

Supplementary Material

A systematic data-driven approach to analyze sensor-level EEG connectivity:

Identifying robust phase-synchronized network components using

surface Laplacian with spectral-spatial PCA

Ezra E. Smith a, Tarik S. Bel-Bahar a, & Jürgen Kayser a,b,*

a Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA

b Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York,

NY, USA

Psychophysiology, 2022 (accepted 7 April 2022)

* Corresponding author: Jürgen Kayser, New York State Psychiatric Institute, Unit 50, 1051

Riverside Drive, New York, NY 10032, USA. Tel.: +1 646 774 5207; E-mail address:

jurgen.kayser@nyspi.columbia.edu

mailto:jurgen.kayser@nyspi.columbia.edu

13.7% (33.4%)
0.992

6.5% (15.8%)
0.947

5.5% (13.4%)
0.890

3.6% (8.9%)
0.969

13.4% (32.5%)
0.992

7.0% (17.1%)
0.961

5.6% (13.5%)
0.924

3.9% (9.5%)
0.971

14.7% (35.8%)
0.994

10.6% (25.7%)
0.994

2.3% (5.7%)
0.956

2.2% (5.3%)
0.925

15.1% (36.7%)
0.994

10.5% (25.7%)
0.992

1.8% (4.4%)
0.923

1.7% (4.1%)
0.912

Odd

Even

Odd

Even

Se
ss

io
n

1
Se

ss
io

n
2

12.6% (30.6%)
0.962

8.3% (20.2%)
0.953

11.4% (27.7%)
0.941

16.6% (40.5%)
0.971

14.7% (35.9%)
0.984

5.5% (13.3%)
0.975

1.3% (3.2%)
0.869

6.9% (16.9%)
0.969

13.5% (32.8%)
0.885

8.7% (21.2%)
0.937

13.5% (32.8%)
0.877

13.7% (33.4%)
0.992

6.5% (15.8%)
0.947

5.5% (13.4%)
0.890

3.6% (8.9%)
0.969

13.4% (32.5%)
0.992

7.0% (17.1%)
0.961

5.6% (13.5%)
0.924

3.9% (9.5%)
0.971

14.7% (35.8%)
0.994

10.6% (25.7%)
0.994

2.3% (5.7%)
0.956

2.2% (5.3%)
0.925

15.1% (36.7%)
0.994

10.5% (25.7%)
0.992

1.8% (4.4%)
0.923

1.7% (4.1%)
0.912

12.6% (30.6%)
0.962

8.3% (20.2%)
0.953

11.4% (27.7%)
0.941

16.6% (40.5%)
0.971

14.7% (35.9%)
0.984

5.5% (13.3%)
0.975

1.3% (3.2%)
0.869

6.9% (16.9%)
0.969

13.5% (32.8%)
0.885

8.7% (21.2%)
0.937

13.5% (32.8%)
0.877

14.7% (35.7%) 9.6% (23.4%) 2.9% (7.1%) 2.0% (5.0%)

1

249
Entire

Dataset

14.7% (35.7%) 9.6% (23.4%) 2.9% (7.1%) 2.0% (5.0%)

0

25

10.2 Hz

CU
(n = 10)

MG
(n = 9)

TX
(n = 9)

UM
(n = 7)

Figure S1. Edge and node strength of mid-alpha (10.2 Hz) spatial FC components identified in the step-two PCA applied to subsample data sets
using step-one PCA components derived from the entire dataset (cf. Figures 2 and 3). For comparison, the top row shows edge and node strength
topographies of the first 4 spatial FC components obtained for the original PCA solution. Rows depicts the best match for each subsample PCA
solution, as determined by Tucker’s congruence coefficients ɸ (plotted in italics at the top left corner of each map); only loading maps having at
least “fair similarity” (ɸ ≥ .85) are shown. Rows 2-5 show results for subsamples (N = 35) created by crossing session (1/2) with epoch (odd/even);
rows 6-9 show those for subgroups based on EEG acquisition site (n = 7-10). Each subplot title lists the total variance explained and the
corresponding step-two variance (in parentheses). Note that for subgroup UM (row 9), the same spatial FC component provided the best match for
two different spatial FC components of the entire dataset (row 9, columns 1/5 and 3/7, respectively).

