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Supplementary Text

S1 Control analyses

Several control analyses were run insuring that the definition of DFSs was ro-
bust in healthy and stroke patients. First, the computation of DFSs is computa-
tionally intensive because it requires to track the dynamics of each pairwise link
for each subject and for each time point. To reduce the computational complex-
ity, we applied a spatial dimensionality reduction to scale down the number of
cortical parcels: from 324 to 90 Regions of Interest (ROIs)1 (see SI paragraph
S2, SI-Figs.3-4, SI-Table 4).

Second, we insured that the topology of DFSs was a reliable representation
of the empirical data from which it was derived, i.e., the dynamic FC in each
sliding window (SI-Fig.5). We measured the Pearson’s correlation coefficient
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between each dynamic FC window and the associated DFS. The distribution
of the correlation coefficients was evaluated both for all time windows, and for
the time windows associated to each DFS, separately in healthy controls and
stroke patients at 2 weeks, 3 months, and 12 months. Stroke patients were
further divided between those with severe and mild static FC impairment (see
SI paragraph S8). All correlation values were positive ranging between 0.1 and
0.75, with a mean around 0.4. The similarity was equivalent for all groups except
more severe stroke patients at 2 weeks.

Third, to achieve a comparable number of healthy controls and patients, we
used the data from session 1 and 2 in healthy controls as if they came from dif-
ferent subjects. This choice may lead to an underestimation of the inter-subject
variability within the control group. We replicated the analysis by averaging
across sessions the dynamic parameters (frequency of occurrence (f ), aver-
age lifespan (`), and transition probability) derived in each subject. The results
were the same (SI paragraph S3, SI-Tables 5-6).

Forth, we checked if the selected sliding window duration (60 sec) influ-
enced the results. The results were similar for time windows between 40 and
100 seconds (SI paragraph S4 and SI-Fig.6-7). We concluded that the proce-
dure for DFS identification provides a relatively accurate and computationally
efficient description of the underlying dynamic FC. This procedure is robust in
both healthy and stroke patients. Some alterations of FC dynamics are apparent
sub-acutely in the most severe stroke patients based on static FC.

Fifth, we analyzed the impact of frame censoring on our results, by recom-
puting dynamic measures (fraction times, dwell times and transition probabil-
ities) with different censoring thresholds (see SI paragraph S5 and SI-Fig.8).
Qualitatively, we did not observe any important differences when varying the
threshold.

Sixth, we applied a control analysis, to verify that our major results are not
strongly tied to the specific number of DFS (K) choice. In SI paragraph S6
we show that the same results can be obtained with a different choice of K
(K = 10).

Finally, we wanted to verify the impact of choosing a different subcortical
parcellation. Therefore, we performed additional analyses with the subcorti-
cal parcellation by Tian et al.2 to verify the robustness of our major results (SI
paragraph S7).
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S2 Dimensionality Reduction Procedure

Our analysis was implemented onto fMRI data projected on the cortical surface
of each subject, divided into the 324 Regions of Interest (ROIs) developed by
Gordon and collegues1, plus 19 subcortical regions. We used this parcellation to
relate our results with previous works analyzing the same dataset3–8. However,
to avoid computational issues, we applied a spatial dimensionality reduction to
our fMRI data.

Methods: dimensionality reduction As described in the Method Section of
the main text, finding dynamical functional states requires to consider at once a
very large set of data, such as the dynamics of each pairwise link (343×342/2 =
58, 653 links) for each subject and for each time point. Thus, due to computa-
tional issues, we needed to apply a spatial dimensionality reduction to our fMRI
data (SI-Fig. 3A). Since cortical and subcortical parcels come from two differ-
ent atlases, we kept all the subcortical regions, and we applied the following
steps to aggregate groups of cortical parcels. (i) Firstly, networks with less than
three ROIs in each hemisphere were merged with the larger network with the
smallest spatial distance: the Retrosplenial Temporal Network with the Visual
Network, the Sensory Motor-Hand, and the Sensory Motor-Mouth Networks
were combined to form the Sensory Motor-Hand-Mouth Network, the Salience
Network with the Ventral Attention Network, and the Cingulo Parietal Network
with the Default Mode Network. (ii) After that, for each network (left and right
hemisphere separately), we applied a hierarchical clustering algorithm with the
Ward method9, based on the ROIs coordinates, to cluster the member ROIs to
a set of three or four larger parcels (the Silhouette index10 was used to select
three or four clusters). As a result of these two steps, we obtained a new par-
cellation of the whole brain into 90 parcels (71 cortical, and 19 subcortical). 63
of the 71 cortical regions were divided into 8 networks (Visual Network (VIS),
Sensory Motor Hand-Mouth Network (SMN), Auditory Network (AUD), Cingulo
Opercular Network (CON), Ventral Attention Network (VAN), Dorsal Attention
Network (DAN), Fronto Parietal Network (FPN), Default Mode Network (DMN)),
while the remaining 8 regions were not assigned to any networks (None).
Functional connectivity (FC) measure for both reduced and unreduced data was
evaluated as the z-Fisher transform of the pairwise Pearson’s correlation coef-
ficient (ρ) between each pair of time series.

Methods: Dimensionality reduction Quality Check. The goodness of the
spatial dimensionality reduction was evaluated in two steps. (1) In the first step
(SI-Fig. 3B), we evaluated the similarity of the reduced FC with the unreduced
FC, and we checked that within-network connectivity was significantly stronger
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than between-networks connectivity.
To evaluate the similarity between reduced and unreduced FC, we compared re-
sults of the reduced and unreduced parcellation at the network level. For each
subject separately, we computed a network-wise (8 × 8) dissimilarity matrix,
whose (i, j) entry represents the Kullback-Leibler divergence (KLD)11 between
the distribution of connectivity values obtained on links between i and j in the
unreduced and the reduced case (diagonal elements (i, i) represent links inter-
nal to network i).
Then, we pooled the KLD values over pairs of networks and subjects and com-
pared the KLD distribution with a null model (see below). Moreover, to verify
that the ranking of connectivity (among subjects) has remained invariant, for
each subject we computed network-wise average (8× 8) connectivity matrices,
whose (i, j) entry represents the average connectivity values for links between
i and j, for the reduced and unreduced cases. For each pair of networks (i, j),
we then computed the Spearman’s correlation (over subjects) between the av-
erage (i, j) connectivity in the reduced and unreduced cases, obtaining an 8× 8
similarity matrix.
The average connectivity for the reduced FC of every subject was used also
to test the significant difference between within- and between-networks con-
nectivity. Specifically, for each network, a t-test was run across subjects to
verify that the averaged connectivity within the network was significantly differ-
ent (stronger) than the averaged connectivity between the network and all the
others.
To quantify the statistical significance of the KLD and Spearman’s correlation,
we built a proper null model by assigning randomly the 343 ROIs to the reduced
90 parcels. In such null model, the 90 parcels do not provide a meaningful di-
mensionality reduction of the original 343 parcels but combine randomly parcels
in different parts of the brain. We compared the obtained values of KLD and
Spearman’s correlation with those obtained in 1000 random instances of the
null model. Only values smaller (or larger) than the 2.5th (97.5th) percentile
were considered significantly small (or large).
(2) The second step of the quality check was aimed at verifying that all previ-
ous results on stroke impairment in static FC were reproduced with the reduced
data. Specifically, it is known that stroke causes two main FC abnormalities: a
decrease of homotopic connectivity3,4,12–18, and an increase of between-network
intra-hemispheric connectivity (especially between DAN and DMN)3,4,19,20, which
are reflected by an overall decrease of network modularity3,21. Therefore, we
performed a t-test for each network average homotopic connectivity to test dif-
ferences between the control groups and the stroke patients at the acute stage.
Similarly, a t-test was used to verify impairments in average DAN-DMN intra-
hemispheric connectivity. Finally, we measured network modularity (Newman’s
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Q) using the community_louvain function from the Brain Connectivity Tool-
box 22, using the 63 cortical regions with a priori assignment to specific networks.
Indeed, similarly to Siegel and collegues3 we defined modules a priori and eval-
uated the modularity on binarized FC matrices, after applying multiple connec-
tivity thresholds ranging from 4% and 50% connectivity density in steps of 4%.
The final modularity measure was obtained by averaging over density thresh-
olds.
A t-test between controls’ and acute patients’ modularity was evaluated both for
each threshold and for the final modularity measure.

