#### Title

### Alteration of RNA modification signature in human sperm correlated with sperm motility

#### Authors

Huanping Guo<sup>1#</sup>, Xipeng Shen<sup>1#</sup>, Hua Hu<sup>3#</sup>, Peng Zhou<sup>3</sup>, Tong He<sup>1,4</sup>, Lin Xia<sup>1</sup>, Dongmei Tan<sup>4</sup>, Xi Zhang<sup>1\*</sup> and Yunfang Zhang<sup>1,2\*</sup>

## **Supplementary Figures:**

**Supplementary Figure S1:** Abbreviations, names, transitions, and structural formula of different RNA modification marks that detected on sperm RNA samples.

Supplementary Figure S2: The levels of different RNA modification marks on the total RNAs of human sperm.

**Supplementary Figure S3:** Alteration of RNA modification abundance on human sperm RNA fragments >80 nt in AZS and TZS samples.

**Supplementary Figure S4:** Alteration of RNA modification abundance on human sperm 50-80 nt RNA fragments in AZS and TZS samples.

**Supplementary Figure S5:** Alteration of RNA modification abundance on human sperm 25-50 nt RNA fragments in AZS and TZS samples.

**Supplementary Figure S6:** Alteration of RNA modification abundance on human sperm 17-25 nt RNA fragments in AZS and TZS samples.

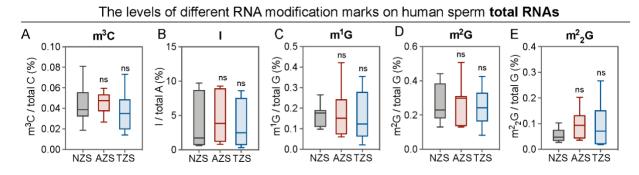
**Supplementary Figure S7:** Linear regression analyses between different RNA modification marks in all detected sperm RNA samples.

**Supplementary Figure S8:** Correlation analyses between human age and sperm motility scores for all participants.

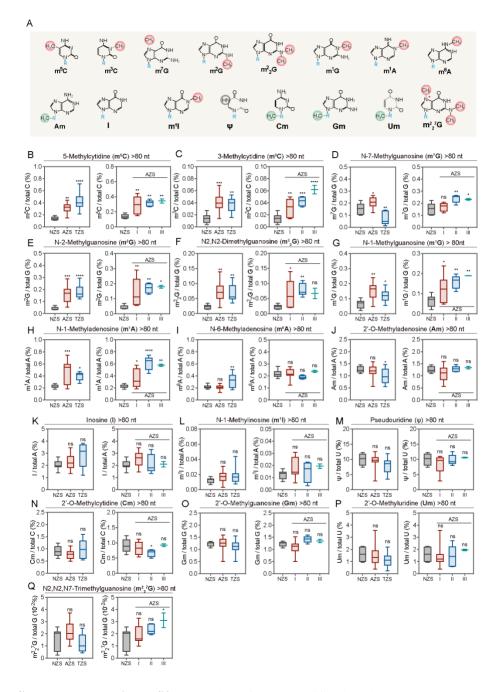
Supplementary Figure S9: Original figures of microscope picture and full uncropped gels.

## **Supplementary Tables:**

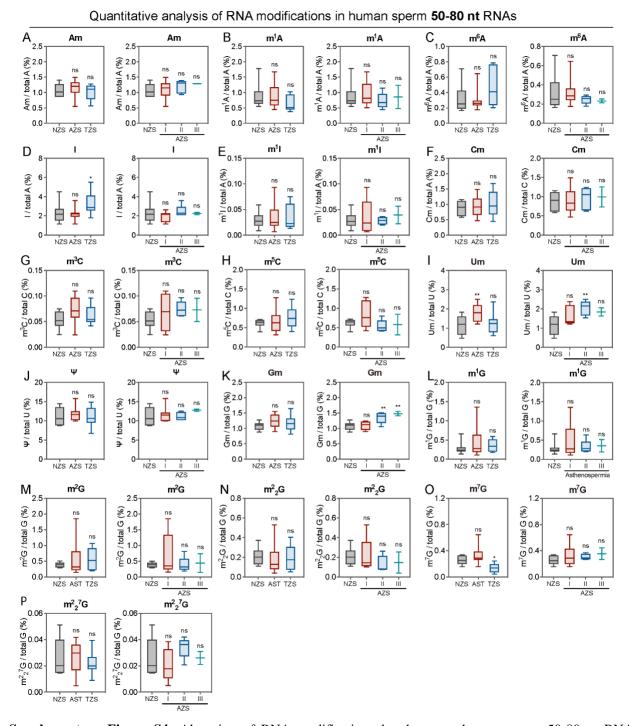
Supplementary Table SI: Primer sequences for RT-PCR.


Supplementary Table SII: The concentration of RNA modification standards.