CU
(n = 10)

MG
(n = 9)

TX
(n = 9)

UM
(n = 7)

Odd

Even

Odd

Even

Se
ss

io
n

1
Se

ss
io

n
2

1

249
Entire

Dataset 0

25

3.6% (23.2%)
0.990

2.4% (15.6%)
0.983

2.4% (15.2%)
0.982

3.5% (22.7%)
0.990

2.4% (15.6%)
0.972

1.8% (11.8%)
0.980

1.4% (8.8%)
0.939

2.8% (17.9%)
0.983

2.4% (15.6%)
0.984

2.2% (14.2%)
0.974

3.0% (19.3%)
0.982

2.6% (16.5%)
0.975

2.0% (12.8%)
0.969

4.2% (26.9%)
0.984

2.1% (13.5%)
0.958

3.9% (24.9%)
0.992

4.0% (26.1%)
0.938

1.6% (10.4%)
0.921

4.2% (27.3%)
0.950

4.0% (26.0%)
0.928

2.5% (16.2%)
0.941

3.6% (23.2%)
0.990

2.4% (15.6%)
0.983

2.4% (15.2%)
0.982

3.5% (22.7%)
0.990

2.4% (15.6%)
0.972

1.8% (11.8%)
0.980

1.4% (8.8%)
0.939

2.8% (17.9%)
0.983

2.4% (15.6%)
0.984

2.2% (14.2%)
0.974

3.0% (19.3%)
0.982

2.6% (16.5%)
0.975

2.0% (12.8%)
0.969

4.2% (26.9%)
0.984

2.1% (13.5%)
0.958

3.9% (24.9%)
0.992

4.0% (26.1%)
0.938

1.6% (10.4%)
0.921

4.2% (27.3%)
0.950

4.0% (26.0%)
0.928

2.5% (16.2%)
0.941

3.3% (20.8%) 2.6% (16.6%) 2.1% (13.7%) 0.5% (3.5%)3.3% (20.8%) 2.6% (16.6%) 2.1% (13.7%) 0.5% (3.5%)
8.0 Hz

Figure S2. Edge and node strength of low-alpha (8.0 Hz) spatial FC components (all other details as in Figure S1).

Odd

Even

Odd

Even

Se
ss

io
n

1
Se

ss
io

n
2

1

249
Entire

Dataset 0

25

2.5% (19.6%)
0.937

2.4% (19.1%)
0.943

2.6% (20.3%)
0.883

2.3% (18.2%)
0.931

1.3% (10.3%)
0.880

3.2% (25.8%)
0.962

2.3% (18.5%)
0.952

2.0% (15.7%)
0.951

2.6% (20.7%)
0.911

3.7% (29.2%)
0.951

2.5% (19.6%)
0.937

2.4% (19.1%)
0.943

2.6% (20.3%)
0.883

2.3% (18.2%)
0.931

1.3% (10.3%)
0.880

3.2% (25.8%)
0.962

2.3% (18.5%)
0.952

2.0% (15.7%)
0.951

2.6% (20.7%)
0.911

3.7% (29.2%)
0.951

2.6% (20.6%)
0.967

2.3% (18.1%)
0.988

1.7% (13.6%)
0.941

2.6% (20.9%)
0.978

2.6% (20.8%)
0.985

1.5% (12.2%)
0.964

3.0% (24.2%)
0.988

1.5% (11.8%)
0.965

1.4% (11.1%)
0.972

1.0% (8.0%)
0.975

2.9% (23.0%)
0.986

1.4% (10.8%)
0.882

1.3% (10.1%)
0.970

1.0% (7.8%)
0.974

2.6% (20.6%)
0.967

2.3% (18.1%)
0.988

1.7% (13.6%)
0.941

2.6% (20.9%)
0.978

2.6% (20.8%)
0.985

1.5% (12.2%)
0.964

3.0% (24.2%)
0.988

1.5% (11.8%)
0.965

1.4% (11.1%)
0.972

1.0% (8.0%)
0.975

2.9% (23.0%)
0.986

1.4% (10.8%)
0.882

1.3% (10.1%)
0.970

1.0% (7.8%)
0.974

3.0% (23.5%) 2.2% (17.3%) 1.3% (10.6%) 0.5% (4.2%)3.0% (23.5%) 2.2% (17.3%) 1.3% (10.6%) 0.5% (4.2%)
13.0 Hz