Results. SI-Fig. 4A shows the centers of mass of the reduced and unreduced
ROIs. Based on the first of two criteria described in the previous Subsection,
the unreduced and the reduced FC obtained with the two parcellations schemes
resulted to be very similar for all conditions (CTRs and PATs at different time
points), in terms of Kullback-Leibler divergence (KLD). This measure was eval-
uated separately for each condition, considering the whole FC matrix and each
separate network (SI-Fig. 4C, top; SI-Table 4).
Moreover, the relationship among subjects remained unchanged for each net-
work, as confirmed by the high values of Spearman’s correlation coefficients
(SI-Fig. 4C, center).
Finally, to verify that the topology of the brain network has remained invariant
after the dimensionality reduction step, we performed a t-test to test the sig-
nificant difference between within- and between-network connectivity, both for
each network separately, and the whole reduced FC matrix (SI-Fig. 4C, bottom).
In all cases, and for all conditions (CTRs and PATs at different time points), we
found a significantly larger within-network than between-network connectivity.
In summary, the dimensionality reduction algorithm did not affect either the main
topological characteristics of the FC matrices or the relationship among sub-
jects.

In relation to the second quality check criterion, we checked that this re-
duced parcellation was sensitive to the changes induced by stroke lesions. As
expected from previous work3,4,6,7,12–18 we confirmed that stroke patients at the
acute stage (2 weeks) had lower homotopic connectivity (p < 10−3), stronger
DAN-DMN intra-hemispheric connectivity (p < 10−3), and lower network modu-
larity (p < 10−3) than the healthy control population (SI-Fig. 4D).
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S3 Analysis of the impact of dealing with control subjects numerosity in
Dynamical Functional States frequency of occurrence

To achieve a comparable number of controls and patients, avoiding that one
group prevail over the other during clustering analysis, in the main analyses, we
used all the controls’ data as if they were from different subjects. Aware that this
choice may lead to an underestimation of the inter-subject variability within the
control group, we replicated the analysis by considering the average of results
obtained for the control subjects at both time points.
For each session, the time series of 20 control subjects were suitable for the
analysis: 18 of them participated to both sessions, while 4 of them only once,
thus yielding to 22 different control subjects in total. We used the CTRs’ BOLD
signals of both sessions to determine the DFSs (as in the main text), but all
the derived dynamical measures (frequency of occurrence, average lifespan
and transition probability) were averaged over sections for the subset of control
subjects, who participated to both sections.
In SI-Tables 5-7 we reported the dynamical measures obtained through this
analysis, together with those in the main text. Moreover, we applied an unpaired
t-test for each DFS, to verify that the two analyses yielded to not-significantly
different results.
Importantly, all tests are far from significance, thus confirming that our choice of
considering all the controls’ data as if they were from different subjects did not
affect the results.

S4 Control Analysis on the impact of Sliding windows width selection

As largely discussed in the literature, the choice of sliding windows width is a
critical point during dynamical functional connectivity analysis23–25. Indeed, slid-
ing windows should be neither too short, in order to avoid being noise-affected,
nor too long, to allow functional fluctuation to be identified. In our main analysis,
we selected a sliding window width of 30 TR (60 s), based on previous results23.
However, we tested how much our results were sensitive to our choice. Specif-
ically, we considered other three possible different widths (20 TR, 40 TR and
50 TR) and we used the Silhouette and Davies-Bouldin indexes (as in the main
text) to evaluate the best K-means-derived number of states. SI-Fig. 6 shows
that pattern of Silhouette and Davies-Bouldin indexes for all the three widths are
very similar to the pattern obtained in the main text (width of 30 TR). Indeed, in
all cases we would select K = 5 Dynamical Functional States.
The same number of DFSs do not guarantees that the DFSs evaluated with
other sliding windows widths are similar to the DFSs presented in the main
analysis. Thus, for each width, we determined the 5 DFSs (see SI-Fig. 7)and
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we compared them with the 5 DFSs described in the main text, in terms of Pear-
son’s correlation similarity index (not shown). Each DFS was highly positively
correlated with its corresponding DFS obtained with 30 TR, and very low corre-
lated with all the others.
From these results, we can confirm that our choice for the sliding window width
did not impact our main results.

S5 Control Analysis on the impact of censoring

We performed control analyses to check the impact of censoring. We recom-
puted dynamic measures (fraction times, dwell times and transition probabil-
ities) with different censoring thresholds, a much more stringent threshold of
0.25, as well as a more liberal threshold of 0.75 (to facilitate comparison, dy-
namic measures were computed on the same set of DFS previously identified
with a censoring threshold of 0.5). Results are shown in SI-Fig. 8. Qualitatively,
we did not observe important differences when varying the threshold. Quanti-
tatively, among the three types of dynamical measures, transition probabilities
were more strongly affected by the change in the threshold. However, fraction
times were very robust. In particular, the relevant group differences identified in
the main text did not depend on the threshold chosen. Refer to SI-Paragraph S8
for the definition of severe and mild patients. To be more precise, with thresh-
old = 0.25 all differences in fraction times between CTRs and severe sub-acute
patients (DFS1, DFS2, DFS3, and DFS4), as well as the difference in DFS5
between CTR and mild sub-acute patients still hold, after FDR correction. With
threshold = 0.75, we confirmed the significant difference in fraction times for
DFS2 and DFS3 between CTRs and severe sub-acute patients.
In addition, for both thresholds (0.25 and 0.75), we verified that our main findings
of cortical vs. subcortical reorganization pattern still hold. SI-Fig. 9-10 shows
that the results are not affected by a different choice of censoring threshold.

S6 Control Analysis on the number of selected DFSs

In general, several major results of our work not strongly tied to the specific
K chose (see SI-Fig.2). For instance, in the main text, using K = 5 we ob-
served that severe stroke patients have higher fraction time for dynamical states
with low inter-hemispheric integration (such as DFS2 and DFS4). This finding
emerges even if a different K is used. This can be well exemplified by looking
at results for K = 5. The set of DFS for K = 5 can not be immediately and
trivially related to those for K = 10. However we can sort the states for K = 10
based on the total homotopic FC (from highest to lowest), as in SI-Fig.11(a).
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By looking at fraction times, we observe that severe patients over-express the
state(s) with low homotopic FC (SI-Fig.11(b)). This is not true for mild patients.
Hence, this feature is robustly observed across different DFS decompositions.
Let us further stress that some of our key findings - such as the fact that cortical
and subcortical FC shifts are simultaneous - does not depend on the chosen
set of DFS.