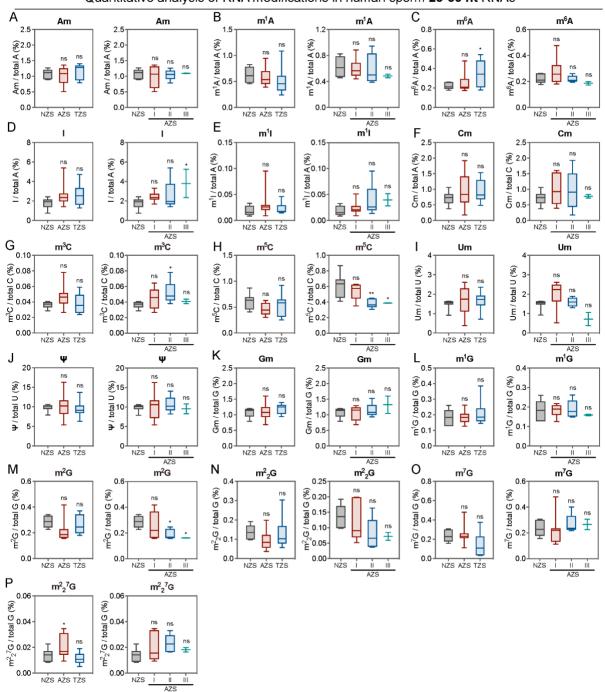
Supplementary Table SIII: Clinical parameter analyses of ejaculated human semen samples.


**Supplementary Table SIV:** The R<sup>2</sup> values of Pearson correlation analyses in Figure 4A-B.

| Abbreviati | on Name                | Transitions | Structural<br>Formula | Abbreviation                         | n Name                   | Transitions | Structural<br>Formula                                                                       |
|------------|------------------------|-------------|-----------------------|--------------------------------------|--------------------------|-------------|---------------------------------------------------------------------------------------------|
| А          | Adenosine              | 268 >136    |                       | с                                    | Cytidine                 | 244 >112    | NH2<br>N-R                                                                                  |
| Am         | 2'-O-Methyladenosine   | 282 >136    | N NH2<br>N NN         | Cm                                   | 2'-O-Methylcytidine      | 258 >112    |                                                                                             |
| m¹A        | N1-Methyladenosine     | 282 >150    | N N CH                | m³C                                  | N3-Methylcytidine        | 258 > 126   | NH2 +2 CH3                                                                                  |
| m⁴A        | N6-Methyladenosine     | 282 >150    | HN CH                 | m⁵C                                  | 5-Methylcytidine         | 258 > 126   | HJ NH2<br>NH2<br>N<br>R                                                                     |
| Т          | Inosine                | 269 >137    | N NH                  | hm⁵C                                 | 5-Hydroxymethylcytidine  | 274 >142    | He NH2<br>HO-C N-R                                                                          |
| Im         | 2'-O-Methylinosine     | 283 >137    | N NH<br>HC-R          | ac⁴C                                 | N4-Acetylcytidine        | 286 >154    |                                                                                             |
| m¹l        | N1-Methylinosine       | 283 >151    | N CH,                 | G                                    | Guanosine                | 284 >152    | N NH<br>N NH2                                                                               |
| U          | Uridine                | 245 >113    | NH<br>N<br>R          | Gm                                   | 2'-O-Methylguanosine     | 298 >152    |                                                                                             |
| Um         | 2'-O-Methyluridine     | 259 >113    | O NH<br>NH<br>HOR     | m¹G                                  | N1-Methylguanosine       | 298 >166    | N N NH2                                                                                     |
| m³U        | 3-Methyluridine        | 259 >127    | N. CH                 | m²G                                  | N2-Methylguanosine       | 298 >166    | N N N N N N N N N N N N N N N N N N N                                                       |
| m⁵U        | 5-Methyluridine        | 259 >127    | HC NH<br>N O          | m <sup>7</sup> G                     | N7-Methylguanosine       | 298 >166    | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N |
| m⁵Um       | 5,2'-O-Dimethyluridine | 273 >127    | Ho-R                  | m² <sub>,</sub> G M                  | N2,N2-Dimethylguanosine  | 312 >180    | N NH CH                                                                                     |
| Ψ          | Pseudouridine          | 243 >153    | HN NH<br>R            | <b>m</b> ² <sup>7</sup> <b>G</b> N2, | N2,N7-Trimethylguanosine | 9 326 > 194 | CH, ONH<br>N, N, N, CH,<br>R, CH,<br>CH,                                                    |