CU
(n = 10)

MG
(n = 9)

TX
(n = 9)

UM
(n = 7)

Figure S3. Edge and node strength of high-alpha (13.0 Hz) spatial FC components (all other details as in Figure S1).

Odd

Even

Odd

Even

Se
ss

io
n

1
Se

ss
io

n
2

1

249
Entire

Dataset 0

25

4.2 Hz

0.3% (5.8%)
0.861

0.5% (8.0%)
0.858

0.4% (7.6%)
0.869

0.3% (5.8%)
0.861

0.5% (8.0%)
0.858

0.4% (7.6%)
0.869

0.3% (4.9%)
0.856

0.3% (4.9%)
0.856

0.2% (2.9%) 0.1% (1.2%) 0.1% (1.0%) 0.0% (0.8%)0.2% (2.9%) 0.1% (1.2%) 0.1% (1.0%) 0.0% (0.8%)

CU
(n = 10)

MG
(n = 9)

TX
(n = 9)

UM
(n = 7)

Figure S4. Edge and node strength of low-theta (4.2 Hz) spatial FC components (all other details as in Figure S1).

Odd

Even

Odd

Even

Se
ss

io
n

1
Se

ss
io

n
2

1

249
Entire

Dataset 0

25

6.3 Hz

0.6% (10.8%)
0.901

0.7% (12.3%)
0.946

0.7% (12.4%)
0.944

1.0% (16.8%)
0.914

0.5% (8.7%)
0.928

0.8% (13.6%)
0.860

0.6% (10.8%)
0.901

0.7% (12.3%)
0.946

0.7% (12.4%)
0.944

1.0% (16.8%)
0.914

0.5% (8.7%)
0.928

0.8% (13.6%)
0.860

0.6% (9.4%)
0.906

0.3% (5.5%)
0.929

0.5% (8.6%)
0.903

0.3% (5.7%)
0.926

0.6% (10.7%)
0.971

0.6% (9.7%)
0.901

0.6% (10.8%)
0.971

0.6% (10.0%)
0.888

0.6% (9.4%)
0.906

0.3% (5.5%)
0.929

0.5% (8.6%)
0.903

0.3% (5.7%)
0.926

0.6% (10.7%)
0.971

0.6% (9.7%)
0.901

0.6% (10.8%)
0.971

0.6% (10.0%)
0.888

0.5% (8.4%) 0.3% (5.6%) 0.2% (4.3%) 0.2% (4.2%)0.5% (8.4%) 0.3% (5.6%) 0.2% (4.3%) 0.2% (4.2%)

CU
(n = 10)

MG
(n = 9)

TX
(n = 9)

UM
(n = 7)

Figure S5. Edge and node strength of mid-theta (6.3 Hz) spatial FC components (all other details as in Figure S1).

Odd

Even

Odd

Even

Se
ss

io
n

1
Se

ss
io

n
2

1

249
Entire

Dataset 0

25

5.1 Hz

0.5% (8.7%)
0.867

0.5% (8.7%)
0.867

0.1% (2.7%) 0.1% (1.6%) 0.1% (1.2%) 0.0% (0.9%)0.1% (2.7%) 0.1% (1.6%) 0.1% (1.2%) 0.0% (0.9%)

CU
(n = 10)

MG
(n = 9)

TX
(n = 9)

UM
(n = 7)

Figure S6. Edge and node strength of low/mid-theta (5.1 Hz) spatial FC components (all other details as in Figure S1).