S7 Control Analysis on the effect of the subcortical parcellation

To verify the impact of choosing a different subcortical parcellation, we per-
formed additional analyses with the subcortical parcellation by Tian et al.2 and
verified the robustness of three main findings: 1) the ’antagonistic’ dynamics
of basal ganglia vs limbic regions, represented by two anticorrelated princi-
pal components of subcortical dynamic FC; 2) the observation that different
DFS are associated with different patterns of cortical/subcortical interactions,
as shown by different patterns of connectivity between the main subcortical
clusters and cortical networks; and, 3) the coordination between cortical and
subcortical dynamics, as shown by simultaneous cortical/subcortical FC shifts.
Tian et al.2 provide four subcortical parcellations with increasing levels of res-
olution (16, 32, 50, or 54 regions respectively). We limited our analysis to the
coarsest (16 regions) and the finest (54 regions) parcellations. Results are
presented in SI-Fig. 12 and 13, respectively. We recomputed the PCs of the
leading eigenvector time courses of subcortical regions in the 16-region par-
cellation by Tian et al. The first PC, which explains 32% of the variance, loads
strongly on basal ganglia (caudate, putamen, globus pallidus) and anterior tha-
lamus, and weakly on posterior thalamus and nucleus accumbens; the second
PC, which explains 18% of the variance, loads strongly on limbic regions (hip-
pocampus and amygdala) and weakly on posterior thalamus (SI-Fig. 12(a)).
This result broadly agrees with previous findings obtained with the freesurfer
parcellation: subcortical regions roughly split into a ’basal ganglia’ and a ’lim-
bic’ cluster. Qualitatively, the only main difference between results in the two
parcellations is related to the thalamus. While in the previous parcellation the
thalamus essentially grouped with the basal ganglia, the new parcellation yields
a more nuanced picture, hinting at a division between different parts of the
thalamus: the anterior portion of the thalamus groups with the basal ganglia,
whereas the posterior portion cannot be clearly affiliated to either of the two
clusters (basal ganglia/limbic). We then performed an analogous analysis with
the 54-region parcellation by Tian et al. The first PC, which explains 31% of the
variance, loads strongly on caudate, putamen, anterior globus pallidus, anterior
thalamus, and weakly on posterior thalamus, posterior globus pallidus and nu-
cleus accumbens. The second PC, which explains 11% of the variance, loads
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strongly on limbic regions (hippocampus and amygdala), posterior thalamus,
some parts of the anterior thalamus, and and weakly on other parts of the an-
terior thalamus (SI-Fig. 13). These results strengthen the picture obtained in
the 16-region parcellation, but show finer splits within the thalamus, with some
portions of the anterior thalamus being associated with the first PC, others with
the second PC. In summary, the results in the two parcellations confirm the split
between basal ganglia and limbic regions, yielding the additional insight that the
thalamus if functionally subdivided into regions showing differential association
with the two main clusters. We checked whether different DFS are associated
with different patterns of cortical/subcortical interactions. SI-Fig. 12 shows the
average connectivity between the two subcortical PCs and each cortical net-
work in each DFS. As previously discussed, we think that the most important
point is not validating the specific DFS found (the number and shape of each
DFS can depend on details of the analysis), but rather the global picture of FC
dynamics emerging from DFS analysis (including, chiefly, the interplay between
cortical and subcortical regions). Therefore, in our new analyses, we did not
repeat the clustering step to find new DFS. We only observed whether the old
DFSs (obtained using the Freesurfer parcellation of subcortical regions) corre-
spond to different patterns of cortical/subcortical interaction in the new subcor-
tical parcellation by Tian et al. We used the previous assignment to one of five
DFSs, and recomputed the connectivity between subcortical PCs and cortical
networks in DFSs, using the new subcortical PCs obtained with the parcella-
tion by Tian et al. Results are in qualitative agreement with previous results.
Each DFS is characterized by a different set of cortical and cortical-subcortical
interactions. Congruently with previous analyses, DFS1 is characterized by a
positive correlation between DMN and the limbic cluster, which in turn is nega-
tively correlated with sensory-motor-attention networks. DFS3 is characterized
by a negative correlation between DMN and the limbic cluster, which in turn
is positively correlated with sensory-motor-attention networks (conversely, the
basal ganglia cluster is negatively correlated with DMN and positively correlated
with sensorimotor networks). In DFS4 all subcortical regions show positive cor-
relation. Similar evidence is obtained in the 54-region parcellation [not shown].
Finally, we repeated the analysis on the temporal coordination of changes in
cortical and subcortical connectivity using the subcortical parcellations by Tian
et al. We evaluated connectivity shifts, defined as connectivity differences be-
tween pairs of consecutive sliding windows, separately for cortical and subcorti-
cal regions. We defined connectivity jumps when a large connectivity difference
occurred (0.29, corresponding to the top 5% values), and tested the simultaneity
of cortical and subcortical reorganization by comparing the probability that corti-
cal and subcortical jumps occur simultaneously. For all networks, we found that
the observed conditioned probability was significantly larger than the probability
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under the null hypothesis (all p < 10−4 , Bonferroni corrected for 9 networks).

S8 Patients divided into two groups based on low or high static FC im-
pairments

Methods To test whether dynamical measures’ impairments were related to
static FC abnormalities, we needed a compact description of the static FC ab-
normalities. Thus, we z-scored the acute patients’ FC matrices with respect to
the averaged control subjects’ FC, and we performed a spatial Principal Compo-
nents Analysis (PCA), to find the abnormalities patterns explaining the largest
portion of variance over patients. To define the static principal components we
used only the subset of patients that were not employed for the DFSs’ defini-
tion (114− 47 = 67 subjects). We retained only the static principal components
which explained at least 5% of the total variance, and which corresponded to an
eigenvalue of the covariance matrix larger than 1, yielding to 2 components, as
described in the Results Subsection S8. The scores of the data projected onto
these 2 static components’ space were then summed up, to obtain a unique
static description having the largest correlation (in absolute value) with the three
FC measures more related to stroke: homotopic connectivity, DAN-DMN intra-
hemispheric connectivity, and network modularity. This static measure will be
used in the following.

Then, we projected the z-scored FCs of the patients used for the dynamical
analyses onto the space described by the selected static principal components,
and their sum was used to test whether the DFSs dynamics were different be-
tween patients with positive (more FC abnormalities) and negative (less FC ab-
normalities) sum of the static pricipal components through nonparametric per-
mutation tests (when pairs of groups were tested), or One-Way Kruskal-Wallis
test (for comparisons between more than two groups).

Results Given the heterogeneity in lesion location and behavioral deficits across
patients, we know that FC dynamics would be differently affected depending on
the severity of static FC impairment. Hence, we applied a Principal Compo-
nent Analysis (PCA) to the static FC of acute patients (after z-scoring to the
average FC of controls subjects) to divide patients into two groups. To avoid
biases induced by using the same subjects, we used the 67 acute patients not
suitable for the dynamic analysis as input for the static PCA. From this analysis,
the first 2 static components representing 13.05% of the total variance (7.02%
and 6.03%, respectively) were sufficient to represent the main static FC anoma-
lies occurring in stroke, i.e., a reduction of homotopic connectivity and network
modularity, and an increase of DAN-DMN intra-hemispheric connectivity (Fig.3).
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Indeed, the data projected onto the space of the sum of these components were
strongly anti-correlated with the average of homotopic connectivity (corr=-0.83,
p= for patients used for the static PCA; corr=-0.78, p= for patients used for the
dynamical analysis) and with network-modularity (corr=-0.76, p= for patients
used for the static PCA; corr=-0.62, p= for patients used for the dynamical anal-
ysis). They were also strongly correlated with DAN-DMN intra-hemispheric con-
nectivity (corr=0.70 for patients used for the static PCA; corr=0.57 for patients
used for the dynamical analysis) (SI-Fig.15(C) scatter plot).

Then, we used the sign of the sum of the data projected onto components 1
and 2 to divide an independent group of patients used for the dynamic FC anal-
ysis into two groups: the group with positive sum of scores (n=18) represents
patients with more serious static FC impairments, while the group with nega-
tive sum (n=29) characterized patients with a mild abnormality in static FC w.r.t.
controls. In terms of lesion anatomy, more severe patients had more frequently
basal ganglia and central white matter damage associated with the deep mid-
dle cerebral artery distribution, which matched the average lesion distribution
(SI-Fig.1). Mild patients had lesions that were more cortical and both in the
middle and posterior cerebral artery distribution (SI-Fig.15(C)). From the total
NIHSS (National Institutes of Health Stroke Scale26), through a t-test we verified
that patients with positive sum of static principal components’ score were over-
all more severe in their neurological impairment (t=4.02, p=2.610-4). These
findings are consistent with previous work showing that subcortical stroke le-
sions cause more functional disconnection3,7,8,27, and more severe behavioral
impairment than cortical lesions5,28.