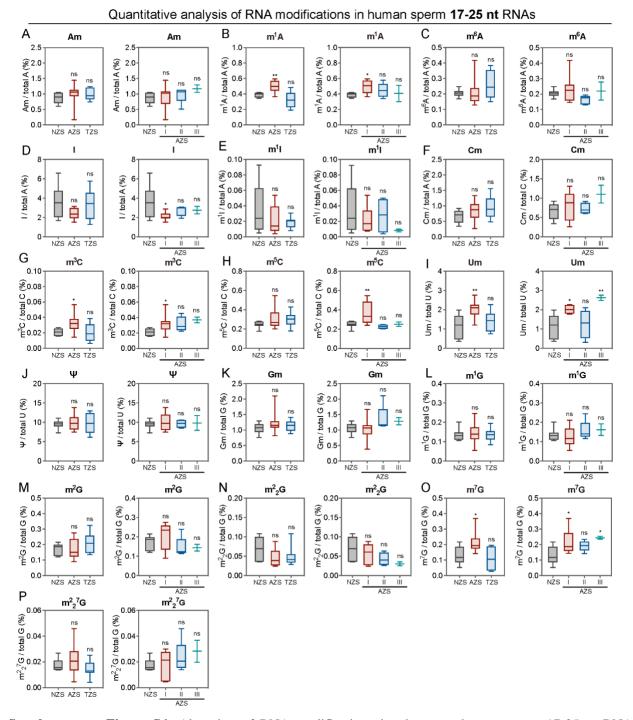

**Supplementary Figure S1:** Abbreviations, names, transitions, and structural formula of different RNA modification marks that detected on sperm RNA samples.



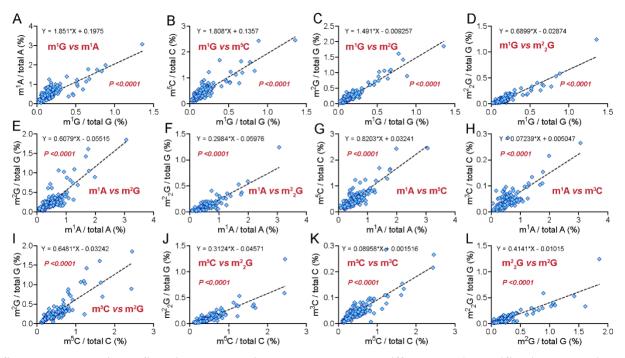

**Supplementary Figure S2:** The levels of different RNA modification marks on the total RNAs of human sperm. (A-E) comparation of RNA modification abundance on sperm total RNAs between NZS (n=6), AZS (n=6) and TZS (n=5) samples, which are shown as box plots for (A)  $m^{3}C$ , (B) I, (C)  $m^{1}G$ , (D)  $m^{2}G$  and (E)  $m^{2}_{2}G$ . NZS: Normozoozpermia; AZS: Asthenozoospermia; TZS: Teratozoospermia; ns. not significant (AZS vs NZS; TZS vs AZS). Statistical analyses were performed with one-way ANOVA and uncorrected Fisher's least square difference (LSD) for multiple comparisons of RNA modification levels by GraphPad Prism 8.



**Supplementary Figure S3:** Alteration of RNA modification abundance on human sperm RNA fragments >80 nt in AZS and TZS samples. (**A**) structural formula of different RNA modification marks. (**B-Q**) levels of different RNA modification marks on sperm RNA fragments >80 nt in NZS (n=7), AZS (n=15) and TZS (n=10) samples, and in AZS I (n=8), II (n=5), III (n=2) samples, which are shown as box plots for (**B**) m<sup>5</sup>C, (**C**) m<sup>3</sup>C, (**D**) m<sup>7</sup>G, (**E**) m<sup>2</sup>G, (**F**) m<sup>2</sup><sub>2</sub>G, (**G**) m<sup>1</sup>G, (**H**) m<sup>1</sup>A, (**I**) m<sup>6</sup>A, (**J**) Am, (**K**) I, (**L**) m<sup>1</sup>I, (**M**)  $\Psi$ , (**N**) Cm, (**O**) Gm, (**P**) Um, (**Q**) m<sup>2</sup><sub>2</sub><sup>7</sup>G. NZS: Normozoozpermia; AZS: Asthenozoospermia; TZS: Teratozoospermia; \*P<0.05 (AZS or AZS I, II, III vs NZS), \*\*\*P<0.001(AZS or AZS I, II, III vs NZS), \*\*\*P<0.001(AZS or AZS I, II, III vs NZS), \*\*\*P<0.001(AZS II, Vs NZS), \*\*\*P<0.001(AZS II, Vs NZS), support of the structure of the structu