-1

0

1

2

Posterior
mid-alpha (10.2 Hz)

ICC = .915

-1

0

1

2

Posterior
high-alpha (13.0 Hz)

ICC = .869

-1

0

1

2

Frontal
mid-alpha (10.2 Hz)

ICC = .866

-1

0

1

2

Lateral posterior-anterior
high-alpha (13.0 Hz)

ICC = .955

-1

0

1

2

Posterior
low-alpha (8.0 Hz)

ICC = .832

-1

0

1

2
ICC = .931

-1

0

1

2

Mid posterior-anterior
low-alpha (8.0 Hz)

ICC = .698

-1

0

1

2

Midfrontal
theta (6.3 Hz)

ICC = .819

C
om

po
ne

nt
 S

co
re

Session 1 2

A

B

C

D

E

F

G

H

Sensorimotor
high-alpha (13.0 Hz)

Participants
#1 #5 #10 #20 #30 #35

Participants
#1 #5 #10 #20 #30 #35

Figure S7. Replotting of Fig. 4 without resorting participants by their maximum score across sessions for each component. The
order of participants obtained for panel A is maintained for all other panels (B-H). Across RSNs, different participants contributed
the largest (and smallest) component scores.

8 10 12 14
0.0

5.0

10.0
18 years (#8)

8 10 12 14
2.0

3.0

4.0

5.0

6.0
18 years (#19)

8 10 12 14
1.0

1.5

2.0

2.5

3.0
19 years (#16)

8 10 12 14
2.0

3.0

4.0

5.0

6.0
23 years (#20)

8 10 12 14

5.0

10.0

15.0
23 years (#33)

8 10 12 14

4.0

6.0

8.0

10.0
24 years (#22)

8 10 12 14

4.0

6.0

8.0

10.0
24 years (#23)

8 10 12 14
2.0

4.0

6.0

8.0

10.0
24 years (#28)

8 10 12 14
1.5

2.0

2.5

3.0
25 years (#9)

8 10 12 14
1.0

2.0

3.0

4.0
25 years (#14)

8 10 12 14
0.0

5.0

10.0
25 years (#29)

8 10 12 14
1.5

2.0

2.5

3.0

3.5
26 years (#18)

8 10 12 14
2.0

4.0

6.0

8.0

10.0
26 years (#26)

8 10 12 14
0.0

5.0

10.0

15.0

20.0
26 years (#27)

8 10 12 14
2.0

4.0

6.0

8.0

10.0
27 years (#4)

8 10 12 14
2.0

4.0

6.0

8.0

10.0
27 years (#30)

8 10 12 14
0.0

5.0

10.0
28 years (#5)

8 10 12 14
0.0

2.0

4.0

6.0

8.0
28 years (#13)

8 10 12 14

4.0

6.0

8.0

10.0

32 years (#10)

8 10 12 14

5.0

10.0

15.0
33 years (#31)

8 10 12 14

4.0

6.0

8.0

10.0
36 years (#2)

8 10 12 14
5.0

10.0

15.0

20.0
38 years (#21)

8 10 12 14

4.0

6.0

8.0

10.0

12.0
38 years (#24)

8 10 12 14
1.5

2.0

2.5

3.0

3.5
39 years (#25)

8 10 12 14
2.0

3.0

4.0

5.0

6.0

41 years (#1)

8 10 12 14
2.0

4.0

6.0

8.0
43 years (#3)

8 10 12 14
0.0

5.0

10.0

15.0
46 years (#7)

8 10 12 14
2.0

3.0

4.0

5.0
50 years (#32)

8 10 12 14

4.0

6.0

8.0

10.0
54 years (#6)

8 10 12 14

2.0

3.0

4.0

5.0

6.0
57 years (#11)

8 10 12 14
1.0

1.1

1.2

1.3

1.4
58 years (#15)

8 10 12 14
1.5

2.0

2.5

58 years (#35)

8 10 12 14
2.0

4.0

6.0

8.0

10.0
61 years (#17)

8 10 12 14
1.0

1.5

2.0
62 years (#34)

8 10 12 14
1.5

2.0

2.5

3.0
65 years (#12)

8 10 12 14
Frequency [Hz]

2.0

3.0

4.0

5.0

6.0

A
m

pl
itu

de
 [µ

V/
m

²]

