the sensors can be easily calibrated, and the 

concentration of ions in an unknown sample could be quantified with only one reference 

solution, reducing the workload in the ion sensing effectively. 

• By using PCA, K+, Na+ and Ca2+ ions can be well distinguished by the sensor, 

circumventing the cross-reactivity of each ISMs. With the random forest algorithm, 

different metal ions are well classified and different ion concentrations are also 

relatively well predicted. 

• The portable sensing platform also demonstrated its ability to be operated in complex 

biofluids, such as artificial urine and artificial eccrine perspiration. 

• The test protocol is well optimized. Different factors which may affect the test 

accuracy such as temperature, hold time, and test sequence, were investigated carefully 

to eliminate the signal drift in the consecutive tests. 

- Will the work be of significance to the field and related fields? How does it compare to 

the established literature? If the work is not original, please provide relevant 

references. 

• Yes. The work provides a solution to improve the test accuracy in biosensing with the 

2D-material based devices and a new way to overcome the device-to-device variation. 

The highly integrated sensor with more than 200 devices guarantees the abundance of 

units in the test and reduces the requirements of device uniformity. The application of 

statistical analysis and machine learning algorithm further improve the test accuracy. 

The portable sensing platform also provides one step closer to achieving its real-life 

applications. 

- Does the work support the conclusions and claims, or is additional evidence needed? 

• What is the physiological significance of studying K+, Na+ and Ca2+? What are the 

relative concentrations of these ions in AU and AEP? 

• The abundance of sensors in the test is important for the improvement of test 

accuracy in this work. It’s really a prefect work to build such a highly integrated sensing 

platform, but workload and cost should also be balanced in a project. The authors should 

also discuss these two aspects in the paper. In addition, will the sensitivity/selectivity 

of the same sensor decrease after multiple tests? What about the shelf-life (although 

the sensitivity kept well in 10 h in Figure S7b)? How robust are the ISMs? 

• Since there are more than 200 devices on the same sensor, the multi-channel 

measurement is important for the data collection. How many devices could be measured 

simultaneously in the testing process? How long does it take to finish the measurements 

on all the 215 devices in a test? 

• According to the equation 3, the sensitivity is limited by Nernst limit (around 59 

mV/decade). The sensitivity of some devices was actually higher than this value (shown 

in Figure 2a-c, Figure 3a, and Figure S7a). The authors should explain the deviations of 

sensitivity values, although some sensors with even higher sensitivity have been 

reported. 

• In Algorithm-enhanced sensing accuracy section, the authors should clarify if the 

multi-ion solutions used in the second set of experiments were in water or AU/AEP. It 

would be better if the authors could provide the sensing performance and classification 

results with real-world biological samples to support the practical significance of the 

sensing platform. Or the authors should at least discuss on how the sensing 

performance and data analysis could be affected due to the complexity of real-world 

biological samples. 

- Are there any flaws in the data analysis, interpretation and conclusions? - Do these 



prohibit publication or require revision? 

• For the PCA, how many features were applied for the classification? The authors 

should clarify these features in the manuscript. 

• For the artificial urine (AU) and artificial eccrine perspiration (AEP), the authors may 

make their recipes opposite in Table S2 since there should be urea and uric acid in AU. 

• As shown in Figure 2d-f, the sensitivity changed with the opposite test sequence (from 

high concentration to low concentration). Could it be explained with the cross 

contamination? At the same time, there are only three data points (red one) in Figure 

2d-f. What about the relative conductance changes at other two concentrations? Lastly, 

only ΔG/G was applied for the investigation of reversibility in the manuscript, the Dirac 

point change from high concentration to low concentration should also be plotted. 

• Recommendation is publication after minor revisions. 

- Is the methodology sound? Does the work meet the expected standards in your field? 

• Yes. 

- Is there enough detail provided in the methods for the work to be reproduced? 

• The authors claimed that only one reference solution was need for the determination 

of ions in a unknow sample with the profile-matching calibration. Is a reference solution 

always essential for the calibration in each test, or not needed any more after the 

calibration of sensor with the reference? In addition, what was the concentration of 

reference for the calibration in Figure 2i? Should the concentration of reference always 

fall in the linear range? 

• In Figure 4f, what was the concentration of each ion for the test? Was the mixture 

solution used for the test? 

• For the classification of different ion concentrations in the mixture solution, the 

confusion matrix is still limited to each ion, which contains five classes. Could the 

authors provide the confusion matrix with fifteen classes? (Three types of ions and five 

different concentrations). 

• The errors in units should be corrected. “mm” should be “mM” in page 15, 18 and 30. 

Reviewer #2 (Remarks to the Author): 

Xue et al. reported a field-effect sensing platform based on more than 200 integrated 

graphene ion sensors. The authors claimed that they overcome the limitation of 

relatively large device-to-device variation in 2D materials, and achieved high-

performance ion sensing by adopting new calibration methods as well as Random Forest 

algorithm. The manuscript is well-written and the technique seems to be reasonable. 

Given the research tackles one of the most important limitations/problems in 

biochemical sensors based on non-uniform 2D materials, in my opinion this paper should 

be accepted with minor revision. 

1. In Supplementary Fig. 1f, the performance of the device is quite different. I suggest 

giving statistical data on resistance or carrier mobility for the same batch of devices for 

comparison. There are only few characterizations on the surface morphology and quality 

of the graphene devices. The authors should show optical images of individual devices 

(as-fabricated and functionalized). 

2. Material jet printers are used to deposit various chemicals onto the sensing area with 

precise lateral control. To what extend the printers can control the uniformity of the 

functionalization? 

3. Fig. 3c gives the ion-selective results for ion-selective membranes with different 

membrane functionalizations, where Ca ISM exhibits a non-selective sensing response 

towards Na+ ions. Did the authors test the ionic sensing response of the as-fabricated 

graphene devices? It is worth noting that previous works (Nano Lett. 2011, 11, 3597 



and Adv. Mater. 2017, 29, 1603610) demonstrated that intrinsic defects, as well as 

possible contaminations introduced during device fabrication and storage, might lead to 

uncontrolled sensitivity. 

4. In my opinion, a reliable and stable operation of the graphene devices is the key. The 

authors should provide long-term stability measurements of as-fabricated and 

functionalized graphene sensors. 

Reviewer #3 (Remarks to the Author): 

In this manuscript, the authors present a novel approach to address current challenges 

in 2D material-based sensing devices such as material quality variability, device 

uniformity, high performance and enhanced functionality in ion classification 

application. 

The proposed approach reduces the requirements on material quality and device 

uniformity. To this end, the authors fabricated sensor arrays consisting of 16×16 

graphene devices to provide more than 200 working sensing units for each chip, and 

configured them to achieve multi-ion sensors by modifying their surface with three 

different ion-selective membranes (ISMs). Moreover, machine learning algorithms such 

as the Random Forest algorithm, were applied to demonstrate the enhanced 

functionality of accurate ion type classification and concentration prediction. 

The developed platform demonstrates near ideal sensitivity, excellent reversibility, and 

a large detection range for each type of sensor despite the large non-uniformity of the 

individual devices. The sensing platform could be readily adopted for other analytes of 

interest as well as with other advanced 2D materials that also suffer from the same 

issues (e.g., device-to-device variations) to realize accurate and reliable multiplexed 

sensing in biomedical applications. 

The manuscript is interesting and generally fulfils the scope of Nature Communications. 

However, in its present form it can not be recommended for publication. To provide an 

adequate contribution to the journal, the authors have to take into account the following 

points in a major revision: 

1. On page 3, the full name of the abbreviations "PEDOT" and "PSS" should be given at 

their first appearance in the manuscript. 

2. On pages 3 and 4, the two paragraphs, "Here we demonstrate a novel ……. " and "In 

this paper, we fabricate arrays of ………" are not well organized thus hard to understand. 

There are a lot of redundant elements, such as the sentence "Instead of focusing on the 

improvement of intrinsic material quality, fabrication uniformity and surface 

functionalization, we demonstrate ways to overcome the large degree of variability of 

advanced materials by developing a high-density graphene-based sensor array, thus 

significantly reducing the requirements on material quality and device uniformity. ". The 

section following "thus" is repeated as the section following "Instead of", etc. 

3. The authors present the Raman characterization before and after the sensor 

fabrication. Did the authors also perform the Raman mapping characterization for the 

graphene film after sensor fabrication procedure? This could be helpful to show the 

quality of whole graphene film after fabrication. 

4. In the manuscript, the authors point out that there are 16*16=256 sensors in the 

array. However, only 215 working devices were functionalized and presented, as shown 

on page 7. The authors should explain why not the 256 sensors are utilized and ways to 

overcome this limitation. 

5. In the section "Highly integrated Array for Multiplexed Sensing": The authors should 

comments on the observation "Na membrane shows a more neutral functionalization". 

Which are the underlying mechanisms? 

6. In Figure 3(d), the author show the PCA score plot of the chip sensitivity, but the 

introduction of the input features (multivariate) are not explained in the manuscript. 

This should be improved. 

7. In the "Algorithm-enhanced sensing accuracy" section, the authors present the 



classification accuracy implemented by the random forest algorithm. Did the authors 

perform the classification with other classifier algorithms, such as LDA, SVM, KNN, etc? 

Which results can be expected? 

8. On page 15, the authors conclude the accuracies of 1/8 chip is larger than most of the 

reported sensors. The authors should give more detailed results of the other works and 

include the necessary citations. 

9. The author performed all the measurement on artificial bio-fluids. Did the authors 

perform the measurement on real bio-fluids, and which are the main possible challenges 

related to this? Is the applied technology and its underlying methods sufficiently robust? 

10. From the manuscript it seems that the authors conducted all measurements on a 

single chip. There is no suggestion in the manuscript that more than one chip was 

reproduced. How is the reproducibility? 

11. The author show several Isd-Vgs characteristics. Have the author conducted any 

characterization of the Isd-Vsd for all the sensors? How large is the resistance range of 

all the sensors after fabrication (before applying liquid-phase environment)? 

The following minor typographic corrections need to be corrected: 

1. On page 5, in the sentence "The quality of the intrinsic graphene film is analyzed by 

Raman Spectroscopy as shown in Supplementary Fig. 1b-c” , obviously, Supplementary 

Fig. 1b is not the Raman characterization result, it should be "The quality of the intrinsic 

graphene film is analyzed by Raman Spectroscopy as shown in Supplementary Fig. 1c-

d". 

2. Page 13 : "The score of PC1 and PC2 is plotted in Fig. 3e. “. It should be "Fig. 3d". 

3. Page 17 - typo, "The graphene film was single-layered with minimal defects as shown 

in the Raman spectrum in Supplementary Fig.1b-c", it should be "Fig.1c-d" 

4. Caption of Supplementary Figure 1 (c), "c Raman spectrum the intrinsic graphene 

sheet before any fabrication, here "of" is missing between "spectrum" and "the". 

Reviewer #4 (Remarks to the Author): 

It is a very well written paper but real time monitoring of real sample can't be 

demonstrated by using simply urine samples... Two questions: sensing in plasma fluids 

are in presence of a high (9g/L) of NaCl concentration and in presence of complex 

mixture of proteins. The high concentration of salt should decrease the sensitivity of FET 

sensing scheme, how do the authors aim to overcome this? Same question in a complex 

fluid with grams per millilitre of serum albumin, sugar, etc.



----------------------------------------- 
Reply to reviewer 1’s remarks: 
----------------------------------------- 
 
Overall Remarks: 

• In this manuscript, a highly integrated sensor based on graphene transistor arrays is 
constructed, demonstrating good capacity in the multi-channel measurement of different 
analytes on the same sensor. 

•  With the profile-matching calibration, the sensors can be easily calibrated, and the 
concentration of ions in an unknown sample could be quantified with only one reference 
solution, reducing the workload in the ion sensing effectively. 

• By using PCA, K+, Na+ and Ca2+ ions can be well distinguished by the sensor, 
circumventing the cross-reactivity of each ISMs. With the random forest algorithm, 
different metal ions are well classified and different ion concentrations are also relatively 
well predicted. 

• The portable sensing platform also demonstrated its ability to be operated in complex 
biofluids, such as artificial urine and artificial eccrine perspiration. 