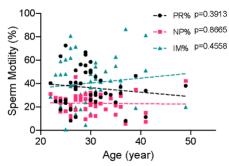



**Supplementary Figure S4:** Alteration of RNA modification abundance on human sperm 50-80 nt RNA fragments in AZS and TZS samples. The box plots show the comparations of RNA modification abundance between NZS (n=7), AZS (n=15) and TZS (n=10) for (A) Am, (B) m<sup>1</sup>A, (C) m<sup>6</sup>A, (D) I, (E) m<sup>1</sup>I, (F) Cm, (G) m<sup>3</sup>C, (H) m<sup>5</sup>C, (I) Um, (J)  $\Psi$ , (K) Gm, (I) m<sup>1</sup>G, (M) m<sup>2</sup>G, (N) m<sup>2</sup><sub>2</sub>G, (O) m<sup>7</sup>G and (P) m<sup>2</sup><sub>2</sub><sup>7</sup>G. NZS: Normozoozpermia; AZS: Asthenozoospermia; TZS: Teratozoospermia; \*P<0.05 (TZS vs NZS), \*\*P<0.01(AZS or AZS II, III vs NZS;), ns. not significant (AZS or AZS I, II, III vs NZS; TZS vs NZS). Statistical analyses were performed with one-way ANOVA and uncorrected Fisher's least square difference (LSD) for multiple comparisons of RNA modification levels by GraphPad Prism 8.

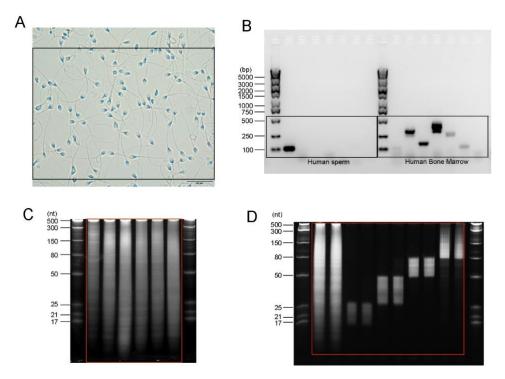



Quantitative analysis of RNA modifications in human sperm 25-50 nt RNAs

**Supplementary Figure S5:** Alteration of RNA modification abundance on human sperm 25-50 nt RNA fragments in AZS and TZS samples. The box plots show the comparations of RNA modification abundance between NZS (n=7), AZS (n=15) and TZS (n=10) for (A) Am, (B) m<sup>1</sup>A, (C) m<sup>6</sup>A, (D) I, (E) m<sup>1</sup>I, (F) Cm, (G) m<sup>3</sup>C, (H) m<sup>5</sup>C, (I) Um, (J)  $\Psi$ , (K) Gm, (I) m<sup>1</sup>G, (M) m<sup>2</sup>G, (N) m<sup>2</sup><sub>2</sub>G, (O) m<sup>7</sup>G and (P) m<sup>2</sup><sub>2</sub><sup>7</sup>G. NZS: Normozoozpermia; AZS: Asthenozoospermia; TZS: Teratozoospermia; \*P<0.05 (AZS or AZS II, III vs NZS; TZS vs NZS), \*\*P<0.01(AZS II vs NZS), ns. not significant (AZS or AZS I, II, III vs NZS; TZS vs NZS). Statistical analyses were performed with one-way ANOVA and uncorrected Fisher's least square difference (LSD) for multiple comparisons of RNA modification levels by GraphPad Prism 8.




**Supplementary Figure S6:** Alteration of RNA modification abundance on human sperm 17-25 nt RNA fragments in AZS and TZS samples. The box plots show the comparations of RNA modification abundance between NZS (n=7), AZS (n=15) and TZS (n=10) for (**A**) Am, (**B**) m<sup>1</sup>A, (**C**) m<sup>6</sup>A, (**D**) I, (**E**) m<sup>1</sup>I, (**F**) Cm, (**G**) m<sup>3</sup>C, (**H**) m<sup>5</sup>C, (**I**) Um, (**J**)  $\Psi$ , (**K**) Gm, (**l**) m<sup>1</sup>G, (**M**) m<sup>2</sup>G, (**N**) m<sup>2</sup><sub>2</sub>G, (**O**) m<sup>7</sup>G and (**P**) m<sup>2</sup><sub>2</sub><sup>7</sup>G. NZS: Normozoozpermia; AZS: Asthenozoospermia; TZS: Teratozoospermia; \*P<0.05 (AZS or AZS I, III vs NZS), ns. not significant (AZS or AZS I, III vs NZS). Statistical analyses were performed with one-way ANOVA and uncorrected Fisher's least square difference (LSD) for multiple comparisons of RNA modification levels by GraphPad Prism 8.




Supplementary Figure S7: Linear regression analyses between different RNA modification marks in all detected sperm RNA samples. (A)  $m^1G vs m^1A$ , (B)  $m^1G vs m^5C$ , (C)  $m^1G vs m^2G$ , (D)  $m^1G vs m^2_2G$ , (E  $m^1A vs m^2G$ , (F)  $m^1A vs m^2_2G$ , (G)  $m^1A vs m^5C$ , (H)  $m^1A vs m^3C$ , (I)  $m^5C vs m^2G$ , (J)  $m^5C vs m^2_2G$ , (K)  $m^5C vs m^3C$  and (L)  $m^2_2G vs m^2G$ . The linear regression analyses were performed by GraphPad Prism 8, n=145. The equations and *p* values were shown on each panel.