S9 Correlation across dynamic measures and principal components

Methods Principal Components Analysis (PCA) on dynamic measures For each
DFS, a set of dynamical measures could be extracted. Specifically, for each
subject, a vector of DFSs’ dynamics was obtained by concatenating all the de-
fined measures (main text Fig. 2):

f1, . . . , fK︸ ︷︷ ︸
K

, `1, . . . , `K︸ ︷︷ ︸
K

,DFS1>2, . . . ,DFSK − 1>K︸ ︷︷ ︸
K×(K−1)

 (1)

which is composed of K(K+1) elements. However, by construction, these
measures are not completely uncorrelated, and some of them could be merged.
To analyze the relationship among dynamical measures in the healthy condition,
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we performed a Principal Component Analysis (PCA) on the dynamical vec-
tors of control subjects, after z-scoring each vector entry over subjects. Only
the components which explained at least 10% of the total variance, and which
corresponded to an eigenvalue of the covariance matrix larger than 1 were re-
tained, and the data projected onto the space defined by these components
could be considered as a synthetic description for all the dynamical measures
of control subjects. The loadings of each principal component (PC) identified
covariation patterns among the set of dynamical measures, each pattern includ-
ing both positive and negative covariation between the individual measures. All
measures derived from patients’ data (at each condition) were z-scored with
respect to averaged control measures and were projected onto the same Prin-
cipal Components-derived space, to obtain the PCs values of each patient at a
different recovery stage. Finally, the patients’ values of each component were
again z-scored w.r.t control subjects, to highlight dynamic PCs abnormalities.

Results By construction, the dynamical measures used to describe the DFS
dynamics were intercorrelated. To obtain a more compact index of dynamics,
we applied a PCA over all the measures in control subjects (after z-scoring),
i.e., 5 frequencies (f1 - f5), 5 durations (`1 - `5), and 20 transitions (DFS1 -
DFS5 in all combinations). Based on the explained variance, and the covari-
ance matrix’s eigenvalues, we computed three components (Dyn-PC1: 18.30%
explained variance; Dyn-PC2: 14.12%; Dyn-PC3: 10.79%) explaining about 43%
of the variability across states. Each dynamic PC loads on a unique combination
of DFS frequency (f ), lifespan duration (`), and transitions (e.g., DFS1><3).
The three dynamical PCs (Dyn-PC) nicely summarize the patterns of results
on the individual measures. Specifically, Dyn-PC1 loads positively on dynami-
cal measures related to DFS1 whereas it loads negatively on DFS2 and DFS5.
Thus, a subject with a high positive Dyn-PC1 score will have a prevalence of
segregated DFS1 over integrated DFS 2 and DFS5. Dyn-PC2 loads positively
on DFS3, whereas it negatively loads on transitions related to DFS2 and DFS4.
Thus, a high positive value in Dyn-PC2 indicates a prevalence of states 3 over
states 2 and 4. Finally, PC3 loads mostly positively on DFS4 and transitions
between DFS4 and DFS5.

Next, we projected patients’ dynamical measures onto the Dyn-PCA space
(after z-scoring w.r.t. CTRs), to identify low-dimensional dynamical biomark-
ers for stroke. We identified a significant interaction between Dyn-PCs and
groups of patients (F = 5.68, p < 0.001). More severe patients showed lower
PC2 scores than CTRs (t = 3.93, p = 0.004, Bonferroni corrected), indicating a
prevalence of DFS2 and 4 over DFS3 and 5. This is coherent with the results of
the single measures presented above. Low Dyn-PC2 scores in severe patients
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normalized over time as the individual measures (t = 3.15, p = 0.05, Bonferroni
corrected) (SI-Fig. 16).

In summary, in relation to the first query of whether stroke causes changes
in brain connectivity dynamics, our analyses show that strokes cause an al-
teration of the probability of dynamic states pushing the networks toward a
stronger integration (DFS2,4), especially in severe patients, but that a more
balanced segregation/integration recovers over time.
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Supplementary Tables

Demographic information of control and patient populations (part 1 of 2)

controls patients
ID age gender education handedness ID age gender education handedness
02 21 M 12 R 024 48 F 12 R
03 49 M 12 R 030 50 F 14 R
04 61 M 14 R 040 66 M 12 R
06 61 F 12 R 043 47 M 12 R
07 54 F 14 R 051 56 F 11 R
09 50 F 12 R 056 52 M 11 R
10 45 M 13 R 058 53 M 12 R
11 53 F 15 R 060 56 F 16 R
12 64 M 16 R 063 45 F 9 R
14 70 M 20 R 065 50 M 12 R
21 79 M 14 R 067 54 M 16 R
24 51 M 12 R 071 64 F 16 R
25 60 F 12 R 078 62 M 12 R
26 53 M 14 R 081 57 M 12 R
27 56 F 14 R 087 57 M 13 R
28 55 F 11 R 090 52 M 12 R
29 53 M 18 L 092 66 M 16 R
30 58 M 13 L 097 44 M 14 R
32 49 M 12 R 099 54 F 12 R
33 53 F 13 R 100 42 M 11 R
34 68 M 16 R 101 58 M 12 L
36 83 F 16 R 102 38 F 18 R

103 53 M 14 R
105 22 F 16 R
108 70 F 14 R
109 40 F 16 R
111 56 M 9 R
145 40 M 11 R
155 57 M 16 R
161 51 M 12 R
162 52 M 12 R
164 47 F 18 R
165 52 M 14 R
166 60 M 15 L
168 50 M 13 R
169 65 M 20 R
170 57 M 14 R
173 52 F 13 R
175 51 M 9 R
178 40 F 18 R
181 52 F 11 R
182 52 F 11 R
186 60 M 18 R
190 69 F 12 R
193 53 F 12 R

average 56.6 13.9 52.3 13.4

percentage M=59% R = 91% M=57% R=94%
F=41% L=9% F=43% L=6%

SI-Table 1: Demographic information of control and patient populations. Source data are provided as a
Source Data file.
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Individual lesion information (part 1 of 2)

ID lesion lesion lesion lesion overlap lesion overlap lesion overlap
etiology volume site cortical GMmask subcortical GMmask WMmask

24 ischemic 4233 cortico-subcortical
0.8% mask 0.2% mask 7.9% mask

18.7% lesion 0.5% lesion 79.5% lesion

27 ischemic 7574 cortico-subcortical
1.7% mask 19.6% mask 8.5% mask

23.4% lesion 25.7% lesion 47.6% lesion

30 ischemic 5332 cortical
3.7% mask 0% mask 2.9% mask

71.2% lesion 0% lesion 23.3% lesion

40 other 5997 cortico-subcortical
2.5% mask 10% mask 4.6% mask

43.8% lesion 16.5% lesion 32.7% lesion

43 ischemic 4275 subcortical
0.1% mask 12.9% mask 6.2% mask
2.3% lesion 30% lesion 61.8% lesion

51 ischemic 104 subcortical
0% mask 0.1% mask 0.2% mask
0% lesion 8.7% lesion 90.4% lesion

56 ischemic 1399 cortical
0.5% mask 0% mask 2.2% mask
33% lesion 0% lesion 65.6% lesion

58 ischemic 294 subcortical
0% mask 0.4% mask 0.6% mask
0% lesion 12.6% lesion 86.1% lesion

60 ischemic 371 brainstem
0% mask 0.4% mask 0% mask
0% lesion 10.8% lesion 0% lesion