• The test protocol is well optimized. Different factors which may affect the test accuracy 
such as temperature, hold time, and test sequence, were investigated carefully to eliminate 
the signal drift in the consecutive tests. 

• The work provides a solution to improve the test accuracy in biosensing with the 2D-
material based devices and a new way to overcome the device-to-device variation. The 
highly integrated sensor with more than 200 devices guarantees the abundance of units in 
the test and reduces the requirements of device uniformity. The application of statistical 
analysis and machine learning algorithm further improve the test accuracy. The portable 
sensing platform also provides one step closer to achieving its real-life applications. 

• Recommendation is publication after minor revisions. 

Our response:  

We thank the reviewer for the acknowledgment on the novelty and impact of our work. We 
also thank the reviewer for the constructive comments, which have significantly helped to increase 
the clarity of our manuscript and highlight its contributions to material science.  

1. What is the physiological significance of studying K+, Na+ and Ca2+? What are the relative 
concentrations of these ions in AU and AEP? 

Our response:  

 We appreciate the reviewer’s comment. Electrolyte imbalance in biofluid such as sweat, 
blood, urinate can be indicators for individual’s physiological state. Potassium is one of the most 
important cations in body electrolyte. It helps regulate fluid balance, muscle contractions and nerve 
signals. Potassium disorder can be caused by diuretic use, gastrointestinal losses, kidney disease 
and hyperglycemiaR1. Sodium ion concentration is another  crucial component for potential disease 
diagnosis. Disorder in sodium ion concentration is one of the most common electrolyte 
disturbances. Server alternation of ionized sodium level in biofluid is associated with considerable 
morbidity and mortalityR2. Sodium ion disorder are often iatrogenic therefore fast and easy 
detection or monitoring of sodium concentration can greatly help diseases diagnosis efficiency. 
Calcium is also an essential component for human’s minerals homeostasisR3. Ionized calcium plays 



an important role in mediating vascular contraction and vasodilation, muscle contraction, nerve 
transmission, and glandular secretion. Imbalanced calcium ion concentration could be indicators 
for parathyroid condition, kidney disease, thyroid disease and so on.  

A detailed discussion on the physiological significance of K+, Na+ and Ca2+ ions and 
relevant references are mentioned in the main text as: “They help regulate fluid balance, muscle 
contractions, nerve system transmissions, and glandular secretion. A better understanding and 
instant monitoring over these ions are essential for evaluation of patient’s physiological status, as 
they are indicators for diuretic use, gastrointestinal losses, kidney disease, parathyroid condition, 
thyroid disease, cardiac failure etc17-19.” 

The AU and AEP solution used are commercialized by Biochemazone and the exact 
composition formula is proprietary. The relative concentration magnitude for K+, Na+ and Ca2+ 
ions in AU is 10mM, 100mM and 1mM, respectively and that for all three ions in AEP is 1mM.  
We have included this information in Supplementary Table S2 and mentioned it in the main text 
as: “The feasibility of the sensing system to operate in complex biofluid is demonstrated by testing 
the sensor behavior in artificial urine (AU) and artificial eccrine perspiration (AEP), where the 
relative concentration for K+, Na+ and Ca2+ ions are within 1mM-100mM.”   

 

2. The abundance of sensors in the test is important for the improvement of test accuracy in this 
work. It’s really a prefect work to build such a highly integrated sensing platform, but workload 
and cost should also be balanced in a project. The authors should also discuss these two aspects in 
the paper. In addition, will the sensitivity/selectivity of the same sensor decrease after multiple 
tests? What about the shelf-life (although the sensitivity kept well in 10 h in Figure S7b)? How 
robust are the ISMs? 

Our response:  

We would like to thank the reviewer for this comment. The workload and cost of 
fabricating a highly integrated sensor chip is minimized by a wafer-scale process flow. Currently 
the sensor backbone is fabricated using a 4-inch wafer and results in 16 sensor chips in each wafer 
as shown in Fig. R1. The active sensing area takes only less than 10% of the current space therefore 
the footprint of the chip can be greatly reduced in the future. Photolithography is used which 
reduces cost while achieves higher throughputs. A double-layer photoresist structure is utilized to 
minimize photoresist residual on graphene. Wafer-scale graphene transfer is also commercially 
available. The cost for 8-inch monolayer graphene transfer is around $800 for small volumes, thus 
the cost of one sensor chip (2cm×2cm) fabricated on an 8-inch wafer will be roughly under $20, 
which is much cheater than the commercialized glass ion-sensitive electrode (~$250, LabForce). 
This work provides a promising way for future sensors, where both material cost and fabrication 
cost are in an affordable manner. With the reviewer’s comment, we added Fig. R1 as 
Supplementary Fig. 1c as well as the following discussion in Methods and Conclusion: 

“In this work, we developed a highly integrated graphene-based sensing platform that overcomes 
the current limitations in 2D materials technology and achieves high performance and enhanced 
functionality. The scalable fabrication process provides a promising way for future sensors to 
achieve both excellent performance and low cost.” 

“Graphene sensors were isolated from each other using oxygen plasma and a patterned 
PMGI/SPR700 resist stack as a mask. Photolithography is used to reduce cost while achieve 



higher throughputs.  … The whole process can be easily scaled up for 6 or 8-inch process and the 
cost will be further reduced.” 

As the reviewer mentioned, device stability is extremely important for reliable and accurate 
results. Here we discuss the device stability and robustness in three aspects:  

1) Measurement reproducibility: Hysteresis, which will influence sensor accuracy and 
repeatability is minimized by optimized sweeping condition. The hysteresis present in 
electrolyte-gate graphene FETs is mostly dominated by capacitive gating and it can be 
suppressed  by applying a slow sweeping rate as proved by Wang et al. R4. We 
programed our sensing system to sample data at a rate of 20mV/s. As shown in 
Supplementary Fig. 5, the differences between two consecutive measurements are 
negligible under our sweeping condition.  

2) Stability over multiple measurements: Sensor devices are measurement towards 
different ion concentrations for three times and the sensitivities are extracted and 
plotted in Fig. R2a (Fig. S11a). Sensitivities towards all three ions are stable over the 
3 testing sessions. No significant sensitives degradation or drift were observed within 
multiple measurements.  

3) Stability over time: Shown in Fig. R2b (Fig. S11b) is the sensor sensitivity with 
respect to storage time of 3 hours, 1 week, and 6 months. All three ISMs have stable 
sensitivity over time. The devices were stored in a nitrogen box at ambient temperature.  

In summary, our sensor demonstrates reproducible performance over multiple 
measurements and long-term (at least 6 months) stable sensitivity towards K+, Na+ and Ca2+ ions. 
To address reviewer’s comment, we have included the following figures in Supplementary Fig.1c, 
Supplementary Fig. 11 and covered it in the main text as “The averaged sensitivity of ISM-
functionalized sensor array is stable and repeatable over multiple measurements (Supplementary 
Fig. 11a). The robustness of the ion sensor array is further showcased by the negligible drift in 
sensitivity over a 6-month period (Supplementary Fig. 11b)” 

 



Figure R1: Image of 16 sensing chip fabricated on a 4-inch wafer. 

 

Figure R2: Sensitivity of K+, Na+ and Ca2+ ion sensors plotted a over multiple measurements; 
and b over long period of time (up to 6 months). All sensors show negligible drift and good 
stability.  
 

3. Since there are more than 200 devices on the same sensor, the multi-channel measurement is 
important for the data collection. How many devices could be measured simultaneously in the 
testing process? How long does it take to finish the measurements on all the 215 devices in a test? 

Our response:  

 We thank the reviewer for the question. The custom PCB measurement system is able to 
measure all sensors almost simultaneously. This is achieved by the 16-channel multiplexer on the 
board to switch quickly between different rows of the sensor array. For a standard VGS sweep from 
-0.6V to 0.9V with 20mV/s sweeping speed, it takes 1.5 mins to finish the VGS sweep for one 
sensor cell. With the current multiplexer, it roughly takes 3 minutes to finish the I-V measurement 
of all 256 devices. We have added the following sentence in the main text to reflect reviewer’s 
comment: 

“The change in the source-drain current IDS for each row and column combination of the sensor 
array are automatically measured as a function of gate-source and drain-source voltages, VGS and 
VDS. For a standard VGS sweep (from -0.6V to 0.9V with 20mV/s sweeping speed), it takes roughly 
3 minutes to finish measuring all 256 devices.” 

 

4. According to the equation 3, the sensitivity is limited by Nernst limit (around 59 mV/decade). 
The sensitivity of some devices was actually higher than this value (shown in Figure 2a-c, Figure 
3a, and Figure S7a). The authors should explain the deviations of sensitivity values, although some 
sensors with even higher sensitivity have been reported. 

Our response:  



 We appreciate the reviewer’s comment. The super-Nernstian behavior has been explored 
and demonstrated by many groups such as using defect-engineered grapheneR5 and capacitive 
amplification via dual-gatingR6.  In our devices, the super-Nernstian behavior arise mostly from 
uncontrolled defects sites due to material synthesis and device fabrication. If we consider the 
operation principle of the ISM, the membrane potential between ISM and electrolyte induces a 
potential at graphene/ISM interface and acts as an addition gate to the graphene channelR7. In 
addition to the ideal electrostatic gating effect from the Nernst equation, defect sites on the 
graphene channel, including but not limited to grain boundaries, vacancies, contaminations, 
substrate doping etc., can induce charge transfer effect to the graphene channel. Such effect will 
modulate the channel fermi-level hence induces an additional leakage current to the gate and shifts 
in the I-V characteristicsR5,8,9.  

The advantage of the highly integrated sensing system is the ability to use average 
performance to decrease the impact of device variations and leakage current, caused by immature 
material synthesis and fabrication process. In our system the sensors don’t need to be perfect in 
order to provide adequate functionality. 

We have added the following sentence in the main text and updated the Supplementary 
Note 1 to discuss the super Nernstian sensitivity.  “Some devices show super-Nernstian behavior, 
which can be explained by uncontrolled charge transfer due to defect sites on graphene induced 
by fabrication process (Supplementary Note 1).” 

 

 

5. In Algorithm-enhanced sensing accuracy section, the authors should clarify if the multi-ion 
solutions used in the second set of experiments were in water or AU/AEP. It would be better if the 
authors could provide the sensing performance and classification results with real-world biological 
samples to support the practical significance of the sensing platform. Or the authors should at least 
discuss on how the sensing performance and data analysis could be affected due to the complexity 
of real-world biological samples. 

Our response:  

 We appreciate the reviewer’s comment. The multi-ion solution used in the model training 
was in water. We have clarified in the main text as: “The second set, called “mixture solutions”, 
contains electrolyte solutions with multiple ion types in deionized water and will be discussed in 
the following section.” 

We added measurements of the as-fabricated sensor chip in real bio-fluid. Shown in Fig. 
R3a is the as-fabricated sensor array measured in water and in human serum. The sensing chip is 
fully functional, but a significant shift of the I-V characteristics is observed due to change in ionic 
strength and the presence of proteins and steroids. In addition, current level, cross-sensitivity and 
detection limit will also be different due to the interference from the complex environment. For a 
traditional sensor where only one type of sensor is present and absolute selectivity is assumed, the 
sensor readings with real-world biological samples might not be accurate. Our sensing system 
however introduced new approaches to tackle this problem, where a multiplexed sensor array was 
developed and combined with statistical/machine learning methods.  

In order to have a practical functionality in clinical studies, the sensor system would need 
to be calibrated and trained with large sets of real biological samples to target towards specific 



diseases. Such experiments are possible and will be included in future work, but the collection of 
real biological samples is outside of the scope of this paper, and it requires other advanced 
techniques to acquire precise ground truth labels. Instead, we trained another model to simulate 
how the system would be used in a real-world setting, where biofluids are analyzed using the 
concentration profile of the K+, Na+ Ca2+ ions as biomarkers for electrolyte imbalance disorders.  
Here we re-categorized the mixture solution sets as shown in the Table R1 below and trained the 
model to predict the mixture concentration profile instead of the concentration of individual ions. 
We categorized the mixture solution sets following the relevant ion concentration in human plasma 
into four classes: Higher Calcium, Higher Potassium, Lower Sodium and Baseline.  