**Supplementary Figure S8: Correlation analyses between human age and sperm motility scores for all participants.** IM%: percentage of immotile sperm; PR%: percentage of progressive motility sperm; NP%: percentage of non-progressive sperm. The linear regression analysis was performed by GraphPad Prism 8, n=49.



**Supplementary Figure S9:** Original figures of microscope picture and full uncropped gels. (A) Full microscopic picture of Figure 1A; (B) Full uncropped agarose gel of Figure 1B; (C) Full uncropped gel of Figure 1C. (D) Full uncropped gel of Figure 2A.

# Supplementary Tables

| Target<br>gene | Oligononucleotide sequences (5'- 3')                       |                                                             |
|----------------|------------------------------------------------------------|-------------------------------------------------------------|
| PRM2           | F:                                                         | R: GCATGTTCTCTTCCTGGTTCTGCA                                 |
| CDH1           | GGATCCACAGGCGGCAGCATCGCT;<br>F: CACCTTCCATGACAGACCC;       | R: AACGCATTGCCACATACAC                                      |
| CDH2           | F: CTGAAGTGACTCGTAACGACG;                                  | R: CATGTCAGCCAGCTTCTTGAAG                                   |
| CD4            | F1: TTCAACTGTAAAGGCGAGTG;                                  | R1: CGGATTGACTGCCAACTCT                                     |
| C-KIT          | F2:<br>GTGAACCTGGTGGTGATGAGAGC;<br>F: TACAACGATGTGGGCAAGA; | R2:<br>GGCTACATGTCTTCTGAAACCGGTG<br>R: TACGAAACCAATCAGCAAAG |

Supplementary Table SI. Primer sequences for RT-PCR.

|              | Original |      |     |     | Diluted tim | es   |       |       |                                            | Original | Diluted times |     |     |     |       |       |        |  |
|--------------|----------|------|-----|-----|-------------|------|-------|-------|--------------------------------------------|----------|---------------|-----|-----|-----|-------|-------|--------|--|
| Abbreviation | (ng/ml)  | 2X   | 5X  | 25X | 50X         | 200X | 1000X | 2000X | Abbreviation                               | (ng/ml)  | 2X            | 5X  | 25X | 50X | 200X  | 1000X | 2000X  |  |
| A            | 250      | 125  | 50  | 10  | 5           | 1.25 | 0.25  | 0.125 | с                                          | 2500     | 1250          | 500 | 100 | 50  | 12.5  | 2.5   | 1.25   |  |
| m'A          | 50       | 25   | 10  | 2   | 1           | 0.25 | 0.05  | 0.025 | Cm                                         | 500      | 250           | 100 | 20  | 10  | 2.5   | 0.5   | 0.25   |  |
| I.           | 2500     | 1250 | 500 | 100 | 50          | 12.5 | 2.5   | 1.25  | ac4C                                       | 100      | 50            | 20  | 4   | 2   | 0.5   | 0.1   | 0.05   |  |
| Im           | 50       | 25   | 10  | 2   | 1           | 0.25 | 0.05  | 0.025 | m <sup>6</sup> C                           | 200      | 100           | 40  | 8   | 4   | 1     | 0.2   | 0.1    |  |
| m⁰A          | 20       | 10   | 4   | 0.8 | 0.4         | 0.1  | 0.02  | 0.01  | m²C                                        | 25       | 12.5          | 5   | 1   | 0.5 | 0.125 | 0.025 | 0.0125 |  |
| Am           | 10       | 5    | 2   | 0.4 | 0.2         | 0.05 | 0.01  | 0.005 | hm⁵C                                       | 100      | 50            | 20  | 4   | 2   | 0.5   | 0.1   | 0.05   |  |
| m¹l          | 50       | 25   | 10  | 2   | 1           | 0.25 | 0.05  | 0.025 | G                                          | 1000     | 500           | 200 | 40  | 20  | 5     | 1     | 0.5    |  |
| U            | 2500     | 1250 | 500 | 100 | 50          | 12.5 | 2.5   | 1.25  | $m_2^2 G$                                  | 5        | 2.5           | 1   | 0.2 | 0.1 | 0.025 | 0.005 | 0.0025 |  |
| m³U          | 200      | 100  | 40  | 8   | 4           | 1    | 0.2   | 0.1   | m²G                                        | 100      | 50            | 20  | 4   | 2   | 0.5   | 0.1   | 0.05   |  |
| m⁵U          | 100      | 50   | 20  | 4   | 2           | 0.5  | 0.1   | 0.05  | Gm                                         | 50       | 25            | 10  | 2   | 1   | 0.25  | 0.05  | 0.025  |  |
| Um           | 1000     | 500  | 200 | 40  | 20          | 5    | 1     | 0.5   | m¹G                                        | 10       | 5             | 2   | 0.4 | 0.2 | 0.05  | 0.01  | 0.005  |  |
| m⁵Um         | 100      | 50   | 20  | 4   | 2           | 0.5  | 0.1   | 0.05  | m <sup>7</sup> G                           | 100      | 50            | 20  | 4   | 2   | 0.5   | 0.1   | 0.05   |  |
| Ψ            | 500      | 250  | 100 | 20  | 10          | 2.5  | 0.5   | 0.25  | m <sup>2</sup> <sub>2</sub> <sup>7</sup> G | 5        | 2.5           | 1   | 0.2 | 0.1 | 0.025 | 0.005 | 0.0025 |  |