63 ischemic 5177 cortical
3.7% mask 0.1% mask 2.7% mask

74.3% lesion 0.2% lesion 22.5% lesion

65 ischemic 119 brainstem
0% mask 0% mask 0% mask
0% lesion 0% lesion 0% lesion

67 ischemic 118 white matter only
0% mask 0% mask 0.3% mask
0% lesion 0% lesion 100% lesion

71 ischemic 13 brainstem
0% mask 0% mask 0% mask
0% lesion 0% lesion 0% lesion

78 ischemic 991 cortical
0.2% mask 0% mask 1.9% mask

17.8% lesion 0% lesion 82.2% lesion

81 ischemic 111 subcortical
0% mask 0.7% mask 0.1% mask
0% lesion 64% lesion 36% lesion

87 ischemic 2565 cortical
1.5% mask 0% mask 2.3% mask

59.8% lesion 0% lesion 37.4% lesion

90 ischemic 91 brainstem
0% mask 0% mask 0% mask
0% lesion 0% lesion 0% lesion

92 ischemic 470 cortical
0.2% mask 0% mask 0.4% mask
50% lesion 0% lesion 37% lesion

97 ischemic 771 cortical
0.3% mask 0% mask 1% mask

42.4% lesion 0% lesion 56.2% lesion

99 ischemic 13895 cortico-subcortical
7.6% mask 6.5% mask 9.1% mask

56.8% lesion 4.6% lesion 28% lesion

100 ischemic 5160 cortico-subcortical
2.6% mask 0.6% mask 5.5% mask

51.3% lesion 1.2% lesion 45.7% lesion

101 ischemic 2007 cerebellar
0.1% mask 0% mask 0% mask
4.8% lesion 0% lesion 0% lesion

102 ischemic 162 subcortical
0% mask 1.6% mask 0% mask
0% lesion 98.8% lesion 0% lesion

103 hemorrhagic 11301 cortico-subcortical
2.8% mask 23.5% mask 13.4% mask

25.9% lesion 20.6% lesion 50.4% lesion

SI-Table 2: Individual lesion information (part 1 of 2). GM = gray matter; WM = white matter. Source
data are provided as a Source Data file.
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Individual lesion information (part 2 of 2)

ID lesion lesion lesion lesion overlap lesion overlap lesion overlap
etiology volume site cortical GMmask subcortical GMmask WMmask

105 hemorrhagic 4020 cortico-subcortical
2.1% mask 0.3% mask 4% mask

54.4% lesion 0.7% lesion 42.6% lesion

108 ischemic 6287 cortical
4.2% mask 0% mask 3.4% mask

69.5% lesion 0% lesion 23.3% lesion

109 hemorrhagic 14768 cortico-subcortical
8.5% mask 4.3% mask 11.8% mask

59.2% lesion 2.9% lesion 34.1% lesion

111 ischemic 1718 white matter only
0.1% mask 0% mask 3.9% mask
4.1% lesion 0% lesion 95.8% lesion

140 other 10300 cortico-subcortical
2.7% mask 21.7% mask 11.9% mask

26.7% lesion 20.9% lesion 49.3% lesion

145 ischemic 192 subcortical
0% mask 0.9% mask 0.2% mask

3.1% lesion 45.3% lesion 51.6% lesion

155 ischemic 732 cerebellar
0% mask 0% mask 0% mask
0% lesion 0% lesion 0% lesion

161 ischemic 8397 cortico-subcortical
1.2% mask 25.9% mask 9.2% mask
15% lesion 30.6% lesion 46.7% lesion

162 ischemic 5285 cortico-subcortical
1.8% mask 0.1% mask 7.6% mask
36% lesion 0.1% lesion 61.4% lesion

164 other 3650 cortical
1.9% mask 0% mask 3.5% mask

52.5% lesion 0% lesion 40.5% lesion

165 ischemic 255 cortical
0.2% mask 0% mask 0.1% mask

67.5% lesion 0% lesion 23.5% lesion

166 ischemic 2657 cortical
1.4% mask 0% mask 2.4% mask

55.5% lesion 0% lesion 38.9% lesion

168 ischemic 179 cortical
0.1% mask 0% mask 0.2% mask

41.3% lesion 0% lesion 55.9% lesion

169 ischemic 596 subcortical
0% mask 1.2% mask 1.1% mask

3.2% lesion 20.3% lesion 76.5% lesion

170 hemorrhagic 6182 other
0.8% mask 20.5% mask 6.7% mask

12.5% lesion 33% lesion 46% lesion

173 hemorrhagic 2711 subcortical
0% mask 18.2% mask 1% mask
0% lesion 66.5% lesion 15.3% lesion

175 ischemic 538 cerebellar
0% mask 0% mask 0% mask
0% lesion 0% lesion 0% lesion

178 hemorrhagic 5116 subcortical
0.7% mask 16.2% mask 6.2% mask

14.7% lesion 31.4% lesion 51.3% lesion

181 hemorrhagic 1804 brainstem
0% mask 0.1% mask 0% mask
0% lesion 0.6% lesion 0% lesion

182 hemorrhagic 660 subcortical
0% mask 0.1% mask 0% mask

2.7% lesion 70.8% lesion 21.4% lesion

186 ischemic 70 brainstem
0% mask 0% mask 0% mask
0% lesion 0% lesion 0% lesion

190 hemorrhagic 2625 cortico-subcortical
0% mask 0% mask 0% mask

50.6% lesion 0.3% lesion 47.5% lesion

193 ischemic 126 brainstem
0% mask 0% mask 0% mask
0% lesion 0% lesion 0% lesion

SI-Table 3: Individual lesion information (part 2 of 2). GM = gray matter; WM = white matter. Source
data are provided as a Source Data file.
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KL divergence [ave (std)]
CTRs PATs (2 weeks) PATs (3 months) PATs (1 year)

Whole matrix 0.02 (0.01) 0.02 (0.01) 0.02 (0.01) 0.02 (0.01)
VIS 0.51 (0.34) 0.56 (0.68) 0.56 (0.48) 0.52 (0.59)

SMN 1.77 (1.50) 1.82 (2.66) 2.47 (3.29) 2.08 (2.67)
AUD 0.52 (0.38) 0.42 (0.35) 0.49 (0.31) 0.48 (0.43)
CON 0.68 (1.04) 0.30 (0.30) 0.33 (0.28) 0.38 (0.41)
VAN 0.14 (0.09) 0.19 (0.17) 0.17 (0.13) 0.16 (0.15)
DAN 0.38 (0.46) 0.2 (0.26) 0.23 (0.31) 0.28 (0.29)
FPN 0.33 (0.37) 0.21 (0.26) 0.28 (0.40) 0.27 (0.39)
DMN 0.49 (0.57) 0.56 (1.01) 0.69 (1.55) 0.87 (2.19)
None 0.24 (0.21) 0.23 (0.15) 0.22 (0.13) 0.20 (0.13)
SUB 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)

SI-Table 4: Kullback-Leibler (KL) divergence between unreduced functional connectivity (FC) and re-
duced FC. Source data are provided as a Source Data file.

f1 (mean±sem) f2 (mean±sem) f3 (mean±sem) f4 (mean±sem) f5 (mean±sem)
Control analysis

0.25± 0.03 0.23± 0.03 0.23± 0.02 0.17± 0.02 0.12± 0.02
(22 subjects)

Main analysis
0.25± 0.03 0.22± 0.03 0.23± 0.02 0.18± 0.02 0.11± 0.01

(40 subjects)
t-test t = 0.02 t = 0.17 t = −0.06 t = −0.34 t = 0.17

(p-val) (p = 0.98) (p = 0.86) (p = 0.95) (p = 0.73) (p = 0.86)

SI-Table 5: Fraction time of each Dynamical Functional State (DFS) for control subjects in the control
and main analysis, together with the results of an unpaired two-sided t-test. Data are presented as mean
values ± SEM. Source data are provided as a Source Data file.