The confusion matrix of the result model is shown in Fig. R3b (which is also added as Fig. 
4f.). We achieved an average accuracy of 84.7% for classification of ion concentration profiles 
with solutions containing multiple ion types. This analysis demonstrates the possibility of coupling 
the multiplexed sensing array with machine learning models to achieve fast and high accuracy of 
electrolyte imbalance-related disease diagnosis. The performance of the model could be greatly 
improved with a larger, balanced training dataset. The model could also be easily re-trained 
towards specific diseases with training data collected with real biofluid from patients in a clinic 
trial. 

To address the reviewer’s comment, we add the following discussion in the main text and 
SI:  

“In additional to complex electrolyte profiles, biological fluids also contain antibodies, 
antigens, and hormones that introduce more confounders into the analysis. The graphene-based 
sensors will behave differently in terms of current level, Dirac Point, cross-sensitivity, detection 
limits as so on (Fig. 4f). The multiplexed sensor array analyzes the collective response of an array 
instead of assuming absolute sensitivity or selectivity of one device. Models can be readily 
calibrated or re-trained using real-world biological samples in future studies. Here we simulate 
how the system would be used in a real-world setting, where biofluids are analyzed using the 
concentration profile of the K+, Na+ Ca2+ ions as biomarkers for electrolyte imbalance disorders.  
We re-categorized the mixture solution and trained the model to predict the mixture concentration 
profile instead of the concentration of individual ions (Supplementary Table 4). The confusion 
matrix of the result model is shown in Supplementary Fig. 24. We achieved an average accuracy 
of 84.7% for classification of ion concentration profiles with solutions containing multiple ion 
types. The model is less confident at identifying higher calcium and higher potassium. This could 
be due to the imbalanced training data in these classes, i.e., there are fewer observations with a 
higher calcium/potassium level that make the learning more difficult. This analysis demonstrates 
the possibility of coupling the multiplexed sensing array with machine learning models to achieve 
fast and high accuracy of electrolyte imbalance-related disease diagnoses. The performance of the 
model could be greatly improved with a larger, balanced training dataset. The model could also 
be readily re-trained towards specific diseases using training data collected with real biofluid 
from patients in a clinical trial.” 

“Random Forest algorithm was used to demonstrate enhanced functionality of accurate 
ion type classification, concentration prediction, and potential applications in electrolyte 
imbalance-related disease diagnostics” 

 



 

Figure R3: a I-V characteristics of graphene sensor array tested in water (yellow curves) and in 
human serum (blue curves). b confusion matrix for electrolyte imbalance classification in 
mixture solutions using integrated graphene sensing chip. 
 
Table R1. Solution concentration of mixture solutions and label used for electrolyte imbalance 
classification model  
 
Solution name  Ca ion 

concentration 
K ion 
concentration 

Na ion 
concentration  

Label  

Mix_Ca_1mM 1mM 5mM 30mM Baseline 

Mix_Ca_10mM 10mM 5mM 30mM Higher Calcium  

Mix_Ca_100mM 100mM 5mM 30mM Higher Calcium 

Mix_K_1mM 1Mm 1mM 30mM Baseline 

Mix_K_10mM 1mM 10mM 30mM Higher Potassium  

Mix_K_100mM 1mM 100mM 30mM Higher Potassium 

Mix_Na_100µM 1mM 5mM 100µM Lower Sodium  

Mix_Na_1mM 1mM 5mM 1mM Lower Sodium  

Mix_Na_10mM 1mM 5mM 10mM Lower Sodium  

Mix_Na_100mM 1mM 5mM 100mM Baseline 

 
  
6. For the PCA, how many features were applied for the classification? The authors should clarify 
these features in the manuscript. 

Our response:  



 We appreciate the reviewer’s question. The number of features (dimensions) equals to the 
number of working devices on the sensing chip. PCA was used to reduce the dimensionality 
from >200 to 3 principal components. We performed two separate PCA analysis with  

1) Dirac point as the feature value: The PCA matrix e has a dimension of NM where N is 
the pure solution set with N = {K+

100M, K+
1mM, K+

10M, K+
100mM, Na+

100M, Na+
1mM, Na+

10M, 
Na+

100mM, Ca2+
100M, Ca2+

1mM, Ca2+
10M, Ca2+

100mM}. The M features are the Dirac Point of 
individual devices on the sensing chip measured in each pure solution. The first and second 
principal component is plotted in Fig. R4a. The three types of ions are well separated with a total 
variance of 92.1%. This analysis demonstrates the multi-variative nature of the dataset produced 
by the highly integrated sensing chip with 3 ISMs.   

2) Sensitivity towards K+, Na+, Ca2+ solutions of each individual device as features: The 
sensitivity is extrapolated as the slope of change in Dirac Point with respect to different 
concentrations. The PCA matrix has a dimension of 3M. The PCA is plotted in Fig. R4b and the 
first two principal components cover 100% of the total variance in the dataset. This result 
demonstrated that the sensitivity profile of the integrated sensing chip is significantly different and 
can be used to fingerprint ion types. 

 We modified the main text and added a paragraph explaining the details of PCA in the 
methods as: “We first performed Principal Component Analysis (PCA) using the Dirac Point of 
individual devices as features to visualize the multivariate data under a lower dimensional space 
while preserving the largest variance. The first two principal components (PC) accounted for 92.1% 
of the total variance in the data. The score of PC1 and PC2 is plotted in Fig. 3e and the details of 
the PCA analysis are explained in Supplementary Note 7. The clusters of K+, Na+ and Ca2+ ions 
are well-separated, indicating the sensor’s ability to distinguish between different types of ions in 
electrolyte. Further separation can be achieved by using the ion sensitivities of individual sensors 
as the feature set as shown in Supplementary Fig. 20.” 

 

Figure R4: Principal component analysis (PCA) of integrated ion sensing chip towards 
electrolytes comprised of different of ions using a Dirac Points and b extrapolated sensitivity as 
feature vectors. 

7. For the artificial urine (AU) and artificial eccrine perspiration (AEP), the authors may make 
their recipes opposite in Table S2 since there should be urea and uric acid in AU. 

Our response:  



 We thank the reviewer for this comment. The artificial urine (AU) and artificial eccrine 
perspiration (AEP) solution are commercialized product by Biochemazone™. The AU solution 
does contain Urea and Uric acid. Comparing to AEP, AU has more complex anion environment 
and more metabolites. Our sensor has demonstrated stable operation in both solution environments 
as shown in Supplementary Fig 13. Following reviewer’s comment, we updated Supplementary 
Table S2 as shown below to better highlight the differences between AU and AEP. 

Table R2. Molecule contents of Biochemazone™ artificial urine (AU) and artificial eccrine 
perspiration (AEP). 

  artificial 
eccrine 
perspiration 
(AEP) 

artificial urine 
(AU) 

Cation   K+ Y Y 

Na+ Y Y 

Ca2+ Y Y 

Mg2+ Y Y 

NH4
+  Y Y 

Anion Cl- Y Y 

PO4
3-  Y 

C6H5O7
3- 

(Citrate ion)  
 Y 

SO4
2-  Y Y 

SO3
2-  Y 

HPO4
2-   Y 

H2PO4
-  Y 

Metabolites  Uric Acid  Y Y 

Urea  Y Y 

Creatinine  Y 

Lactic Acid  Y  

Acetic Acid  Y  

Histidine Y  

 

8. As shown in Figure 2d-f, the sensitivity changed with the opposite test sequence (from high 
concentration to low concentration). Could it be explained with the cross contamination? At the 
same time, there are only three data points (red one) in Figure 2d-f. What about the relative 
conductance changes at other two concentrations? Lastly, only ΔG/G was applied for the 



investigation of reversibility in the manuscript, the Dirac point change from high concentration to 
low concentration should also be plotted. 

Our response:  

 We thank the reviewer for this comment. Cross contamination is possible especially for 
measurements going from high concentration to low concentration, but the effect has been 
mitigated by the rinsing step while switching solutions. Fig. R5a shows the reversibility plot of Na 
ISM measured to 10 M and similar reversibility was obtained. Five orders of magnitude change 
in ion concentration were measured in order to identify the detection range of the sensor system.  
Since only three points are enough to extrapolate the backward slope, most of the reversibility tests 
only measured up to 100M in the manuscript.  

The reversibility of our ion sensors originated from its sensing mechanism, where the 
Nernstian potential drop between membrane and electrolyte is determined by the ion concentration 
in the electrolyte. Decrease in ion concentration will induce a righthand shift of the I-V 
characteristics and the Dirac Point will change from low to high. We have also performed the full 
I-V measurements for the Na ISM functionalized sensor reversibility as an example and the results 
are shown in Fig. R5b. Right-hand shift and increase in Dirac point values were. The sensor’s 
reversibility is quantified by calculating the percentage difference between slopes fitted with 
forward measurements and that fitted with backward measurements. The insert show extracted 
Dirac point reversibility of individual devices on the sensing chip and highlights that the 
reversibility can be improved significantly by averaging over a large number of devices.  

This paper is mainly aimed at showing the advantage of using average performance to 
decrease the impact of the device variation caused by immature material synthesis and fabrication 
process, rather than to report a sensor with perfect selectivity and reversibility. In our system the 
sensors don’t need to be perfect in order to provide adequate functionality. 

We have included the following figures as Supplementary Fig. 14 and mentioned in the 
main text as “The average difference of fitted slopes is below 10% while that of the worst case of 
an individual device could be over 80%. Similar reversibility results were observed using the shift 
in Dirac Point instead of channel conductance (Supplementary Fig. 14)” 



 

Figure R5: The average change in a channel conductance and b Dirac Point for Na+ ISM 
functionalized sensing chip showing excellent reversibility over several magnitude change in Na+ 
concentration 

9. The authors claimed that only one reference solution was need for the determination of ions in 
a unknow sample with the profile-matching calibration. Is a reference solution always essential for 
the calibration in each test, or not needed any more after the calibration of sensor with the reference? 
In addition, what was the concentration of reference for the calibration in Figure 2i? Should the 
concentration of reference always fall in the linear range? 

Our response:  

 We thank the reviewer for this comment. Calibration is essential for almost all sensing 
systems in order to have precision and reproducibilityR10. Sensor accuracy can deteriorate through 
wear, aging and environmental influences and should therefore be recalibrated at regular intervals. 
Similarly, our ion sensor arrays will also need to be re-calibrated due to unavoidable drift over 
time due to graphene’s property change in ambient air. Shown in Fig. R6 is the extracted Dirac 
Point of a K+ ISM functionalized array for tests within the same day and tests within a week. 
Negligible drift was observed for the two tests in the same day. Noticeable drift was present for 
the measurement after a week, where a re-calibration was necessary for accurate measurement. A 
general rule-of-thumb for accurate results is to re-calibrate if measurements are not done in the 
same day. Traditionally such re-calibration would require multiple calibration solutions. With the 
profile-matching technique proposed in the manuscript however, only one calibration solution is 
needed as long as the sensitivity is stable over long period of time. We have showed the stability 
of sensitivity for up to 6 months as shown in Fig. R2b.   

Concentration of reference solution indeed need to be within the linear range because we 
are utilizing the quasi-linearity in graphene’s I-V curves. The linear range for our ion sensors is 
wide enough (5 order of magnitude) for most applications. The reference concentration used in the 
manuscript is 1mM. The following modification is made to the main text and supplementary 
information:  



“Calibration is essential for almost all sensing systems since sensors can deteriorate 
through wear, aging and environmental influences35. Similarly, electrolyte-gated graphene field-
effect transistors (EGFETs) will also need to be re-calibrated due to the unavoidably drift over 
time resulting from graphene’s property change in ambient air (Supplementary Fig. 15). Typical 
methods for calibrating graphene EGFETs perform full I-V characterization of the devices under 
multiple dilutions spanning the entire range of interest 36-38. The profile-matching method however 
requires only a single measurement of I-V characteristics using one calibration solution of known 
concentration. The calibration solution should be within the linear range of the device (10µM to 
100mM) in order to utilize the quasi-linearity in graphene’s I-V curves. Since the sensitivity drift 
of the ion sensors is negligible over six months as shown in Supplementary Fig. 11, the sensors 
can be easily calibrated with the profile-matching approach to achieve same sensing accuracy 
over multiple testing sessions.” 

