Supporting Information

Permethylation of ribonucleosides provides enhanced mass spectrometry quantification of post-transcriptional RNA modifications

Yixuan Xie^{1,2}, Kevin A. Janssen², Alessandro Scacchetti³, Elizabeth G. Porter,^{1,2} Zongtao Lin,¹ Roberto Bonasio³, Benjamin A. Garcia^{*,1,2}

¹Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States.

²Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

³Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

*Correspondence and requests for materials should be addressed to B.A.G. (email: <u>bagarcia@wustl.edu</u>)

Table of Contents:

Additional Experimental Procedures

Figure S1. Optimization of the permethylation reaction.

- Figure S2. LC-MS chromatography of permethylated and partially methylated adenosine.
- **Figure S3.** Differentiation of m⁶A and m¹A using MS3.
- **Figure S4.** LC-MS/MS spectra of two permethylated isomers: uridine (U) and pseudouridine (Ψ).
- Figure S5. Tandem MS/MS spectra of adenosine modifications.
- **Figure S6.** Permethylation reaction of m⁷G (7-methylguanosine).
- Figure S7. Optimization of collision energy.
- **Table S1.** The dynamic MRM transitions for monitoring ribonucleosides.

Table S2. Summary of the number of theoretical plates for underivatized and permethylated

 ribonucleoside analyses.

Table S3. Summary of linearities of permethylated ribonucleoside standards.

Additional Experimental Procedures

Optimization of Collision Energies. For underivatized ribonucleosides, low collision energy (~10 eV) was utilized for the identification and quantification due to the unstable nature of the ribonucleosides. Because the permethylation can enhance the stability of the precursor ions in the gas phase, the energy required for the fragmentation needed optimization. Therefore, we optimized the collision energies ranging from 10 to 35 eV for the permethylated ribonucleosides to obtain optimal signals of fragment ions. As shown in **Figure S7**, responses of most permethylated ribonucleosides first increased with rising collision energy caused by more efficient fragmentation of the precursor ions. Signal decreased when the collision energy was set greater than 20 eV, potentially due to over-fragmentation under the high collision energy. As a result, 15-20 eV yielded optimal signals for most permethylated ribonucleosides.

Figure S1. Optimization of the permethylation reaction. The reaction was monitored by the signal of (a) permethylated ribonucleosides, and (b) unreacted ribonucleosides.

Figure S2. LC-MS chromatography of permethylated and partially methylated adenosines. Fully permethylated adenosine was monitored at m/z 353.2770, and four different partially methylated adenosines (with different methylation degrees) were monitored at m/z 336.2425, 319.2080, 302.1735, 285.1390, respectively.

The unique distribution of m6A and m1A

Figure S3. Differentiation of m⁶**A and m**¹**A using MS3.** The fragmentation from the nucleotide base, m/z 167.11, was selected for further fragmentation. The unique pattern at m/z 119.03 and m/z 120.04 could be used to distinguish m⁶A and m¹A.

Figure S4. LC-MS/MS spectra of two permethylated isomers: uridine (U) and pseudouridine (Ψ). MS/MS spectra of the methylated(d_3)-labeled protonated precursor ions at (a) m/z 313.22 for U and (b) m/z 330.25 for pseudouridine Ψ . HCD Fragmentation of U resulted in signals at m/z 149.11 and m/z 130.07 as the two most abundant fragment ions, while the fragmentation of Ψ produced signals at m/z 206.15 and m/z 22.5.11 as the two most abundant fragment ions.

Figure S5. Tandem MS/MS spectra of adenosine modifications. The methylated(d_3)-labeled (**a**) i⁶A, (**b**) io⁶A, and (**c**) t⁶A yielded their signature fragmentation patterns.

Figure S6. Permethylation reaction of m⁷G (7-methylguanosine). (a) Due to m⁷G being positively charged, an extra hydroxyl group was added. (b) The fragment at m/z 252.2217 was detected by monitoring the precursor ion of permethylated m⁷G at m/z 435.3671.

Figure S7. Optimization of collision energy. Permethylated ribonucleoside standards were fragmented under collision energies ranging from 10 to 35 eV to obtain the optimal signal for MS analysis.