**Supplementary Table SII.** The concentration of RNA modification standards.

Supplementary Table SIII. Clinical parameter analysis of human ejaculated semen samples.

| Characteristic                           | Normozoospermia<br>(SEM.) | Asthenozoospermia<br>(SEM.) | Teratozoospermia<br>(SEM.) | Reference range<br>(WHO 2010) |  |  |
|------------------------------------------|---------------------------|-----------------------------|----------------------------|-------------------------------|--|--|
| Age <b>(year)</b>                        | 29.6 (0.48)               | 29.7 (0.82)                 | 33.3 (1.18)                | —                             |  |  |
| BMI                                      | 24.5 (1.00)               | 24.2 (0.83)                 | 23.2 (0.95)                | —                             |  |  |
| Liquefaction time (min)                  | 30.3 (2.06)               | 33.1 (2.40)                 | 31.3 (2. 68)               | < 60                          |  |  |
| Semen volume (ml)                        | 3.6 (0.22)                | 4.3 (0.23)                  | 3.8 (0.24)                 | ≥ 1.5                         |  |  |
| Sperm concentration (106/ml              | ) 63.3 (7.88)             | 56.5 (3.90)                 | 59.4 (4.98)                | ≥ 15.0                        |  |  |
| Total sperm number (10 <sup>6</sup> /ml) | 211.6 (24.25)             | 248.1 (23.61)               | 222.5 (20.69)              | ≥ 39.0                        |  |  |
| Sperm motility (%)                       |                           |                             |                            |                               |  |  |
| Immotility (IM) %                        | 22.5 (2.68)               | 57.4 (2.36)****             | 32.4 (2.69)####            | < 60.0                        |  |  |
| Progressive motility (PR) %              | 52.9 (2.64)               | 22.7 (1.32)****             | 41.3 (1.91)####            | ≥ 32.0                        |  |  |
| Non-progressive (NP) %                   | 24.6 (1.66)               | 20.0 (1.30)                 | 26.2 (1.68)#               |                               |  |  |
| Total motility (PR+NP) %                 | 77.5 (2.68)               | 42.6 (2.36)****             | 67.6 (2.69)####            | ≥ 40.0                        |  |  |
| Sperm morphology (%)                     |                           |                             |                            |                               |  |  |
| Sperm with normal morphology             | 8.0 (0.68)                | 6.0 (0.27) ####             | 2.0 (0.15)****             | ≥ 4.0                         |  |  |
| Sperm abnormality                        | 92.0 (0.68)               | 94.0 (0.27) *****           | 98.0 (0.15)****            |                               |  |  |
| (Sperm Head)                             | 81.2 (1.39)               | 84.5 (0.98) *****           | 95.7 (0.29)****            | —                             |  |  |
| (Sperm Neck)                             | 48.7 (2.41)               | 52.7 (1.44)                 | 50.3 (1.20)                |                               |  |  |
| (Sperm Tail)                             | 4.7 (0.47)                | 4.6 (0.69)                  | 3.9 (1.17)                 | —                             |  |  |
| Cytoplasmic droplet (CD)                 | 10.7 (0.44)               | 10.9 (0.79)                 | 13.8 (0.98)*               |                               |  |  |
| Teratozoospermia index (TZI)             | 1.5 (0.02)                | 1.5 (0.01)                  | 1.5 (0.02)                 | —                             |  |  |
| Sperm deformity index (SDI)              | 1.4 (0.03)                | 1.4 (0.01)#                 | 1.5 (0.02)**               | _                             |  |  |

\* Compared with NZS # Comparation between AZS and TZS \*/# P<0.05; \*\*/## P<0.01; \*\*\*\*/### P<0.0001 <u>NormoZooSpermia</u> (NZS, n=13) <u>AsthenoZooSpermia</u> (AZS, n=21) <u>TeratoZooSpermia</u> (TZS, n=15)

All the participants do not perform the basic genetic analysis.