 

Figure R6: Dirac Point drift of K ISM functionalized sensors over a week showing the necessity 
of fast and easily calibration schemes. 

 

10. In Figure 4f, what was the concentration of each ion for the test? Was the mixture solution 
used for the test? 

Our response:  

We appreciate the reviewer’s question. Fig. 4f (Fig. 4g after revision) is plotting the impact 
of sensor redundancy in model accuracy. The pure solution set was used for this analysis. The ion 
concentrations for the pure solution set are listed below as Table R3 and in the Supplementary 
Information as Table S3. Mixture solution was not used in this analysis. In order to predict the ion 
concentration in a mixture solution, we need to run all three ion models. Therefore, it is not 
reasonable to separately compare each ion model’s accuracy with mixture solutions. We added the 
following sentence in the main text to clarify: “Fig. 4g is the accuracy of different tasks sampling 
from 1, 1/2, 1/4 and 1/8 of the total devices using the pure solution set”.  
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Table R3. Solution concentration for sensor testing 

Solution name  Ca ion 
concentration 

K ion 
concentration 

Na ion 
concentration  

Pure_Ca_1µm 1µm 0 0 

Pure_Ca_10µm 10µm 0 0 

Pure_Ca_100µm 100µm 0 0 

Pure_Ca_1mm 1mm 0 0 

Pure_K_10um 0 10um 0 

Pure_K_100um 0 100um 0 

Pure_K_1mm 0 1mm 0 

Pure_K_10mm 0 10mm 0 

Pure_K_100mm 0 100mm 0 

Pure_Na_1µm 0 0 1µm 

Pure_Na_10µm 0 0 10µm 

Pure_Na_100um 0 0 100µm 

Pure_Na_1mm 0 0 1mm 

Pure_Na_10mm 0 0 10mm 

Pure_Na_100mm 0 0 100mm 

 

11. For the classification of different ion concentrations in the mixture solution, the confusion 
matrix is still limited to each ion, which contains five classes. Could the authors provide the 
confusion matrix with fifteen classes? (Three types of ions and five different concentrations). 

Our response:  

 We appreciate the reviewer’s comment. For the mixture solution, three independent models 
were trained to give predictions for K+, Na+ and Ca2+ ion concentration therefore three separate 
confusion matrices were reported. If we train one model to predict the concentration of all three 
ions in a mixture, the confusion matrix dimension would be 555, assuming five different 
concentrations for each ion. The total labeled class will be 125. This approach is possible if we 
have larger, much diverse training data, but it is not feasible for our current data size.  

 

 

12. The errors in units should be corrected. “mm” should be “mM” in page 15, 18 and 30. 

Our response:  

We appreciate the reviewer’s feedback. We have carefully checked the manuscript and 
corrected the units.   



 

 
 

 

----------------------------------------- 
Reply to reviewer 2’s remarks: 
----------------------------------------- 
 
Overall remarks:  

Xue et al. reported a field-effect sensing platform based on more than 200 integrated graphene ion 
sensors. The authors claimed that they overcome the limitation of relatively large device-to-device 
variation in 2D materials, and achieved high-performance ion sensing by adopting new calibration 
methods as well as Random Forest algorithm. The manuscript is well-written and the technique 
seems to be reasonable. Given the research tackles one of the most important limitations/problems 
in biochemical sensors based on non-uniform 2D materials, in my opinion this paper should be 
accepted with minor revision. 

Our response:  

 We thank the reviewer for the positive and encouraging comments. 

 

1. In Supplementary Fig. 1f, the performance of the device is quite different. I suggest giving 
statistical data on resistance or carrier mobility for the same batch of devices for comparison. There 
are only few characterizations on the surface morphology and quality of the graphene devices. The 
authors should show optical images of individual devices (as-fabricated and functionalized). 
Our response:  

 We appreciate the reviewer’s comment and suggestions. Here we provide more statistical 
data on the device variation of as-fabricated sensors. Fig. R7a insert shows the histogram of the 
extracted Dirac Point of an as-fabricated sensor array. The average Dirac Point for this batch lies 
at a 97.1 mV with a standard deviation of 40.7 mV. We also performed IDS-VDS characterization of 
the devices after fabrication as shown in Fig. R7b. The sensor chip is measured in water with VGS 
= 0 and VDS sweep from 0 to 0.5 V. Shown in Fig. R7d is the extracted channel resistance at 
different VGS bias. The range of channel resistance varies with different biasing condition. Fig. 
R7c is a color map of channel resistance for the whole array with VDS =250 mV and VGS = 0 V.  
We have added the following figures in supplementary information as Supplementary Fig. 3 and 
mentioned them in the main text as: 

“The drain current with respect to gate voltage (will be referred as “I-V”) characteristics 
as well as the drain current with respect to drain voltage characteristics of the sensor chip before 
functionalization are shown in Supplementary Fig. 3a-b…Large device-to-device variations in 
terms of current level, channel resistance, Dirac Point, (the location of the minimum conduction 
point), and shape of the I-V characteristics are present for the >200 working devices on one 
sensing chip (Supplementary Fig. 3)” 

The as-fabricated devices have different performance, which could be from material 
intrinsic variations or fabrication induced variability. It would be problematic for a traditional 



sensor, where only one or two devices are present, if the batch-to-batch variation is a magnitude 
different. However, with our highly integrated sensing system, we are averaging out the device-
to-device variation and only look at the universal trend of the 200 devices on one chip by applying 
statistical analysis and machine learning algorithms. In this case the device-to-device variation in 
the I-V curves are not an issue for our sensing system.  

In addition, we also added the Fig. R8, optical image of as-fabricated graphene sensor array 
and functionalized sensor array, as Supplementary Fig. 1d-e and mentioned them in the main text 
as: 

“Each sensing unit consists of a 30×30 m graphene channel with two Ti (5 nm)/Au (150 
nm) source/drain electrodes. The optical image of as-fabricated graphene sensor arrays is shown 
in Supplementary Fig. 1d.” 

“Details of printing recipe can be found in Methods and the optical image of the sensor 
array after ISM printing is shown in Supplementary Fig. 1e.” 

  

 

 

Figure R7: Variation in as-fabricated graphene sensor array. a I-V characteristics of an as-
fabricated graphene sensing chip. The sensing chip was tested in water with an Ag/AgCl reference 



electrode and biased at VDS = 250 mV. Insert shows the histogram of Dirac points extracted from 
a with an average Dirac Point of a 97.1 mV ± 40.7 mV; b IDS-VDS characteristics of an as-fabricated 
graphene sensing chip. Sensor chip is tested in water with zero gate bias; c color map of channel 
resistance for the whole array with VDS = 250 mV and VGS = 0 V; d graphene channel resistance 
distribution under various gating conditions. 

    

Figure R8: Optical image of a an as-fabricated graphene sensor array. White rectangular box in 
the inserts is the outline of a graphene channel. b integrated sensor array with Ca, Na and K ISM 
printed on the separate area.  

 
 
2. Material jet printers are used to deposit various chemicals onto the sensing area with precise 
lateral control. To what extend the printers can control the uniformity of the functionalization? 
Our response:  

 We would like to thank the reviewer for this comment. Here we would like to discuss a 
few parameters that have an impact on membrane quality or device performance: 

1. Thickness: The membrane thickness can be controlled by a couple printing parameters 
including but not limited to nozzle size, pressure, and dispense pulse time.  Here we 
characterize the uniformity of thickness by printing the PVC membrane into a 2.5-by-0.5 
mm strip with the 50 µm nozzle at various pressure. Five measurements were taken with a 
digital caliper across the membrane strip and the averaged thickness is plotted in Fig. R9. 
With the other printing parameters unchanged, higher pressure results in a thicker 
membrane. The standard deviation of the membrane thickness is 0.01 mm, which is close 
to the precision of the caliper. In fact, membrane thickness has no direct effect on 
sensitivity or response time but has some effect on detection limit. Thinner membranes 
could increase the transmembrane ion flux and worsen the detection limit. We have 
demonstrated near perfect sensitivities for all three ions down to 10 µM. The lower bound 
concentration for K+, Na+, Ca2+ in physiological biofluid such as urine, sweat and blood 
are generally in the mM range. Therefore, our ISM membrane thickness and detection limit 
are more than sufficient as a bioelectronic for ion sensing and can even be used in some 
more delicate situations that have even lower ion concentrations such as intracellular ion 
sensing.   



2. Roughness: roughness also has minimal effect on sensitivity but might decrease the 
effective charge-carrier mobility in graphene. Supplementary Fig. 17 shows the AFM 
mappings of 5 µm ൈ 5 µm ISM/graphene areas. The average Rq for all three membranes is 
less than 4 nm and average Ra is less than 3 nm. We expect non-significant effect on device 
sensitivity, detection range and stability with such surface small roughness on the 
membrane. We also extracted the carrier mobility of graphene with the present of ISM and 
the average is above 500 cm2/Vꞏs, which is adequate for electrolyte-gated graphene 
transistors reported in literature.  

 
This paper is mainly aiming to provide insights on how to turn average performing, or even 

poor performing transistors with average material quality into a highly functional and powerful 
sensing platform. Device variation that might be caused by nonuniform functionalization 
deposition would be an issue for traditional sensors where only a couple devices were used. By 
averaging over >200 devices on the sensor array, we have shown significantly increased sensitivity, 
reversibility, as well as accuracy as shown in Fig. 2 a-f and Fig. 4g.  

To address reviewer’s comment, we have included Fig. R9 as Supplementary Fig. 18 and 
covered it in the Methods as “We adjusted the applied pressure to 20-30 psi and the stroke to 60% 
- 70% (percentage of voltage drop during the valve actuation) with the closed valve voltage of 100 
V. The membrane uniformity over an area of 2.5 mm × 0.5 mm is characterized and shown in 
Supplementary Fig. 18.  

 

 
Figure R9: Average membrane thickness over an area of 2.5 mm × 0.5 mm printed by the material 
jetting printer with different printing pressure. Five measurements were taken with a digital caliper 
across each membrane strip. 
 
3. Fig. 3c gives the ion-selective results for ion-selective membranes with different membrane 
functionalizations, where Ca ISM exhibits a non-selective sensing response towards Na+ ions. Did 
the authors test the ionic sensing response of the as-fabricated graphene devices? It is worth noting 
that previous works (Nano Lett. 2011, 11, 3597 and Adv. Mater. 2017, 29, 1603610) demonstrated 
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that intrinsic defects, as well as possible contaminations introduced during device fabrication and 
storage, might lead to uncontrolled sensitivity. 
Our response:  

We appreciate the reviewer’s comment. One of the advantages of the highly integrated 
sensing system is the ability to use average performance to decrease the impact of the device 
variation caused by immature material synthesis and fabrication process. In addition, we 
demonstrated that imperfections and variability in novel materials can be used to improve system 
level performance and calibration.  

We acknowledge that intrinsic defects in advanced 2D materials and contaminations 
introduced during fabrication will impact device performance in terms of electrochemical 
sensitivities, mobility, contact resistance, hysteresis and so onR11. It would be problematic for a 
traditional sensor, where only one or two devices are present, if the batch-to-batch variation is 
significantly different. However, with our highly integrated sensing system, we are averaging out 
the device-to-device variation and only look at the universal trend of the >200 devices on one chip 
by applying statistical analysis and machine learning algorithms. In this case the device-to-device 
variation in the I-V curves is not an issue for our sensing system.  

We measured the sensitivity of as-fabricated graphene sensors towards K+, Na+, Ca2+ as 
shown in Fig. R10a. Defects introduced from device fabrication could lead to uncontrolled 
sensitivity if not functionalized as indicated by I-V shift in Fig. R10b and the large error bar in Fig. 
R10a. But averaged data of bare graphene shows in-significant sensitivity towards ions. Ion 
sensitivity and selectivity of ISM functionalized graphene sensors are more stable and controlled 
due to protection of PVC membranes and the overpowering Nernstian effect. Averaging over many 
devices further eliminate uncontrolled sensitivity that could originated from defects and 
contaminations. To address this comment, we added the following discussion in the main text “The 
intrinsic sensitivity of bare graphene towards K+, Na+ and Ca2+ is also characterized. Although 
some of the individual sensors show sensitivity towards change in ion concentration due to defects 
on the graphene channels31, the averaged data shows negligible sensitivity (Supplementary Fig. 
10). This further demonstrated the effectiveness of averaging over many devices to eliminate 
uncontrolled sensitivity that could originated from defects and contaminations.” 