Ν	Compound Full Name	Common	Start	End	Precursor	Product	Collision
о.		Name	Time	Time	lon	lon	Energy
	E former de stidio e	45 C	(min)	(min)	(<i>m/z</i>)	(<i>m</i> /z)	<u>(V)</u>
1	5-iormylcytiane	1°C	1.5	2.5	357.20	174.11	10
2	5-iomyi-2-0-methyicytiame	PCIII	1.5	2.3	354.24	1/4.11	18
3	cytidine	C	2.2	2.8	329.27	146.12	15
4	2 -O-metnyicytidine	Cm	2.2	2.8	326.25	146.12	15
5	N ⁴ ,N ⁴ -dimethylcytidine	m ^{4,4} C	2.2	2.8	323.23	140.08	15
6	N ⁴ ,N ⁴ ,2'-O-trimethylcytidine	m ^{4,4} Cm	2.2	2.8	320.21	140.08	15
7	N ⁴ -methylcytidine*	m⁴C	2.2	2.8	326.25	143.1	15
8	3-methylcytidine*	m³C	2.2	2.8	326.25	143.1	15
9	N ⁴ ,2'-O-dimethylcytidine*	m⁴Cm	2.2	2.8	323.23	143.1	15
10	3-methyl-2'-O-methylcytidine*	m³Cm	2.2	2.8	323.23	143.1	15
11	5-carboxylcytidine	ca⁵C	2.54	3.14	390.29	207.14	18
12	5-carboxyl-2'-O-methylcytidine	ca⁵Cm	2.54	3.14	387.28	207.14	18
13	inosine	I	3.3	3.9	337.23	154.08	15
14	2'-O-methylinosine	Im	3.3	3.9	334.21	154.08	15
15	1-methylinosine	m¹l	3.3	3.9	334.21	151.06	15
16	1,2'-O-dimethylinosine	m¹lm	3.3	3.9	331.19	151.06	15
17	5-methylcytidine	m⁵C	3.35	3.95	343.25	160.14	15
18	5,2'-O-dimethylcytidine	m⁵Cm	3.35	3.95	340.26	160.14	15
19	N ⁴ -acetylcytidine	ac ⁴ C	3.35	4.15	354.24	171.1	15
20	N ⁴ -acetyl-2'-O-methylcytidine	ac ⁴ Cm	3.35	4.15	351.22	171.1	15
21	2-thiocytidine	s²C	3.4	4	345.24	162.1	15
22	dihydrouridine	D	3.6	4.4	315.23	191.13	20
23	1-methylpseudouridine*	m¹Y	4.3	4.9	327.23	203.13	18
24	3-methylpseudouridine*	m³Y	4.3	4.9	327.23	203.13	18
25	pseudouridine	Y	4.3	4.9	330.25	206.15	18
26	2'-O-methylpseudouridine	Ym	4.3	4.9	327.23	206.15	18
27	5-hydroxymethylcytidine	hm⁵C	4.6	5.3	376.31	193.16	18
28	2'- <i>O</i> -Methyl-5-	hm⁵Cm	4.6	5.3	373.29	193.16	18
	hydroxymethylcytidine						
29	N ⁶ -acetyladenosine	ac ⁶ A	4.9	5.5	378.25	195.11	20
30	3-methyluridine	m³U	5.2	5.8	310.2	127.05	18
31	3,2'-O-dimethyluridine	m³Um	5.2	5.8	307.18	127.05	18
32	2-thiouridine	s²U	5.2	5.8	329.19	146.05	10
33	2-thio-2'-O-methyluridine	s²Um	5.2	5.8	326.17	146.05	10
34	uridine	U	5.2	5.8	313.22	130.07	18
35	2'-O-methyluridine	Um	5.2	5.8	310.2	130.07	18
36	adenosine	А	5.4	6	353.28	170.13	20
37	2'-O-methyladenosine	Am	5.4	6	350.26	170.13	20

Table S1. The dynamic MRM transitions for monitoring ribonucleosides.