`1 (mean±sem) `2 (mean±sem) `3 (mean±sem) `4 (mean±sem) `5 (mean±sem)
Control analysis

14.0± 1.5 12.5± 1.6 12.4± 1.0 12.0± 1.4 8.8± 1.1
(22 subjects)

Main analysis
13.8± 1.4 12.2± 1.5 12.6± 1.1 12.5± 1.1 8.4± 0.9

(40 subjects)
t-test t = 0.07 t = 0.14 t = −0.12 t = −0.22 t = 0.26

(p-val) (p = 0.94) (p = 0.88) (p = 0.91) (p = 0.82) (p = 0.80)

SI-Table 6: meanrage dwell time of each Dynamical Functional State (DFS) for control subjects in the
control and main analysis, together with the results of an unpaired two-sided t-test. Data are presented as
mean values ± SEM. Source data are provided as a Source Data file.
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to
DFS1 DFS2 DFS3 DFS4 DFS5

fr
om

DFS1
control analysis 0.06± 0.007 0.08± 0.014 0.05± 0.009 0.04± 0.008
main analysis 0.06± 0.007 0.07± 0.013 0.05± 0.009 0.04± 0.007
t-val (p-val) 0 (1) 0.047 (0.86) −0.12 (0.90) −0.12 (0.90)

DFS2
control analysis 0.05± 0.009 0.06± 0.011 0.05± 0.009 0.04± 0.010
main analysis 0.05± 0.008 0.06± 0.009 0.05± 0.009 0.05± 0.009
t-val (p-val) 0.14 (0.89) 0.13 (0.90) 0.05 (0.96) −0.12 (0.90)

DFS3
control analysis 0.08± 0.015 0.06± 0.010 0.05± 0.009 0.04± 0.012
main analysis 0.07± 0.012 0.06± 0.009 0.06± 0.010 0.03± 0.010
t-val (p-val) 0.24 (0.81) 0.25 (0.81) 0.27 (0.79) 0.03 (0.97)

DFS4
control analysis 0.04± 0.010 0.05± 0.010 0.06± 0.009 0.03± 0.007
main analysis 0.05± 0.009 0.05± 0.009 0.06± 0.009 0.03± 0.007
t-val (p-val) −0.3 (0.77) 0.07 (0.95) −0.02 (0.99) −0.3 (0.77)

DFS5
control analysis 0.04± 0.008 0.04± 0.009 0.04± 0.010 0.03± 0.005
main analysis 0.04± 0.007 0.04± 0.009 0.04± 0.008 0.03± 0.006
t-val (p-val) 0.08 (0.94) −0.02 (0.99) −0.02 (0.99) −0.35 (0.73)

SI-Table 7: Transition probability betweenDynamical Functional States (DFSs) for control subjects in the
control and main analysis, together with the results of an unpaired two-sided t-test. Data are presented as
mean values ± SEM. Source data are provided as a Source Data file.
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Supplementary Figures

Lesion frequency map of the 47 patients considered for the analyses

SI-Figure 1: Lesion frequancy map related to the 47 patients considered throughout the analysis
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SI-Figure 2: Dynamical Functional States for K = 2, . . . , 10. DFSs obtained for different values of K,
from 2 to 10. Through Silhouette and Davies-Bouldin indexes (in the box), in the main text we analyzed
the case with K = 5. (As for the global Silhouette values, data are presented as mean values ± SEM.)
Source data are provided as a Source Data file.
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SI-Figure 3: Methods (dimensionality reduction): A) representation of the spatial clustering used to
reduce the number of region of interests (ROIs) from 343 to 90. B) description of the quality check for
the reduced functional connectivity (FC). The similarity between reduced and unreduced FC was eval-
uated by means of Kullback-Leibler divergence between the distribution of connectivity values in each
within and between network, for each subject separately. To verify that the relationship among subjects
remained invariant, the averaged connectivity was evaluated for each within or between network for each
subject and used as input for the Spearman’s correlation among the subjects’ averaged connectivity for the
reduced and the unreduced FC. The averaged connectivity for the reduced FC of every subjects was used
also to test the significant difference between within- and between-networks connectivity (not shown).
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SI-Figure 4: Dimensionality reduction quality check A) Location of the ROIs centers of the unre-
duced (top) and reduced (bottom) parcellation, obtained as the results of spatial hierarchical clustering.
Networks belongings are color coded. B) The unreduced and reduced average functional connectivity
(FC) of control subjects (CTRs). C) Result of the quality check for the dimensionality reduction. The
Kullback-Leiber divergence between ureduced and reduced FC values (top) is depicted for all subjects
and for single populations in color. Each distribution is compared with the null Kullback-Leibler diver-
gence (KLD) distribution obtained with permutations (gray), and resulted significant lower in all cases
(The symbol * indicates p=0.0 for all groups) (n-CTR = 44; n-PATs(2w)=114; n-PATs(3m) = 80; n-
PATs(1y) = 65; n-all = 303 samples). Moreover, the invariant relationship among subjects (n = 303)
is verified by the high level of correlation obtained for each within and between network correlation
values distribution (center), significantly larger then the results obtained through permutations. Finally,
the reduced FC is characterized by significant larger within-network correlations than between-network
correlation in control subjects (n = 44). *** stands for p < 0.0001 (t = 46.25, paired two-sided t-test)
(bottom). Here the average over all networks is represented for CTRs, but all networks was tested also
separately and for patients populations, too. D) Static FC biomarkers of stroke are verified also using
the reduced parcellation: reduced homotopic connectivity (*** indicates p < 0.0001, t = 5.22, unpaired
two-sided t-test), increased DAN-DMN intra-hemispheric connectivity ** indicates p< 0.001, t = −3.55,
unpaired two-sided t-test), and decreased network modularity (*** indicates p < 0.0001, t = 5.34, un-
paired two-sided t-test) (n-CTRs = 44; n-PATs(2w) = 114). In all violin plots, the white circle indicates
the median, the lower and extremes of the thicker vertical line indicate the 25th and the 75th percentiles,
respectively, the thiner vertical lines covers the most extreme data points, not considered outliers, and
the colored horizontal line indicates the mean. Please, refer to 29 for additional details. Source data are
provided as a Source Data file.
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SI-Figure 5: Analysis of similarity between the Dynamical Functional Connectivity matrix DFC
evaluated at each sliding window and the Dynamical Functional State (DFS) assigned to it. Dis-
tribution of correlation values between the Dynamical Functional Connectivity matrix DFC evaluated at
sliding window and the DFS assigned to it of all sliding windows, divided for controls and patients at
different time points and for different impairment severity (severe or mild; refer to SI-Section S8). (n =
270 sliding windows for eaach subject: n-CTR = 40; n-PAT (2 weeks) severe = 18; n-PAT (2 weeks) mild
= 29; n-PAT (3 months) severe = 18; n-PAT (3 months) mild = 29; n-PAT (1 year) severe = 18; n-PAT (1
year) mild = 29). In all violin plots, the black central square indicates the median, the lower and extremes
of the thicker vertical line indicate the 25th and the 75th percentiles, respectively, and the thiner vertical
lines covers the most extreme data points, not considered outliers. Please, refer to 29 for additional details.
Source data are provided as a Source Data file.
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SI-Figure 6: Impact of sliding windows width in determining the number of Dynamical Functional
States (DFSs.) As for the global Silhouette values, data are presented as mean values ± SEM. Source
data are provided as a Source Data file.
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SI-Figure 7: Impact of sliding windows width in determining the shape of each Dynamical Func-
tional State (DFS) (graph representation). Source data are provided as a Source Data file.
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SI-Figure 8: Fraction times and dwell times obtained with two different censoring thresholds: a
more stringent threshold of 0.25 (A), and a more liberal threshold of 0.75 (B) (In all panels: n-CTRs =
40; n-PATs 2w (severe) = 18; n-PATs 2w (mild) = 29 for each Dynamical Functional State (DFS)). On
each box: the central green line indicates the median, the red cross indicates the mean, and the bottom and
top edges of the box indicate te 25th and 75th percentiles, respectively. The whiskers extend to the most
extreme data points, not considered outliers (plotted individually using a dot). Source data are provided
as a Source Data file.
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SI-Figure 9: Results of cortical vs. subcortical reorganization pattern obtained with a more strin-
gent censoring threshold (0.25). (a) projection of the first three principal components (SCs) of sub-
cortical functional connectivity dynamics on each subcortical region. (b) Connectivity between cortical
networks and the first two SCs of subcortical functional connectivity dynamics. (c) Cumulative density
function of the conditioned probability of subcortical connectivity reorganization, given a cortical con-
nectivity reorganization. Each colored line relates to a different cortical network. The black line shows
the cumulative density function under the null hypothesis of independence between cortical and subcor-
tical changes. Source data are provided as a Source Data file. (VIS: visual network, SMN: sensory motor
network, AUD: auditory network, CON: control network, VAN: ventral attention network, DAN: dorsal
attention network, FPN: fronto parietal network, DMN: default mode network).
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SI-Figure 10: Results of cortical vs. subcortical reorganization pattern obtained with a more liberal
censoring threshold (0.75). (a) projection of the first three principal components (SCs) of subcortical
functional connectivity dynamics on each subcortical region. (b) Connectivity between cortical networks
and the first two SCs of subcortical functional connectivity dynamics. (c) Cumulative density function of
the conditioned probability of subcortical connectivity reorganization, given a cortical connectivity reor-
ganization. Each colored line relates to a different cortical network. The black line shows the cumulative
density function under the null hypothesis of independence between cortical and subcortical changes.
Source data are provided as a Source Data file. (VIS: visual network, SMN: sensory motor network,
AUD: auditory network, CON: control network, VAN: ventral attention network, DAN: dorsal attention
network, FPN: fronto parietal network, DMN: default mode network).
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(a)(a) (b)