|                                            |           |           |             |           | The R     | <sup>2</sup> values o | of Pearsor  | n correlati | on analys | ses in Fig | ure 4A      |          |           |                          |          |           |  |  |
|--------------------------------------------|-----------|-----------|-------------|-----------|-----------|-----------------------|-------------|-------------|-----------|------------|-------------|----------|-----------|--------------------------|----------|-----------|--|--|
| Tune                                       |           | RNA fragm | ents > 80 n | t         | R         | NA fragme             | nts 50 - 80 | nt          | R         | NA fragme  | nts 25 - 50 | nt       | F         | RNA fragments 17 - 25 nt |          |           |  |  |
| Туре                                       | Age       | PR%       | NP%         | IM%       | Age       | PR%                   | NP%         | IM%         | Age       | PR%        | NP%         | IM%      | Age       | PR%                      | NP%      | IM%       |  |  |
| Α                                          | 0.01998   | 0.03611   | 0.1042      | 0.07314   | 0.00204   | 0.0004431             | 0.0167      | 0.0006849   | 0.0006243 | 0.1827     | 0.04913     | 0.1884   | 0.03491   | 0.01112                  | 0.0198   | 0.001556  |  |  |
| m <sup>1</sup> A                           | 0.002555  | 0.5975    | 0.1414      | 0.5814    | 0.002381  | 0.01042               | 0.03171     | 0.02131     | 0.002899  | 0.0001034  | 0.02231     | 0.003558 | 0.01045   | 0.003553                 | 0.07381  | 0.001884  |  |  |
| 1                                          | 0.01068   | 0.002186  | 0.0802      | 0.01873   | 0.0006441 | 0.0007707             | 0.0136      | 0.0002631   | 3.298E-06 | 0.1995     | 0.1115      | 0.2385   | 0.03222   | 0.008446                 | 0.01546  | 0.001138  |  |  |
| Am                                         | 0.007632  | 0.000227  | 0.0004904   | 0.0003894 | 0.01383   | 0.03522               | 0.0009677   | 0.02797     | 0.007101  | 9.399E-05  | 0.03877     | 0.003497 | 2.176E-05 | 0.04089                  | 0.008915 | 0.04062   |  |  |
| m¹l                                        | 0.007683  | 0.1053    | 0.02385     | 0.1059    | 0.003753  | 0.02705               | 3.611E-06   | 0.01902     | 0.01116   | 0.08587    | 0.129       | 0.1358   | 0.05784   | 0.008445                 | 0.05614  | 2.804E-05 |  |  |
| m <sup>6</sup> A                           | 0.0728    | 0.002841  | 0.0006032   | 0.00126   | 0.06262   | 0.01138               | 0.03842     | 0.02445     | 0.08777   | 0.00339    | 0.08002     | 0.002294 | 0.01207   | 0.01523                  | 0.05962  | 0.03514   |  |  |
| U                                          | 0.02236   | 0.0001739 | 0.1123      | 0.01588   | 0.03008   | 0.02164               | 0.0007119   | 0.01316     | 0.03324   | 0.005078   | 0.005938    | 0.001123 | 0.0318    | 0.01338                  | 0.1317   | 0.04943   |  |  |
| Um                                         | 9.482E-05 | 0.0003626 | 0.02687     | 0.001596  | 5.536E-06 | 0.07872               | 0.00874     | 0.0412      | 0.002045  | 0.0171     | 0.1428      | 0.05701  | 0.0119    | 0.04489                  | 0.006595 | 0.04238   |  |  |
| ψ                                          | 0.02644   | 0.0004204 | 0.08433     | 0.01367   | 0.03997   | 0.01087               | 7.784E-05   | 0.007235    | 0.04944   | 0.01625    | 0.00143     | 0.01438  | 0.02592   | 0.0284                   | 0.1555   | 0.07706   |  |  |
| с                                          | 0.004093  | 0.00139   | 0.00742     | 0.003702  | 0.008214  | 0.0112                | 0.02046     | 0.01889     | 0.002193  | 0.001143   | 0.1159      | 0.02093  | 0.05522   | 0.04926                  | 0.0154   | 0.02043   |  |  |
| m⁵C                                        | 0.04766   | 0.5738    | 0.07853     | 0.607     | 0.02668   | 0.0342                | 0.04521     | 0.05169     | 0.0004464 | 0.0346     | 0.06136     | 0.0578   | 0.01042   | 0.01367                  | 0.07758  | 5.16E-06  |  |  |
| Cm                                         | 0.000798  | 0.06091   | 0.001929    | 0.0493    | 0.006386  | 0.009705              | 0.007049    | 0.01231     | 0.008744  | 0.01684    | 0.07721     | 0.000186 | 0.06642   | 0.05398                  | 0.002005 | 0.03196   |  |  |
| m³C                                        | 0.03153   | 0.6252    | 0.3194      | 0.6909    | 0.002453  | 6.085E-05             | 0.005683    | 0.0003495   | 0.006781  | 6.479E-05  | 0.06152     | 0.006106 | 0.0439    | 0.05876                  | 0.008026 | 0.02959   |  |  |
| G                                          | 0.02884   | 0.3588    | 0.1973      | 0.4352    | 0.0284    | 0.004872              | 8.406E-05   | 0.003897    | 0.002762  | 0.01946    | 0.01306     | 0.02421  | 0.02331   | 0.0173                   | 0.05215  | 0.001004  |  |  |
| Gm                                         | 0.02974   | 0.02606   | 0.08943     | 0.05645   | 0.03003   | 0.0445                | 0.01377     | 0.04737     | 0.02787   | 0.04667    | 0.009731    | 0.04634  | 0.04866   | 0.0417                   | 0.03751  | 0.01077   |  |  |
| m <sup>7</sup> G                           | 0.05085   | 0.4212    | 0.5134      | 0.6377    | 0.01734   | 0.09164               | 0.05092     | 0.1103      | 0.054     | 0.004463   | 0.02127     | 0.01145  | 0.01604   | 0.1262                   | 0.1552   | 0.1881    |  |  |
| m²G                                        | 0.0673    | 0.5875    | 0.04657     | 0.6689    | 0.0512    | 0.007338              | 0.00788     | 0.01032     | 0.0002093 | 0.1734     | 0.07258     | 0.1947   | 0.0002394 | 0.0002885                | 0.05933  | 0.00952   |  |  |
| m²₂G                                       | 0.07101   | 0.4905    | 0.03477     | 0.4666    | 0.01127   | 0.008358              | 0.01715     | 0.01462     | 0.006444  | 0.04542    | 0.02443     | 0.05384  | 0.008723  | 0.006131                 | 0.1374   | 0.03726   |  |  |
| m¹G                                        | 0.01218   | 0.5896    | 0.1785      | 0.6853    | 0.02972   | 0.000983              | 0.001047    | 0.0002529   | 0.001117  | 0.02769    | 0.02437     | 0.03712  | 0.00183   | 0.0007539                | 0.02807  | 0.001175  |  |  |
| m <sup>2</sup> <sub>2</sub> <sup>7</sup> G | 0.03308   | 0.3253    | 0.1661      | 0.3891    | 1.279E-05 | 0.01447               | 0.03739     | 0.02784     | 0.005703  | 0.1023     | 0.002625    | 0.06276  | 0.01174   | 0.0631                   | 0.05214  | 0.08381   |  |  |