   



Figure R10: Reponses of as-fabricated graphene sensors. a average Dirac Points shift with respect 
to changes in K+, Na+ and Ca2+ ion concentration. Error bar is the standard deviation over multiple 
devices. b shift of I-V characteristics of an as-fabricated graphene sensor without functionalization 
towards changes in Na+ ion concentration.  

 
 
4. In my opinion, a reliable and stable operation of the graphene devices is the key. The authors 
should provide long-term stability measurements of as-fabricated and functionalized graphene 
sensors. 
Our response:  

 We appreciated the reviewer’s comment and agreed that stability is the key for robust and 
reliable measurement. Here we provide the long-term stability of the sensor chip for up to 6 months. 
Shown in Fig. R2b is the sensor sensitivity with respect to storage time of 3 hours, 1 week, and 6 
months. The error bar indicates the sensitivity standard deviation of all the working devices on the 
chip. The sensor chips are stored in a nitrogen box at ambient environment. The sensitivities of 
functionalized graphene sensors show negligible drift over half a year. We benchmarked the ion 
sensors’ long-term stability with counterparts in literature and industry as listed in Table R4. The 
long-term stability of our graphene ion sensor arrays is longer than most of the sensors reported in 
the literature and comparable to commercialized ISEs.  

In addition to long-term stability, we also demonstrated the reproducible sensitivity 
between multiple measurements as shown in Fig. R2a. Following reviewer’s comment, we added 
the updated Supplementary Table S1 and Fig. R2 as Supplementary Fig. 11 and added the 
discussion: “The averaged sensitivity of ISM-functionalized sensor array is stable and repeatable 
over multiple measurements (Supplementary Fig. 11a). The robustness of the ion sensor array is 
further showcased by the negligible drift in sensitivity over a 6-month period (Supplementary Fig. 
11b).”  

“Comparing to other reported ion sensors, which normally have less than five devices 
tested or reported, our ion sensing arrays exhibit excellent sensitivity, good reversibility, large 
detection range and long-term stability (Supplementary Table S1).” 
 



 

Figure R2: Sensitivity of K+, Na+ and Ca2+ ion sensors plotted a over multiple measurements; 
and b over long period of time (up to 6 months). All sensors show negligible drift and good 
stability.  
 

Table R4. Performance comparison of ion sensors-based ion-selective membranes 

Device 
type 

Materials Target Ion Detection 
Range 

Sensitivity 
[mV/decade] 

# of 
device 
tested 

Stability  

ISE PEDOT:PSS/Au Ca2+ 0.25 mM - 2 mM 32.70.981[S4] 6 90 mins of 
continuous 
measurements 

ISE PEDOT:PSS/Au Ca2+ 1 mM - 10 mM 18.31.7[S5] 8 2 days of 
continuous 
measurements  

ISE Ag/ZnO Ca2+ 100 nM - 10 mM 29.67[18] - N/A 

ISE Graphene/ 
Carbon glass 

K+  30 µM - 100 mM 59.2[S7] - 3 weeks  

ISE Au Na+, K+ 10 - 160 mM,  
1 - 32 mM 

64.2, 61.3 [S8] 8 5 weeks  

ISFET Graphene/Au K+ 10 nM - 1 mM 7.8[S9] 1 N/A 

Chem-
resistor 

Self-assembled 
graphene/Au 

Na+, K+, 
Ca+, H+ 

2 - 5 mM - [21] 1 N/A 

ISFET Graphene/Au K+, Na+, 
Cl-, etc. 

10 µM - 100 mM 49.2, 45.7, 
−43.0 ± 0.2[6] 

4 5 months 

Chem-
resistor 

MoS2/Au Na+,Pb2+, 
Hg2+, Cd2+ 

- - [22] 5 N/A 

ISE LabForce 
Commercial 
device 

K+ 1nM - 1M 56±3 1 12 months 

ISE LabForce 
Commercial 
device 

Na+ 4.4nM - 1M 55±3 1 12 months 

ISE LabForce 
Commercial 
device 

Ca2+ 500nM - 1M 26±2 2 12 months 

ISFET 
(this 
work) 

Graphene/Au K+, Na+, 
Ca2+  

10 µM - 100 mM -54.7  2.90, -
56.8  5.87, -
30.1  1.90  

>200 
 

6 months 

 



 
 
 
----------------------------------------- 
Reply to reviewer 3’s remarks: 
----------------------------------------- 
 
Overall Remarks: 

In this manuscript, the authors present a novel approach to address current challenges in 2D 
material-based sensing devices such as material quality variability, device uniformity, high 
performance and enhanced functionality in ion classification application. 
The proposed approach reduces the requirements on material quality and device uniformity. To 
this end, the authors fabricated sensor arrays consisting of 16×16 graphene devices to provide more 
than 200 working sensing units for each chip, and configured them to achieve multi-ion sensors 
by modifying their surface with three different ion-selective membranes (ISMs). Moreover, 
machine learning algorithms such as the Random Forest algorithm, were applied to demonstrate 
the enhanced functionality of accurate ion type classification and concentration prediction. 
The developed platform demonstrates near ideal sensitivity, excellent reversibility, and a large 
detection range for each type of sensor despite the large non-uniformity of the individual devices. 
The sensing platform could be readily adopted for other analytes of interest as well as with other 
advanced 2D materials that also suffer from the same issues (e.g., device-to-device variations) to 
realize accurate and reliable multiplexed sensing in biomedical applications. 

The manuscript is interesting and generally fulfils the scope of Nature Communications. However, 
in its present form it can not be recommended for publication. To provide an adequate contribution 
to the journal, the authors have to take into account the following points in a major revision.  

Our response:  

 We would like to thank the reviewer for the positive comments and all the constructive 
suggestions/comments. We have  

1) perform additional experiments on device variations, model benchmark, and real bio-fluid 
measurement to showcase the robustness and effectiveness of the sensing system 

2) provide detailed discussion on device filtering methods and principal component analysis  
3) revised the manuscript to fix the typos and to further polish the discussion  

 
The detailed responses to technical questions the reviewer raised in detail below. 
 

 
1. On page 3, the full name of the abbreviations "PEDOT" and "PSS" should be given at their first 
appearance in the manuscript. 

Our response:  

 We thank the reviewer for the comment. We have modify the main text accordingly as 
“The high carrier mobility, which translates into high transconductance, makes graphene a more 
desirable transducer comparing to organic materials such as poly(3,4-ethylenedioxythiophene) 
polystyrene sulfonate (PEDOT:PSS).”  



 
2. On pages 3 and 4, the two paragraphs, "Here we demonstrate a novel ……. " and "In this paper, 
we fabricate arrays of ………" are not well organized thus hard to understand. There are a lot of 
redundant elements, such as the sentence "Instead of focusing on the improvement of intrinsic 
material quality, fabrication uniformity and surface functionalization, we demonstrate ways to 
overcome the large degree of variability of advanced materials by developing a high-density 
graphene-based sensor array, thus significantly reducing the requirements on material quality and 
device uniformity. ". The section following "thus" is repeated as the section following "Instead of", 
etc. 
Our response:  

 We thank the reviewer for the constructive feedback. We have re-organized and shorten 
the paragraphs mentioned. The revised text follows the structure of 1) overcome variations with 
high-density graphene-based sensor array; 2) utilize variations with statistical methods and 
machine learning algorithms. 

Here is the revised paragraph following reviewer’s feedback:   

“Here we demonstrate a novel approach to overcome the challenges in 2D material-based 
sensing devices and achieve high performance and enhanced functionality. Rather than focusing 
on the improvement of intrinsic material quality, fabrication uniformity and surface 
functionalization, we develop a high-density graphene-based sensor array platform to overcome 
the large degree of variability of advanced materials. We fabricate arrays (16×16) of graphene 
devices to provide more than 200 working sensing units for each chip, and configurate them into 
multi-ion sensors by functionalizing their surface with three different ion-selective membranes 
(ISMs) …. We demonstrate near-ideal sensitivity, excellent reversibility, and large detection range 
for each type of sensor despite non-uniformity in individual devices. The variations and 
imperfections in material synthesis and device fabrication can be leveraged by statistical analysis 
and machine learning algorithms. A profile-matching calibration method utilizing sensor non-
uniformity and redundancy is introduced to eliminate the need for multiple calibration solutions, 
which is especially useful for sensing applications targeting portability and field use. A random 
forest algorithm is used to quantify analyte concentrations in the presence of multi-ions. The 
abundance (N>200) and multiplexity of sensors and sensor types are shown beneficial for 
improving model accuracy. We demonstrate that system-level co-design of sensing arrays and 
algorithms significantly improves sensor performance thus enabling rapid prototyping and in-
depth data analysis in spite of the limitations present in graphene and other advanced 2D 
materials.” 

 
 
3. The authors present the Raman characterization before and after the sensor fabrication. Did the 
authors also perform the Raman mapping characterization for the graphene film after sensor 
fabrication procedure? This could be helpful to show the quality of whole graphene film after 
fabrication. 
Our response:  

We appreciate the reviewer’s comment. Raman mapping characterization shown in 
Supplementary Fig. 2b is 2D/G ratio mapping of a 10 mm ൈ10 mm graphene film before 
fabrication. This result shows that the graphene film is single layer. After fabrication, the graphene 



film is isolated into 256 mesas which form the channels for the transistor array. The same mapping 
characterization is not applicable anymore since graphene is no longer a complete 10 mm ൈ10 mm 
sheet. Moreover, process induced damage on graphene’s quality is typically better reflected onto 
the D bandR12,13. Therefore, we perform a D/G Raman mapping of 20 µm ൈ 20 µm on a graphene 
channel after all the fabrication procedure. The mapping is shown in Fig. R11a. Variations of 
ID_band/IG_band value is noticeable, but the average ratio is below 0.15, indicating minimal defects 
on the graphene channels. We also sampled 20 channels on the as-fabricated sensor array and 
performed point Raman characterization to compare the D band intensity variation across the 
whole array (Fig. R11b). This result shows that the fabrication introduced minimal damage on the 
graphene film.  

However, it is still unavoidable to have non-uniformity and localized defects or tears as 
indicated by the outliers in Fig. R11a and the I-V characteristics of as-fabricated graphene sensors 
in Supplementary Fig. 3a. In the main text we have shown that by having a large sensor array, we 
are able to not rely on the quality of the graphene while still have high performance sensor system. 
We added the figures as Supplementary Fig. 2 and the following changes was made to the Methods: 
“The Raman Spectrum after fabrication is shown in Supplementary Fig. 2c and the D/G band 
mapping of a 20µm-by-20µm graphene channel is shown in Supplementary Fig. 2d.  Insert in 
Supplementary Fig. 2c shows the distribution of ID_band/IG_band ratio sampled from 20 devices 
across the array. The low D band intensity indicates low density defects and minimal damage to 
the graphene channel. 

 

Figure R11: a ID_band/IG_band ratio map of a 20 µm ൈ 20 µm graphene channel after fabrication.  
The average of the of ID_band/IG_band ratio is 0.129 with a standard deviation of 0.097. b Histogram 
showing the distribution of the of ID_band/IG_band ratio of graphene channels on the sensing array 
after fabrication. 20 devices were sampled on the same array.  

 
 
4. In the manuscript, the authors point out that there are 16*16=256 sensors in the array. However, 
only 215 working devices were functionalized and presented, as shown on page 7. The authors 
should explain why not the 256 sensors are utilized and ways to overcome this limitation. 
Our response:   



 We would like to thank the reviewer for this comment. The sensor yield is generally above 
80%. The non-functioning devices on the sensor array are filtered out before data analysis. The 
filtering conditions are the following: 

 Filter out possible shorted channel: IDS > 170 A 
 Filter out possible broken channel: IDS < 2 A 
 Filter out abnormal channel:  

o Dirac Point not within the VGS sweeping range (-0.6 V – 0.9 V) 
o 1< IDS,max / IDS.min <10 

As demonstrated in the main text, sensor redundancy can greatly enhance the overall 
accuracy (Fig. 4g and Supplementary Fig. 25). A higher yield means more working devices to 
analyze which could lead to better performance in complicated tasks such as ion concentration 
prediction. The yield can be improved by advances in material synthesis, transfer methods as well 
as optimizing fabrication process. The device filtering criteria is added to the supplementary 
information and mentioned in the main text as: “Non-functional pixels were filtered out using the 
criteria outlined in Supplementary Note 2 and the average yield for the sensing chip is >80%.” 