SI-Figure 11: Homotopic connectivity and fraction times with K = 10. (a) Total homotopic functional
connectivity (FC) for Dynamical Functional States (DFSs) obtained with K = 10 (b) Fraction times for
DFSs obtained with K = 10 (sorted according to descending homotopic FC) (n-CTRs = 40; n-PATs 2w
(severe) = 18; n-PATs 2w (mild) = 29 for each DFS). The significance between each pair of groups has
been tested independently for each of the 10 DFSs through two-sided non-parametric permutation tests,
and FDR correction for 30 comparisons. The symbol * indicates p < 0.05 after FDR correction. On each
box: the central green line indicates the median, the red cross indicates the mean, and the bottom and
top edges of the box indicate te 25th and 75th percentiles, respectively. The whiskers extend to the most
extreme data points, not considered outliers (plotted individually using a dot). Source data are provided
as a Source Data file.
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SI-Figure 12: Results of cortical vs. subcortical reorganization pattern obtained with the subcorti-
cal parcellation by Tian et al. (a) projection of the first three PCs of subcortical FC dynamics on each
subcortical region, using the 16-region subcortical parcellation by Tian et al. (b) Connectivity between
cortical networks and the first two principal components (SCs) of subcortical functional connectivity
dynamics, using the 16-region parcellation by Tian et al2. (c) Cumulative density function of the condi-
tioned probability of subcortical connectivity reorganization, given a cortical connectivity reorganization,
using the 16-region subcortical parcellation by Tian et al2. Each colored line relates to a different cortical
network. The black line shows the cumulative density function under the null hypothesis of independence
between cortical and subcortical changes. Source data are provided as a Source Data file. (VIS: visual
network, SMN: sensory motor network, AUD: auditory network, CON: control network, VAN: ventral
attention network, DAN: dorsal attention network, FPN: fronto parietal network, DMN: default mode
network).
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SI-Figure 13: Projection of the first two principal components (SCs) of subcortical functional con-
ncetivity dynamics on each subcortical region, using the 54-region subcortical parcellation by Tian
et al2. Source data are provided as a Source Data file.
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SI-Figure 14: Representation of the Principal Functional Gradients and the DFSs projection onto
them. A) Starting from the average functional connectivity (FC) evaluated among the control population
(left), the first two principal functional gradients have been evaluated as in Margulies et al.. Each dot
represents a cortical ROI (as displayed in the brain surface on the right), projected onto the space of the
first two gradients. B) For each DFS, the values of each ROI in the related leading eigenvector has been
used as color-map for the projected points onto the gradients space. Source data are provided as a Source
Data file.
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SI-Figure 15: Results of the static principal component analysis. A) Average functional connectivity
(FC) of healthy subjects (CTRs) and sub-acute patients (PATs) (including patients not selected for the
dynamical analysis). B) Definition of the spatial FC component used to characterize the static FC im-
pairments of patients. Specifically, a PCA on the patients’ FC (z-scored w.r.t. average CTRs FC) was
conduced among patients not selected for dynamic analyses. The sum of the first two principal compo-
nents (PCs) (the only ones that respected the selection rules) was used for a compact representation of
stroke static impairments. C) After projecting all patients FC onto the static PCs space, the relationship
between the sum of the scores of static principal components 1 and 2 values and static stroke biomarkers
was tested. A scatter plot of this sum vs homotopic connectivity (homo, blue), network modularity (mod,
red) and DAN-DMN intra-hemispheric connectivity (black) is depicted on the left. Finally, patients was
grouped based on the sign of the sum of the scores of static principal components 1 and 2 (positive sum as
severe patients, and negative sum as mild patients), and the frequency map of lesions for the two groups
is represented on the right. Patients overlapping is color-coded. Source data are provided as a Source
Data file.
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SI-Figure 16: PCA on dynamical measures. A) Matrix of correlation among all the dynamical measures
of healthy subjects (CTRs), sorted w.r.t. their dynamical principal components (Dyn-PCs) loadings.
B): mean (± confidence interval) Dyn-PCs scores for CTRs and acute patients. A (repeated measures)
ANOVA showed a significant interaction between Dyn-PCs and condition (p<0.001), with lower Dyn-
PC2 scores for severe patients (n = 18) than CTRs (n = 40) (p=0.004, t=3.93, unpaired two-sided t-
test, Bonferroni corrected) and mild patients (n = 29) (p<0.001, t=−5.11, unpaired two-sided t-test,
Bonferroni corrected). A comparsion (repeated measures ANOVA) between the evolution of each Dyn-
PC from 2 weeks to 1 year, showed a significant interaction with the level of patients’ abnormalities
(severe or mild), as regards Dyn-PC2 (p = 0.039). Indeed, the significant difference observed at 2 weeks
between groups, did not hold anymore at 3 and 12 months. (For each time point: n-severe = 18 and
n-mild = 29). Source data are provided as a Source Data file.
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SI-Figure 17: Dynamical Functional States for each group. Given the assignment of all sliding win-
dow to a specif Dynamical Functional State (DFS), though the K-means clustering on all subjects and
population concatenated, for each group of patients, the sliding windows assigned to each DFS were
used to estimate the population-specific representation of the DFS. Interestingly, DFS2 differs between
healthy subjects (CTRs) and patients (PATs), especially at acute stage. Specifically, sub-acute patients
(PATs (2 weeks)) show less inter-hemispheric within-network connectivity, and reduced VIS (visual net-
work) anticorrelation in the left hemisphere. After 3 and 12 months, DFS2 returns to be more similar to
CTRs. Source data are provided as a Source Data file.

34



References

1. Gordon, E. M. et al. Generation and Evaluation of a Cortical Area Parcella-
tion from Resting-State Correlations. Cerebral Cortex 26, 288–303 (2016).
URL https://academic.oup.com/cercor/article-lookup/doi/
10.1093/cercor/bhu239.