**Supplementary Table SIV:** The R<sup>2</sup> values of Pearson correlation analyses in Figure 4A-B.

|      | The R <sup>2</sup> values of Pearson correlation analyses in Figure 4B |                  |         |        |         |        |        |        |        |         |        |         |        |        |                  |         |         |         |                               |
|------|------------------------------------------------------------------------|------------------|---------|--------|---------|--------|--------|--------|--------|---------|--------|---------|--------|--------|------------------|---------|---------|---------|-------------------------------|
| Туре | A                                                                      | m <sup>1</sup> A | I       | Am     | m⁵A     | U      | Um     | ψ      | С      | m⁵C     | Cm     | m³C     | G      | Gm     | m <sup>7</sup> G | m²G     | m²₂G    | m¹G     | m <sup>2</sup> <sup>7</sup> G |
| Age  | 0.02161                                                                | 0.1275           | 0.1098  | 0.393  | 0.08512 | 0.2864 | 0.4113 | 0.2382 | 0.2864 | 0.08523 | 0.4086 | 0.08623 | 0.3633 | 0.3771 | 0.03773          | 0.01648 | 0.03359 | 0.08379 | 0.01716                       |
| PR%  | 0.0274                                                                 | 0.2039           | 0.2892  | 0.6179 | 0.6712  | 0.7035 | 0.3447 | 0.7203 | 0.2612 | 0.02365 | 0.5483 | 0.08162 | 0.4638 | 0.4177 | 0.1942           | 0.0001  | 0.01458 | 0.01907 | 0.4057                        |
| NP%  | 0.3135                                                                 | 0.1089           | 0.00949 | 0.2362 | 0.4908  | 0.3753 | 0.1112 | 0.4055 | 0.3146 | 0.1465  | 0.262  | 0.02428 | 0.5345 | 0.2457 | 0.5792           | 0.01375 | 0.2718  | 0.04702 | 0.03585                       |
| IM%  | 0.1078                                                                 | 0.2337           | 0.1667  | 0.6615 | 0.8352  | 0.81   | 0.3568 | 0.8399 | 0.3747 | 0.06611 | 0.6151 | 0.03299 | 0.6566 | 0.4923 | 0.3885           | 0.00227 | 0.07715 | 0.03493 | 0.346                         |