38	2,8-dimethyladenosine	m ^{2,8} A	5.4	6	381.31	198.16	20
39	2-methyladenosine*	m²A	5.4	6	367.29	184.15	20
40	8-methyladenosine*	m ⁸ A	5.4	6	367.29	184.15	20
41	N ⁶ , N ⁶ -dimethyladenosine	m ^{6,6} A	5.6	6	347.24	164.09	20
42	N ⁶ , N ⁶ , 2'-O-trimethyladenosine	m ^{6,6} Am	5.6	6	344.22	164.09	20
43	N ⁶ -methyladenosine*	m ⁶ A	5.6	6	350.26	167.11	20
44	N ⁶ , 2'- O-dimethyladenosine*	m⁵Am	5.6	6	347.24	167.11	20
45	1-methyladenosine*	m¹A	5.6	6	350.26	167.11	20
46	1,2'-O-dimethyladenosine*	m¹Am	5.6	6	347.24	167.11	20
47	5-hydroxyuridine	ho⁵U	5.85	6.45	346.24	163.1	18
48	5-methyldihydrouridine	m⁵D	5.85	6.65	329.25	205.15	20
49	5-hydroxycytidine	ho⁵C	6	6.6	362.3	179.15	15
50	guanosine	G	7.05	7.65	386.31	203.16	18
51	2'-O-methylguanosine	Gm	7.05	7.65	383.29	203.16	18
52	1-methylguanosine*	m¹G	7.05	7.65	383.29	200.14	18
53	2-methylguanosine*	m²G	7.05	7.65	383.29	200.14	18
54	1,2'-O-dimethylguanosine*	m¹Gm	7.05	7.65	380.27	200.14	18
55	2,2'-O-dimethylguanosine*	m²Gm	7.05	7.65	380.27	200.14	18
56	N ² , N ² -dimethylguanosine	m ^{2,2} G	7.05	7.65	380.27	197.12	18
57	N ² ,N ² ,2'-O-trimethylguanosine	m ^{2,2} Gm	7.05	7.65	377.27	197.12	18
58	5-carbamoylmethyluridine	ncm⁵U	7.2	7.8	404.23	221.09	18
59	5-carbamoylmethyl-2'- <i>O</i> - methyluridine	ncm⁵Um	7.2	7.8	401.29	221.16	18
60	5-methyluridine	m⁵U	7.35	7.95	327.23	144.09	18
61	5,2'-O-dimethyluridine	m⁵Um	7.35	7.95	324.21	144.09	18
62	N^2 , N^2 , 7-trimethylguanosine	m ^{2,2,7} G	7.4	8	429.33	246.18	25
63	N ² ,7-dimethylguanosine	m ^{2,7} G	7.4	8	432.35	249.20	25
64	N ² ,7,2'-O-trimethylguanosine	m ^{2,7} Gm	7.4	8	429.33	249.20	25
65	7-methylguanosine	m ⁷ G	7.4	8	435.37	252.22	25
66	N ⁶ -hydroxymethyladenosine	hm ⁶ A	7.45	8.05	383.29	200.14	20
67	5-methoxycarbonylmethyluridine	mcm⁵U	9.45	10.15	405.29	159.1	18
68	5-methoxycarbonylmethyl-2'- <i>O</i> - methyluridine	mcm⁵Um	9.5	10.1	402.28	159.1	18
69	N ⁶ -(cis-	io ⁶ A	11.05	11.55	437.33	254.19	20
	hydroxyisopentenyl)adenosine	6.6.		44.65	500.07		
70	N°-methyl-N°-	mºtºA	11.15	11.65	529.37	346.23	20
71	N ⁶ -threonylcarbamoyladenosine	t ⁶ A	11.15	11.65	532.38	349.24	20
72	N ⁶ -isopentenyladenosine	i ⁶ A	12.6	13.1	404.31	221.16	20
73	8-hydroxyguanosine	ho ⁸ G	12.75	13.35	419.34	236.19	18

* The corresponding compounds have the same transition, and the methyl position can be differentiated with MSⁿ fragmentation.

Ribonucleoside	Retention time (min)	Peak Width (min)	Plate number (N)
С	1.22	0.08	3721
U	1.71	0.1	4679
А	2.56	0.15	4660
G	2.71	0.16	4590
C (permethylated)	2.51	0.1	10080
U (permethylated)	5.38	0.16	18090
A (permethylated)	5.67	0.18	15876
G (permethylated)	7.3	0.18	26316

Table S2. Summary of the number of theoretical plates for underivatized and permethylated ribonucleoside analyses.

Ribonucleoside	[Mass+H]	Calibration Curve	Linear Range		LOQ	Linear Regression	CV
			(µg/mL)	(fmol)	(fmol)	(<i>R</i> ²)	(%)
А	353.28	Y = 434596*X + 995861	0.0001-0.2	0.028	0.094	0.998	5.70
G	386.31	Y = 154199*X + 402855	0.0001-0.2	0.026	0.086	0.998	2.09
С	329.27	Y = 413520*X - 89569	0.001-0.2	0.030	0.101	0.998	6.51
m⁵C	343.25	Y = 1317655*X + 7545963	0.001-0.2	0.029	0.097	0.998	3.11
U	313.22	Y = 6470*X + 17004	0.001-0.5	0.319	1.064	0.998	4.82
m⁵U	327.23	Y = 24213*X + 346904	0.001-0.5	0.306	1.019	0.996	4.39
D	315.23	Y = 55.33*X + 457.3	0.02-0.5	6.344	21.149	0.998	6.18
m⁵D	329.25	Y = 1161*X + 22377	0.02-0.5	6.074	20.248	0.995	3.02
I	337.23	Y = 32018*X + 96970	0.0001-0.2	0.030	0.099	0.992	3.56
Y	330.25	Y = 19897*X + 120645	0.0001-0.5	0.303	1.009	0.998	4.29
hm⁵C	376.31	Y = 2533470*X + 21278753	0.0001-0.2	0.027	0.089	0.994	3.16
s²U	329.19	Y = 5733*X + 4050	0.001-0.2	0.304	0.113	0.996	4.05
io ⁶ A	437.33	Y = 195785*X + 619394	0.00001-0.2	0.023	0.076	0.995	3.36
t ⁶ A	532.38	Y = 3490*X + 40604	0.0001-1	0.019	0.063	0.995	7.37
i ⁶ A	404.31	Y = 371114*X + 2088335	0.0001-0.2	0.025	0.082	0.992	1.92
f⁵C	357.26	Y = 49678*X - 1638376	0.001-1	1.3995	4.665	0.994	4.56

Table S3. Summary of linearities of permethylated ribonucleoside standards.