2. Tian, Y., Margulies, D. S., Breakspear, M. & Zalesky, A. Topographic or-
ganization of the human subcortex unveiled with functional connectivity
gradients. Nature Neuroscience 23, 1421–1432 (2020). URL https:
//doi.org/10.1038/s41593-020-00711-6.

3. Siegel, J. S. et al. Disruptions of network connectivity predict impair-
ment in multiple behavioral domains after stroke. Proceedings of the
National Academy of Sciences 113, E4367–E4376 (2016). URL http:
//www.pnas.org/lookup/doi/10.1073/pnas.1521083113.

4. Ramsey, L. E. et al. Normalization of network connectivity in hemispatial
neglect recovery. Annals of Neurology 80, 127–141 (2016). URL http:
//doi.wiley.com/10.1002/ana.24690.

5. Corbetta, M. et al. Common Behavioral Clusters and Subcor-
tical Anatomy in Stroke. Neuron 85, 927–941 (2015). URL
http://dx.doi.org/10.1016/j.neuron.2015.02.027https://
linkinghub.elsevier.com/retrieve/pii/S0896627315001427.
15334406.

6. Siegel, J. S. et al. Re-emergence of modular brain net-
works in stroke recovery. Cortex 101, 44–59 (2018). URL
https://doi.org/10.1016/j.cortex.2017.12.019https://
linkinghub.elsevier.com/retrieve/pii/S0010945217304276.

7. Griffis, J. C., Metcalf, N. V., Corbetta, M. & Shulman, G. L.
Structural Disconnections Explain Brain Network Dysfunction af-
ter Stroke. Cell Reports 28, 2527–2540.e9 (2019). URL
https://doi.org/10.1016/j.celrep.2019.07.100https://
linkinghub.elsevier.com/retrieve/pii/S2211124719310162.

8. Griffis, J. C., Metcalf, N. V., Corbetta, M. & Shulman, G. L. Damage
to the shortest structural paths between brain regions is associated with
disruptions of resting-state functional connectivity after stroke. NeuroIm-
age 210, 116589 (2020). URL https://linkinghub.elsevier.com/
retrieve/pii/S1053811920300768.

9. Ward, J. H. Hierarchical Grouping to Optimize an Objective Function.
Journal of the American Statistical Association 58, 236–244 (1963). URL

35

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhu239
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhu239
https://doi.org/10.1038/s41593-020-00711-6
https://doi.org/10.1038/s41593-020-00711-6
http://www.pnas.org/lookup/doi/10.1073/pnas.1521083113
http://www.pnas.org/lookup/doi/10.1073/pnas.1521083113
http://doi.wiley.com/10.1002/ana.24690
http://doi.wiley.com/10.1002/ana.24690
http://dx.doi.org/10.1016/j.neuron.2015.02.027 https://linkinghub.elsevier.com/retrieve/pii/S0896627315001427
http://dx.doi.org/10.1016/j.neuron.2015.02.027 https://linkinghub.elsevier.com/retrieve/pii/S0896627315001427
15334406
https://doi.org/10.1016/j.cortex.2017.12.019 https://linkinghub.elsevier.com/retrieve/pii/S0010945217304276
https://doi.org/10.1016/j.cortex.2017.12.019 https://linkinghub.elsevier.com/retrieve/pii/S0010945217304276
https://doi.org/10.1016/j.celrep.2019.07.100 https://linkinghub.elsevier.com/retrieve/pii/S2211124719310162
https://doi.org/10.1016/j.celrep.2019.07.100 https://linkinghub.elsevier.com/retrieve/pii/S2211124719310162
https://linkinghub.elsevier.com/retrieve/pii/S1053811920300768
https://linkinghub.elsevier.com/retrieve/pii/S1053811920300768


https://www.tandfonline.com/doi/abs/10.1080/01621459.
1963.10500845http://www.tandfonline.com/doi/abs/10.
1080/01621459.1963.10500845.

10. Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of Computational and Applied Mathe-
matics 20, 53–65 (1987). URL https://linkinghub.elsevier.com/
retrieve/pii/0377042787901257.

11. Cover, T. M. & Thomas, J. A. Elements of Information Theory (1991).

12. He, B. J. et al. Breakdown of Functional Connectivity in Frontoparietal Net-
works Underlies Behavioral Deficits in Spatial Neglect. Neuron 53, 905–918
(2007). URL https://linkinghub.elsevier.com/retrieve/pii/
S0896627307001122.

13. Tang, C. et al. Decreased functional connectivity of homotopic brain re-
gions in chronic stroke patients: a resting state fMRI study. PLOS ONE 11,
e0152875 (2016). URL https://dx.plos.org/10.1371/journal.
pone.0152875.

14. Carter, A. R. et al. Resting state inter-hemispheric fMRI connectivity pre-
dicts performance after stroke. Annals of Neurology 365—-375 (2010).
URL http://doi.wiley.com/10.1002/ana.21905.

15. Park, C.-h. et al. Longitudinal changes of resting-state functional
connectivity during motor recovery after stroke. Stroke 42, 1357–
1362 (2011). URL https://www.ahajournals.org/doi/10.1161/
STROKEAHA.110.596155.

16. Wu, W. et al. Impaired neuronal synchrony after focal ischemic
stroke in elderly patients. Clinical Neurophysiology 122, 21–26
(2011). URL https://linkinghub.elsevier.com/retrieve/pii/
S1388245710005006.

17. Golestani, A.-M., Tymchuk, S., Demchuk, A. & Goodyear, B. G. Longitudi-
nal Evaluation of Resting-State fMRI After Acute Stroke With Hemiparesis.
Neurorehabilitation and Neural Repair 27, 153–163 (2013). URL http:
//journals.sagepub.com/doi/10.1177/1545968312457827.

18. New, A. B. et al. Altered resting-state network connectivity in stroke pa-
tients with and without apraxia of speech. NeuroImage: Clinical 8, 429–439
(2015). URL https://linkinghub.elsevier.com/retrieve/pii/
S2213158215000558.

19. Baldassarre, A. et al. Large-scale changes in network interactions as a
physiological signature of spatial neglect. Brain 137, 3267–3283 (2014).

36

https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500845 http://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500845
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500845 http://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500845
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500845 http://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500845
https://linkinghub.elsevier.com/retrieve/pii/0377042787901257
https://linkinghub.elsevier.com/retrieve/pii/0377042787901257
https://linkinghub.elsevier.com/retrieve/pii/S0896627307001122
https://linkinghub.elsevier.com/retrieve/pii/S0896627307001122
https://dx.plos.org/10.1371/journal.pone.0152875
https://dx.plos.org/10.1371/journal.pone.0152875
http://doi.wiley.com/10.1002/ana.21905
https://www.ahajournals.org/doi/10.1161/STROKEAHA.110.596155
https://www.ahajournals.org/doi/10.1161/STROKEAHA.110.596155
https://linkinghub.elsevier.com/retrieve/pii/S1388245710005006
https://linkinghub.elsevier.com/retrieve/pii/S1388245710005006
http://journals.sagepub.com/doi/10.1177/1545968312457827
http://journals.sagepub.com/doi/10.1177/1545968312457827
https://linkinghub.elsevier.com/retrieve/pii/S2213158215000558
https://linkinghub.elsevier.com/retrieve/pii/S2213158215000558


URL https://academic.oup.com/brain/article-lookup/doi/
10.1093/brain/awu297.

20. Eldaief, M. C., McMains, S., Hutchison, R. M., Halko, M. A. &
Pascual-Leone, A. Reconfiguration of intrinsic functional coupling pat-
terns following circumscribed network lesions. Cerebral Cortex bhw139
(2016). URL http://cercor.oxfordjournals.org/cgi/doi/10.
1093/cercor/bhw139.
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