 
5. In the section "Highly integrated Array for Multiplexed Sensing": The authors should comments 
on the observation "Na membrane shows a more neutral functionalization". Which are the 
underlying mechanisms? 
Our response:  

 We think that one of the reasons that contribute to the more neutral functionalization effect 
of the Na ISM is the molecular structure of the Na ISM (Fig. R12b). It consists of a calix[4]arene 
structure that prefers to stay in the “cone” conformation where the ester groups are on the same 
sideR14. Moreover, calixarenes are believed to interact with graphene surface via hydrophobic 
interaction and 𝜋- 𝜋 stackingR15. This would lead to the polar functional group in most of the Na 
ISM molecules pointing away from the graphene surface, hence resulting in the more neutral 
functionalization observed. On the other hand, K and Ca ISMs (Fig. R12a and Fig. R12c have 
flatter and more flexible molecular structures that would result in a closer distance between the 
functional group and the graphene surface, resulting in a more significant doping effect. We have 
added the molecular structure of the ionophores as Supplementary Fig.19 and the discussion as 
Supplementary Note 6 and mentioned in the main text as: “The difference in the doping effect can 
be attributed to the molecular structure of different ionophores40,41 (Supplementary Note 6). " 

 

Figure R12: Molecular structure of the ionophore for a K ISM, b Na ISM and c Ca ISM 

Sodium Ionophore XValinomycin  Calcium ionophore II ETH 129

a b c



 
6. In Figure 3(d), the author show the PCA score plot of the chip sensitivity, but the introduction 
of the input features (multivariate) are not explained in the manuscript. This should be improved. 
Our response:  

We appreciate the reviewer’s question. The number of features (dimensions) equals to the number 
of working devices on the sensing chip. PCA was used to reduce the dimensionality from >200 to 
3 principal components. We performed two separate PCA analysis with  

1) Dirac point as the feature value: The PCA matrix e has a dimension of NM where N is 
the pure solution set with N = {K+

100M, K+
1mM, K+

10M, K+
100mM, Na+

100M, Na+
1mM, Na+

10M, 
Na+

100mM, Ca2+
100M, Ca2+

1mM, Ca2+
10M, Ca2+

100mM}. The M features are the Dirac Point of 
individual devices on the sensing chip measured in each pure solution. The first and second 
principal component is plotted in Fig. R4a. The three types of ions are well separated with a total 
variance of 92.1%. This analysis demonstrates the multi-variative nature of the dataset produced 
by the highly integrated sensing chip with 3 ISMs.   

2) Sensitivity towards K+, Na+, Ca2+ solutions of each individual device as features: The 
sensitivity is extrapolated as the slope of change in Dirac Point with respect to different 
concentrations. The PCA matrix has a dimension of 3M. The PCA is plotted in Fig. R4b and the 
first two principal components cover 100% of the total variance in the dataset. This result 
demonstrated that the sensitivity profile of the integrated sensing chip is significantly different and 
can be used to fingerprint ion types. 

 We modified the main text and added a paragraph explaining the details of PCA in the 
methods as: “We first performed Principal Component Analysis (PCA) using the Dirac Point of 
individual devices as features to visualize the multivariate data under a lower dimensional space 
while preserving the largest variance. The first two principal components (PC) accounted for 92.1% 
of the total variance in the data. The score of PC1 and PC2 is plotted in Fig. 3e and the details of 
the PCA analysis are explained in Supplementary Note 7. The clusters of K+, Na+ and Ca2+ ions 
are well-separated, indicating the sensor’s ability to distinguish between different types of ions in 
electrolyte. Further separation can be achieved by using the ion sensitivities of individual sensors 
as the feature set as shown in Supplementary Fig. 20.” 

 



Figure R4: Principal component analysis (PCA) of integrated ion sensing chip towards 
electrolytes comprised of different of ions using a Dirac Points and b extrapolated sensitivity as 
feature vectors. 

 
 
7. In the "Algorithm-enhanced sensing accuracy" section, the authors present the classification 
accuracy implemented by the random forest algorithm. Did the authors perform the classification 
with other classifier algorithms, such as LDA, SVM, KNN, etc? Which results can be expected? 
Our response:  

  We would like to thank the reviewer for this constructive comment. We trained the models 
with different classification algorithms for the algorithm performance comparison. Shown in Fig. 
R13a is the model accuracy with Latent Dirichlet Allocation (LAD), Support Vector Machine 
(SVM), K-Nearest Neighbors (KNN), Gaussian Process (GP) and Random Forest (RF). Note five 
iterations were performed on each model and the average accuracy is plotted and the standard 
deviation of the model accuracies is within 5%. The model implemented by the Random Forest 
algorithm has comparable or better accuracy compared to other classification algorithms. The 
training time is also comparable (<5s) for all algorithms except for GP, which is significantly 
slower (>170s) (Fig. R13b). This result shows that the multi-dimensional dataset gathered from 
the graphene-based sensor arrays are compatible for various machine learning algorithms. We also 
attempted to use deep learning methods such as neural networks. However, such methods require 
large amounts of data in order to outperform other algorithms.  

We added the following discussion to the main text to address this comment: “Due to its 
tree-based nature, random forest is also much more interpretable and less data-hungry than 
complex learning frameworks such as deep neural networks, making it more suitable for the 
dataset from our sensing chip. Other classification algorithms that are commonly used for disease 
prediction problems40, including Latent Dirichlet Allocation (LAD), Support Vector Machine 
(SVM), K-Nearest Neighbors (KNN) and Gaussian Process (GP), are also compatible with the 
dataset gathered by the multiplexed sensing chip as shown in Supplementary Fig. 23. The model 
implemented by the Random Forest algorithm has comparable or better performance compared 
to other classification algorithms.” 

 



Figure R13: Comparison of a average accuracy and b average training time for models trained 
with Latent Dirichlet Allocation (LAD), Support Vector Machine (SVM), K-Nearest Neighbors 
(KNN), Gaussian Process (GP) and Random Forest (RF).  

 
 
 
8. On page 15, the authors conclude the accuracies of 1/8 chip is larger than most of the reported 
sensors. The authors should give more detailed results of the other works and include the necessary 
citations. 
Our response:  

 We thank the reviewer for this comment. Very few papers in the literature have 
demonstrated multi-ion sensing in mixture solution. Fakih et al. reported an accuracy of ±0.01 log 
concentration units for Na+, K+ and NH4+ ions in mixture solution by correcting the sensor 
responses with Nikolskii–Eisenman formalismR16. Hanitra et al. attempted to simulate the behavior 
of polymeric solid-contact ion-selective electrodes in artificial sweat and achieved root-mean-
squared error of 1.37, 1.44, 1.78, 2 mV for Na+, K+, Li+, Pb2+ ionsR17. Despite the insufficient 
reference on multi-ion sensing accuracy in mixture, the testing solutions, the targeting ions, as well 
as the definition of accuracy for different works were not standardized. Therefore, it is difficult to 
have a direct comparison on accuracies across ion sensors reported in the literature. Fig. 4g 
demonstrate the importance of having redundant sensors in order to achieve high accuracy. We 
have edited main text to highlight the number of devices instead of accuracy of 1/8 chip as: 
“Compared to the accuracies stemming from 25 devices (1/8 chip), which already contains more 
devices than most works on ion sensors (Supplementary Table S1), we show that large scale 
integration, with over 200 devices, can improve the accuracies more than 20 percentage points.” 

 

 
9. The author performed all the measurement on artificial bio-fluids. Did the authors perform the 
measurement on real bio-fluids, and which are the main possible challenges related to this? Is the 
applied technology and its underlying methods sufficiently robust? 
Our response:  

 We performed the I-V characterization of the as-fabricated graphene sensors in human 
serum and the result is shown in Fig. R14.  The sensing chip is still fully functional in real bio-
fluids with a high yield of 239/256 devices. A significant shift of the I-V characteristics is observed 
from the baseline measured in water, due to the change in ionic strength and the presence of 
proteins and steroids. This result shows that the sensing chip is robust enough to function in real 
bio-fluid and to have the same reliable measurements and potentially high functionality as we have 
demonstrated in the main paper. We have added the Fig. R14 as Fig. 4f in the main text.  

In real-world bio samples, not only will the electrolyte profile be more complex, but there 
are also proteins such as antibodies, antigens, and hormones that may bring in more confounders 
in the analysis. Current level, cross-sensitivity and detection limit will be different due to the 
interference from the complex environment. For a traditional sensor where only one type of sensor 
is present and absolute selectivity is assumed, the sensor readings with real-world biological 
samples will not be accurate. Our multiplexed sensing system however analyzes the collective 
response of array instead of assuming absolute sensitivity or selectivity of one device.  It is possible 



for the sensor system to be calibrated and trained with sets of real biological samples. Models 
trained with such data can be very practical and targeted towards specific disease. However, the 
collection of real biological sample is outside of the scope if this paper. The goal of this paper is 
to demonstrate a novel approach to tackle the large variations and uncertainties in advanced 
materials-based sensors as well as bring insights the collection and analysis of biomedical data 

We have added the following discussion in the main text to address this comment: 

“In additional to complex electrolyte profiles, biological fluids also contain antibodies, 
antigens, and hormones that introduce more confounders into the analysis. The graphene-based 
sensors will behave differently in terms of current level, Dirac Point, cross-sensitivity, detection 
limits as so on (Fig. 4f). The multiplexed sensor array analyzes the collective response of an array 
instead of assuming absolute sensitivity or selectivity of one device. Models can be readily 
calibrated or re-trained using real-world biological samples in future studies.” 

 
Figure R14. I-V characteristics of graphene sensor array tested in water (yellow curves) and in 
human serum (blue curves). 
 
10. From the manuscript it seems that the authors conducted all measurements on a single chip. 
There is no suggestion in the manuscript that more than one chip was reproduced. How is the 
reproducibility? 
Our response:  

 We would like to thank the reviewer for the question. There were multiple chips fabricated 
and tested to make sure the results were reproducible.  Shown in Fig. R15 is the sensitivity of two 
sets of chips with different ISMs functionalization. The average and distribution of the ion 
sensitivities are very similar from chip to chip. We have added the following sentence in the main 
text to highlight this “All characterizations of ISM functionalized sensors were completed at least 



twice with different batches of sensor chips with results remaining consistent (Supplementary Fig. 
9)”   

 

Figure R15. Comparison of sensitivity distribution of two batches of sensing chips with different 
ISMs functionalization. Similar sensor behavior and sensitivity distribution is observed across 
different sensing chips.   
 

 
 
11. The author show several Isd-Vgs characteristics. Have the author conducted any 
characterization of the Isd-Vsd for all the sensors? How large is the resistance range of all the 
sensors after fabrication (before applying liquid-phase environment)? 
Our response:  

 We appreciate the reviewer’s comment. We have performed IDS-VDS characterization of the 
devices after fabrication and extracted the channel resistance as shown in Fig. R16. The sensor 
chip is measured in water with VGS = 0 V and VDS sweep from 0 to 0.5 V. Shown in Fig. R16b is 
the extracted channel resistance at different VGS bias. The range of channel resistance varies with 
different biasing condition. We have added the following figures in supplementary information as 
Supplementary Fig. 3b and Supplementary Fig. 3d and mentioned them in the main text as  

K1 K2 Na1 Na2 Ca1 Ca2
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

S
en

si
tiv

ity
 R

an
ge

 (
m

V
/d

ec
)

 25%~75%
 Range within 1.5IQR
 Median Line
 Mean



“The drain current with respect to gate voltage (will be referred as “I-V”) characteristics as well 
as the drain current with respect to drain voltage characteristics of the sensor chip before 
functionalization are shown in Supplementary Fig. 3a-b…Large device-to-device variations in 
terms of current level, channel resistance, Dirac Point, (the location of the minimum conduction 
point), and shape of the I-V characteristics are present for the >200 working devices on one 
sensing chip (Supplementary Fig. 3)” 

 

Figure R16. a IDS-VDS characteristics of an as-fabricated graphene sensing chip without 
functionalization. Sensor chip is tested in water with zero gate bias. d graphene channel 
resistance distribution under various gating condition 
 
 
The following minor typographic corrections need to be corrected: 
1. On page 5, in the sentence "The quality of the intrinsic graphene film is analyzed by Raman 
Spectroscopy as shown in Supplementary Fig. 1b-c” , obviously, Supplementary Fig. 1b is not the 
Raman characterization result, it should be "The quality of the intrinsic graphene film is analyzed 
by Raman Spectroscopy as shown in Supplementary Fig. 1c-d". 
2. Page 13 : "The score of PC1 and PC2 is plotted in Fig. 3e. “. It should be "Fig. 3d". 
3. Page 17 - typo, "The graphene film was single-layered with minimal defects as shown in the 
Raman spectrum in Supplementary Fig.1b-c", it should be "Fig.1c-d" 
4. Caption of Supplementary Figure 1 (c), "c Raman spectrum the intrinsic graphene sheet before 
any fabrication, here "of" is missing between "spectrum" and "the". 
Our response:  

 We would like to thank the reviewer and we revised the manuscript accordingly.      

 
 
----------------------------------------- 
Reply to reviewer 4’s remarks: 
----------------------------------------- 
 
It is a very well written paper but real time monitoring of real sample can't be demonstrated by 
using simply urine samples... Two questions: sensing in plasma fluids are in presence of a high 



(9g/L) of NaCl concentration and in presence of complex mixture of proteins. The high 
concentration of salt should decrease the sensitivity of FET sensing scheme, how do the authors 
aim to overcome this? Same question in a complex fluid with grams per millilitre of serum albumin, 
sugar, etc. 
Our response:  

Thank you for this comment. Indeed, the solution environment for real-world bio samples 
are more complex with high ion concentration and complex proteins including albumins, 
antibodies, antigens, hormone that may bring in more confounders in the analysis. Shown in Fig. 
R3a below is the as-fabricated sensor array measured in water and in human serum. A significant 
shift of the I-V characteristics is observed due to change in ionic strength and the presence of 
proteins and steroids. In addition, current level, cross-sensitivity and detection limit will also be 
different due to the interference from the complex environment. For a traditional sensor where 
only one type of sensor is present and absolute selectivity is assumed, the sensor readings with 
real-world biological samples might not be accurate. Our sensing system however introduced new 
approaches to tackle this problem, where a multiplexed sensor array was developed and combined 
with statistical/machine learning methods. We have demonstrated the robustness and effectiveness 
of the system in the main text as it is 1) reproducible and reliable by averaging out noise from 
device-to-device variation; 2) stable and functional in complexed environment and 3) generate 
multi-dimensional dataset that is compatible with machine learning algorithm to perform 
complicated tasks.  

In order to have a practical functionality in clinical studies, the sensor system would need 
to be calibrated and trained with large sets of real biological samples. Models trained with such 
data can be very practical and targeted towards specific disease. Such experiments are possible 
and will be included in future work, but the collection of real biological samples is outside of the 
scope of this paper, and it requires other advanced techniques to acquire precise ground truth labels. 
Instead, we trained another model to simulate how the system would be used in a real-world setting, 
where biofluids are analyzed using the concentration profile of the K+, Na+ Ca2+ ions as biomarkers 
for electrolyte imbalance disorders.  Here we re-categorized the mixture solution sets as shown in 
the Table R1 below and trained the model to predict the mixture concentration profile instead of 
the concentration of individual ions. We categorized the mixture solution sets following the 
relevant ion concentration in human plasma into four classes: Higher Calcium, Higher Potassium, 
Lower Sodium and Baseline. Diseases correlated to higher calcium (hypercalcemia) in blood 
include primary hyperparathyroidism, malignancy, thiazide diuretics, kidney diseases and so onR3. 
Possible causes for higher potassium (hyperkalemia) are chronic kidney diseases, diabetes, 
congestive heart failure, Addison’s diseases etcR1. Lower sodium (hyponatremia) in blood is more 
common in older people due to the higher likelihood in medication and hospitalization. 
Medications like diuretics, antidepressants, and carbamazepine (anti-seizure) are also risk factors 
for hyponatremiaR2.  

The confusion matrix of the result model is shown in Fig. R3b below. We achieved an 
average accuracy of 84.7% for classification of ion concentration profiles with solutions containing 
multiple ion types. The model is less confident at identifying higher calcium and higher potassium. 
It could be due to the imbalanced training data in such classes, i.e., there are fewer observations 
with a higher calcium/potassium level that make the learning harder. This analysis demonstrates 
the possibility of coupling the multiplexed sensing array with machine learning models to achieve 
fast and high accuracy of electrolyte imbalance-related disease diagnosis. The performance of the 



model could be greatly improved with a larger, balanced training dataset. The model could also be 
easily re-trained towards specific diseases with training data collected with real biofluid from 
patients in a clinical trial. 

To address the reviewer’s comment, we add the following discussion in the main text and 
SI:  

“In additional to complex electrolyte profiles, biological fluids also contain antibodies, 
antigens, and hormones that introduce more confounders into the analysis. The graphene-based 
sensors will behave differently in terms of current level, Dirac Point, cross-sensitivity, detection 
limits as so on (Fig. 4f). The multiplexed sensor array analyzes the collective response of an array 
instead of assuming absolute sensitivity or selectivity of one device. Models can be readily 
calibrated or re-trained using real-world biological samples in future studies. Here we simulate 
how the system would be used in a real-world setting, where biofluids are analyzed using the 
concentration profile of the K+, Na+ Ca2+ ions as biomarkers for electrolyte imbalance disorders.  
We re-categorized the mixture solution and trained the model to predict the mixture concentration 
profile instead of the concentration of individual ions (Supplementary Table 4). The confusion 
matrix of the result model is shown in Supplementary Fig. 24. We achieved an average accuracy 
of 84.7% for classification of ion concentration profiles with solutions containing multiple ion 
types. The model is less confident at identifying higher calcium and higher potassium. This could 
be due to the imbalanced training data in these classes, i.e., there are fewer observations with a 
higher calcium/potassium level that make the learning more difficult. This analysis demonstrates 
the possibility of coupling the multiplexed sensing array with machine learning models to achieve 
fast and high accuracy electrolyte imbalance-related disease diagnoses. The performance of the 
model could be greatly improved with a larger, balanced training dataset. The model could also 
be readily re-trained towards specific diseases using training data collected with real biofluid 
from patients in a clinical trial.” 

“Random Forest algorithm was used to demonstrate enhanced functionality of accurate 
ion type classification, concentration prediction, and potential applications in electrolyte 
imbalance-related disease diagnostics” 

 



Figure R3: a I-V characteristics of graphene sensor array tested in water (yellow curves) and in 
human serum (blue curves). b confusion matrix for electrolyte imbalance classification in 
mixture solutions using integrated graphene sensing chip. 
 
Table R1. Solution concentration of mixture solutions and label used for electrolyte imbalance 
classification model  
 
Solution name  Ca ion 

concentration 
K ion 
concentration 

Na ion 
concentration  

Label  

Mix_Ca_1mM 1mM 5mM 30mM Baseline 

Mix_Ca_10mM 10mM 5mM 30mM Higher Calcium  

Mix_Ca_100mM 100mM 5mM 30mM Higher Calcium 

Mix_K_1mM 1Mm 1mM 30mM Baseline 

Mix_K_10mM 1mM 10mM 30mM Higher Potassium  

Mix_K_100mM 1mM 100mM 30mM Higher Potassium 

Mix_Na_100µM 1mM 5mM 100µM Lower Sodium  

Mix_Na_1mM 1mM 5mM 1mM Lower Sodium  

Mix_Na_10mM 1mM 5mM 10mM Lower Sodium  

Mix_Na_100mM 1mM 5mM 100mM Baseline 
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REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors give reasonable explanations for the submitted questions. The revised paper is 

suitable to be published in Nature Communications. 

However, there are still some suggestions on how to improve the paper before publication. These 

suggestions are given based on the authors’ point-by-point responses. 

Question 3. Since there are more than 200 devices on the same sensor, the multi-channel 

measurement is important for the data collection. How many devices could be measured 

simultaneously in the testing process? How long does it take to finish the measurements on all the 

215 devices in a test? 

Our response: 

We thank the reviewer for the question. The custom PCB measurement system is able to measure 

all sensors almost simultaneously. This is achieved by the 16-channel multiplexer on the board to 

switch quickly between different rows of the sensor array. For a standard VGS sweep from -0.6V to 

0.9V with 20mV/s sweeping speed, it takes 1.5 mins to finish the VGS sweep for one sensor cell. 

With the current multiplexer, it roughly takes 3 minutes to finish the I-V measurement of all 256 

devices. We have added the following sentence in the main text to reflect reviewer’s comment: 

“The change in the source-drain current IDS for each row and column combination of the sensor 

array are automatically measured as a function of gate-source and drain-source voltages, VGS and 

VDS. For a standard VGS sweep (from -0.6V to 0.9V with 20mV/s sweeping speed), it takes 

roughly 3 minutes to finish measuring 

New comment/suggestion: 

The authors’ explanation is reasonable, but more details about the measurements could be given 

in the supplementary information. According to Figure 1c and Figure S1e, the switch between 

different sensor units is based on the 16-channel multiplexer for row/column selection on the 16 × 

16 sensor array. The high-throughput measurement is impressive since it only takes 3 minutes to 

finish all the measurements (1.5 minutes for a single cell). Herein, it’s essential to clarify how to 

realize the measurements on different columns/rows simultaneously. 

Question 5. In Algorithm-enhanced sensing accuracy section, the authors should clarify if the 

multi-ion 

solutions used in the second set of experiments were in water or AU/AEP. It would be better if the 

authors could provide the sensing performance and classification results with real-world biological 

samples to support the practical significance of the sensing platform. Or the authors should at 

least discuss on how the sensing performance and data analysis could be affected due to the 

complexity of real-world biological samples. 

Our response: 

We appreciate the reviewer’s comment. The multi-ion solution used in the model training 

was in water. We have clarified in the main text as: “The second set, called “mixture solutions”, 

contains electrolyte solutions with multiple ion types in deionized water and will be discussed in 

the following section.”… 

… 

…“Random Forest algorithm was used to demonstrate enhanced functionality of accurate 

ion type classification, concentration prediction, and potential applications in electrolyte 

imbalance-related disease diagnostics”. 

New comment/suggestion: 

We appreciate the explanations from the authors. Firstly, the labels in Table R1 are not consistent 

with Table S4, and we think there may be some errors in Table S4. For example, the 

“Mix_K_1mM” should be “baseline”, but not “higher potassium” in Table S4 (The label of 

“Mix_K_1mM” is “baseline” in Table R1, which should be correct). These errors should be corrected 

in the final draft. 

Secondly, we notice that the results in Figure S24 show that the classification of higher calcium 



solution (which is the classification of solution with at least 10 mM of Ca2+ and solution with only 

1 mM of Ca2+ in the mixture) is less confident, which is consistent with the conclusion in Figure 

4e. We suggest that the authors could discuss common ground between these two in the 

manuscript. 

6. For the PCA, how many features were applied for the classification? The authors should clarify 

these features in the manuscript. 

Our response: 

We appreciate the reviewer’s question. The number of features (dimensions) equals to the number 

of working devices on the sensing chip. PCA was used to reduce the dimensionality from >200 to 3 

principal components. We performed two separate PCA analysis with 

1) Dirac point as the feature value: The PCA matrix e has a dimension of NM where N is the pure 

solution set with N = {K+100M, K+1mM, K+10M, K+100mM, Na+100M, Na+1mM, Na+10M, 

Na+100mM, Ca2+100M, Ca2+1mM, Ca2+10M, Ca2+100mM}. The M features are the Dirac Point 

of individual devices on the sensing chip measured in each pure solution. The first and second 

principal component is plotted in Fig. R4a. The three types of ions are well separated with a total 

variance of 92.1%. This analysis demonstrates the multi-variative nature of the dataset produced 

by the highly integrated sensing chip with 3 ISMs. 

2) Sensitivity towards K+, Na+, Ca2+ solutions of each individual device as features: The 

sensitivity is extrapolated as the slope of change in Dirac Point with respect to different 

concentrations. The PCA matrix has a dimension of 3M. The PCA is plotted in Fig. R4b and the 

first two principal components cover 100% of the total variance in the dataset. This result 

demonstrated that the sensitivity profile of the integrated sensing chip is significantly different and 

can be used to fingerprint ion types. 

We modified the main text and added a paragraph explaining the details of PCA in the methods as: 

“We first performed Principal Component Analysis (PCA) using the Dirac Point of individual devices 

as features to visualize the multivariate data under a lower dimensional space while preserving the 

largest variance. The first two principal components (PC) accounted for 92.1% of the total variance 

in the data. The score of PC1 and PC2 is plotted in Fig. 3e and the details of the PCA analysis are 

explained in Supplementary Note 7. The clusters of K+, Na+ and Ca2+ ions are well-separated, 

indicating the sensor’s ability to distinguish between different types of ions in electrolyte. Further 

separation can be achieved by using the ion sensitivities of individual sensors as the feature set as 

shown in Supplementary Fig. 20.” 

New comment/suggestion: 

We appreciate the explanations from the authors. According to the authors’ response and Figure 

R4a (Figure 3d), N = 12 in the dataset for model training, which is much smaller than M (the 

number of features). However, the number of samples is commonly larger than the number of 

features in PCA and other models such as LDA. We suggest the authors give more details about 

the realization of PCA in the supplementary information. To make N larger than M, there may be 

multiple replicates of each pure solution. The number of replicates of each solution could be 

included in the manuscript. (We have noticed the comparable results on two different chips, which 

are in the answer to review 3’s question 10). 

Reviewer #2 (Remarks to the Author): 

I am pleased to see that the authors have improved the current version of the manuscript 

substantially through additional experiments and discussions. The findings are more robust than in 

the original version. I feel that the point-to-point replies to reviewers' comments are satisfactory. I 

recommend it to be published in Nature Communications. 

Reviewer #3 (Remarks to the Author): 



In this resubmitted manuscript, Xue et al. have considered the majority of the major concerns 

raised in my previous report and those of the other reviewers. Therefore, I am pleased to state 

that the manuscript is ready for publication, once the following minor comment has been 

considered: 

. On page 14, the sentence "The score of PC1 and PC2 is plotted in Fig. 3e. and ...". In the main 

text, there is no "Fig. 3e", it should be "Fig. 3d". 

Reviewer #4 (Remarks to the Author): 

The authors have addressed my comments in a satisfactory manner.



----------------------------------------- 
Reply to reviewer 1’s remarks: 
-----------------------------------------

The authors give reasonable explanations for the submitted questions. The revised paper is suitable 
to be published in Nature Communications. 

However, there are still some suggestions on how to improve the paper before publication. These 
suggestions are given based on the authors’ point-by-point responses. 

Our response:

We thank the reviewer for the acknowledgment on the novelty and impact of our work. We 
also thank the reviewer for the constructive comments, which have significantly helped to increase 
the clarity of our manuscript. 

Question 3. Since there are more than 200 devices on the same sensor, the multi-channel 
measurement is important for the data collection. How many devices could be measured 
simultaneously in the testing process? How long does it take to finish the measurements on all the 
215 devices in a test? 

New comment/suggestion: 

The authors’ explanation is reasonable, but more details about the measurements could be given 
in the supplementary information. According to Figure 1c and Figure S1e, the switch between 
different sensor units is based on the 16-channel multiplexer for row/column selection on the 16 × 
16 sensor array. The high-throughput measurement is impressive since it only takes 3 minutes to 
finish all the measurements (1.5 minutes for a single cell). Herein, it’s essential to clarify how to 
realize the measurements on different columns/rows simultaneously. 

Our response: We thank the reviewer for recognizing the data acquisition power of our 
platform. The custom PCB measurement system leverages very high-speed electronics to rapidly 
scan the sensor array such that measurements are virtually simultaneous relative to the time scales 
at which these chemical sensors respond. The scan rate for the sensor array is ~10 frame per second 
whereas the sensor response is 5-7 seconds as shown in Supplementary Figure 12. This is achieved 
using low-noise and high-speed transimpedance amplifiers to accurately amplify the small sensor 
currents.  High-speed 16-channel analog multiplexers with low on-resistance (2.5 ohms) are then 
used to very quickly switch between different rows and columns of the sensor array.  We have 
included a more detailed description of our measurement system in the Methods section as shown 
below: 



The measurement system makes use of an Atmel SAM3X microcontroller with an 84 MHz 
clock, which enables very high-speed data acquisition. Dual 12-bit digital-to-analog converters 
(DACs) are employed to vary the VDS and VGS voltages applied throughout the sensor array 
appropriately depending on the measurement configuration (e.g. I-V sweep, transient IDS).  The 
microcontroller is paired with a custom printed circuit board (PCB) designed to precisely 
match the input and output ports of the microcontroller in order to achieve an overall compact 
form factor and portable measurement system (about the size of a cell phone). The custom 
PCB includes 16 transimpedance amplifiers (one for each column of the sensor array) that 
make use of 2-stages along with low-noise resistors and operational amplifiers to achieve an 
overall gain of 10,000 V/I so that μA (and sub-μA) sensor currents can be amplified to the 
appropriate voltage range and measured with very high accuracy using a 12-bit analog-to-
digital converter (ADC).   

Row and column selection is performed using 16x1 bidirectional analog multiplexers with low 
on-resistance (2.5 Ω) to minimize distortion of the applied VDS voltages and sensor current 
readouts.  One analog multiplexer is used to apply VDS along a single row of devices. The 
resulting column currents are all continuously amplified using the 16 transimpedance 
amplifiers.  The second analog multiplexer is used to rapidly switch which transimpedance 
amplifier output is applied to the ADC for readout.  After all column currents have been read 
out, VDS can be applied to the subsequent row and the process is repeated.  In this way, we are 
able to rapidly scan the entire array of devices.  Low dropout regulators are employed so that 
the entire measurement system can be conveniently powered using a single universal serial bus 
(USB) power supply.  All measurement instructions and results are transmitted via USB as 
well. 

Question 5. In Algorithm-enhanced sensing accuracy section, the authors should clarify if the 
multi-ion 

solutions used in the second set of experiments were in water or AU/AEP. It would be better if the 
authors could provide the sensing performance and classification results with real-world biological 
samples to support the practical significance of the sensing platform. Or the authors should at least 
discuss on how the sensing performance and data analysis could be affected due to the complexity 
of real-world biological samples. 

New comment/suggestion: 

We appreciate the explanations from the authors. Firstly, the labels in Table R1 are not consistent 
with Table S4, and we think there may be some errors in Table S4. For example, the “Mix_K_1mM” 
should be “baseline”, but not “higher potassium” in Table S4 (The label of “Mix_K_1mM” is 
“baseline” in Table R1, which should be correct). These errors should be corrected in the final 
draft. 

Secondly, we notice that the results in Figure S24 show that the classification of higher calcium 
solution (which is the classification of solution with at least 10 mM of Ca2+ and solution with only 
1 mM of Ca2+ in the mixture) is less confident, which is consistent with the conclusion in Figure 
4e. We suggest that the authors could discuss common ground between these two in the manuscript. 



Our response:

We thank the reviewer for this constructive comment and suggestion. We have corrected the 
labels in Supplementary Table 4 as shown below and added the following discussion in the main 
text to address the models’ confidence level of higher Ca2+ solutions: 

The lower confidence on concentrated Ca2+ solutions is also observed in the Ca2+ ion 
concentration model shown in Fig. 4e. A possible reason could be the intrinsic lower Nernstian 
slope for bivalent ion and the choice of features. Quantifying higher calcium concentrations 
could be further improved by carefully redesigning the functionalization matrix and optimizing 
feature selection. 

Supplementary Table 4. Mixture solution set ion concentration for sensor testing 

Solution name Ca2+ ion 
concentration 

K+ ion 
concentration

Na+ ion 
concentration 

Label  

Mix_Ca_100µM 100µM 5mM 30mM - 
Mix_Ca_1mM 1mM 5mM 30mM Baseline 
Mix_Ca_10mM 10mM 5mM 30mM Higher Calcium  
Mix_Ca_100mM 100mM 5mM 30mM Higher Calcium 
Mix_K_100µM 1mM 100µM 30mM -  
Mix_K_1mM 1Mm 1mM 30mM Baseline 
Mix_K_10mM 1mM 10mM 30mM Higher Potassium 
Mix_K_100mM 1mM 100mM 30mM Higher Potassium 
Mix_Na_100µM 1mM 5mM 100µM Lower Sodium 
Mix_Na_1mM 1mM 5mM 1mM Lower Sodium 
Mix_Na_10mM 1mM 5mM 10mM Lower Sodium 
Mix_Na_100mM 1mM 5mM 100mM Baseline

6. For the PCA, how many features were applied for the classification? The authors should clarify 
these features in the manuscript. 

New comment/suggestion: 

We appreciate the explanations from the authors. According to the authors’ response and Figure 
R4a (Figure 3d), N = 12 in the dataset for model training, which is much smaller than M (the 
number of features). However, the number of samples is commonly larger than the number of 
features in PCA and other models such as LDA. We suggest the authors give more details about 
the realization of PCA in the supplementary information. To make N larger than M, there may be 
multiple replicates of each pure solution. The number of replicates of each solution could be 
included in the manuscript. (We have noticed the comparable results on two different chips, which 
are in the answer to review 3’s question 10). 



Our response:

We thank the reviewer for the comment. Contemporary dataset for PCA does have N>M, 
where N is the number of observations and M is the dimensionality (features). It is also possible 
to perform PCA with consistent result with high dimensionality dataset, where N<<M. The steps 
we took to perform PCA is listed below: 

1. Centered the columns of the PCA matrix X (with a dimension of N*M, N<<M) by 
subtracting column mean  

2. Performed Singular value decomposition (SVD) on matrix:  X = USVT

a. U: left singular matrix  
b. S: diagonal matrix of singular values corresponding to the estimated principal 

component  
c. V: right singular vector corresponding to the estimated principal directions  

3. Calculate the score of the first two principal components by C = SV
4. Plot the first two principal components  

We have included this information in Supplementary Information Note. 7. There are ways to 
increase N/M ratio, such as including multiple measurements (as the reviewer suggested), random 
sampling the devices and so on. Here we would like to showcase and visualize the variance of the 
raw data generated by one highly integrated sensing chip thus chose to perform the PCA as 
explained above.  

----------------------------------------- 
Reply to reviewer 2’s remarks: 
-----------------------------------------

I am pleased to see that the authors have improved the current version of the manuscript 
substantially through additional experiments and discussions. The findings are more robust than 
in the original version. I feel that the point-to-point replies to reviewers' comments are satisfactory. 
I recommend it to be published in Nature Communications. 

Our response:

We thank the reviewer for all the constructive feedback and suggestions, which have 
significantly helped to increase the clarity of our manuscript. We appreciate the reviewer’s 
supportive consideration for its publication on Nature Communications. 

----------------------------------------- 
Reply to reviewer 3’s remarks: 
-----------------------------------------

In this resubmitted manuscript, Xue et al. have considered the majority of the major concerns 
raised in my previous report and those of the other reviewers. Therefore, I am pleased to state that 
the manuscript is ready for publication, once the following minor comment has been considered: 

. On page 14, the sentence "The score of PC1 and PC2 is plotted in Fig. 3e. and ...". In the main 
text, there is no "Fig. 3e", it should be "Fig. 3d". 



Our response:

We thank the reviewer for positive comment on the resubmitted manuscript and support for its 
publication on Nature Communications. We also appreciate the reviewer for the constructive 
comments and suggestions throughout the revision process. We have edited the manuscript 
accordingly.

----------------------------------------- 
Reply to reviewer 4’s remarks: 
-----------------------------------------

The authors have addressed my comments in a satisfactory manner. 

Our response:

We thank the reviewer for the acknowledgment on the quality of our work. We appreciate the 
reviewer’s supportive consideration for its publication on Nature Communications. 