FFT Spectra (N = 35)

EO
EC

8 10 12 14
20

30

40

50

60

A
ge

 [y
ea

rs
]

 EO r = -0.07, p = 0.67

8 10 12 14
20

30

40

50

60

A
ge

 [y
ea

rs
]

 EC r = -0.13, p = 0.47

EEG montageIAF [Hz] IAF [Hz]

Figure S8. Individual current source density (CSD) amplitude spectra (µV/m²) for eyes open (EO) and eyes closed (EC) conditions
pooled across 19 posterior scalp sites (marked green in bottom row inset). Plots for 35 healthy adults (rows 1-7) are sorted by
participants’ age as noted in subplot title (with subject number). Arrows above abscissa mark individual alpha frequency (IAF)
peaks for each condition that were determined as local maxima between 6 and 15 Hz. Grand mean amplitude spectra (N = 35) are
shown in bottom row (column 1) along with scatterplots between IAF and age for each condition (columns 3 and 4). Despite the
sample’s considerable age range (18 to 65 years), age was not systematically associated with IAF estimates (Pearson’s r).
Likewise, no age/IAF relationship was observed at any of these 19 posterior sites for either condition (−.24 < r < .22, all p > .16).
Importantly, IAF estimates varied considerably across the scalp, manifesting as multiple local maxima in the pooled spectra (e.g.,
see subjects #4, #31 and #1 in rows 3-5, column 5), which is consistent with prior alpha generator findings (e.g., Smith et al., 2020).

Supplement A

The following excerpts of Matlab code (The MathWorks, Inc., 2022) document the data

dimensions and critical computations corresponding to the steps depicted in Figure 1.

All code snipsets and functions can be retrieved from

http://psychophysiology.cpmc.columbia.edu/CSDfcPCA2022supplA.html.

For the purpose of this documentation, we assume that the preprocessed EEG epochs

(artifact-corrected, only valid trials, referenced to any arbitrary scheme [e.g., Nose,

linked mastoids, common average]) are stored for each participant in an EEGlab

structure EEG (Delorme & Makeig, 2004). Resting EEG conditions (eyes open

[O]/closed [C]) are appropriately coded (e.g., the block sequence O-C-C-O was coded

as 110-20-30-140). For a single subject, the following data dimensions apply (not all

fields are shown; cf. Figure 1A):

load('EEG1.mat'); % load EEGlab EEG structure for single subject (session 1)

EEG =

 struct with fields:

 setname: 'Neuroscan EEG data pruned with ICA'

 comments: 'Original file: EEG1Bart.eeg'

 nbchan: 71

 trials: 710

 pnts: 512

 srate: 256

 xmin: -0.9990

 xmax: 0.9971

 data: [71×512×710 double]

 epoch: [1×710 struct]

EEG.times = [EEG.xmin:1/EEG.rate:EEG.xmax]*1000; % timeline for each epoch [ms]

Epoch tabulating reveals that 428 eyes-closed and 282 eyes-open epochs are included:

T = tabulate(cell2mat({EEG.event.epochtype}));

table(T(T(:,2)>0,:))

ans =

 4×1 table

 Var1

 20 214 30.141

 30 214 30.141

 110 143 20.141

 140 139 19.577

The respective indices of eyes-closed (EC) and eyes-open (EO) epochs are:

ec_idx = find(cell2mat({EEG.event.epochtype}) == 20 | ...

 cell2mat({EEG.event.epochtype}) == 30);

eo_idx = find(cell2mat({EEG.event.epochtype}) == 110 | ...

 cell2mat({EEG.event.epochtype}) == 140);

Spherical spline interpolations (Perrin et al., 1989) as implemented in the CSD toolbox

(Kayser, 2009; for a hands-on tutorial, see

https://psychophysiology.cpmc.columbia.edu/software/csdtoolbox/tutorial.html) may be

used to transform these EEG epochs to corresponding CSD epochs:

E = {EEG.chanlocs.labels}'; % get EEG montage and predefined ...

M = ExtractMontage('10-5-System_Mastoids_EGI129.csd',E); % ... scalp locations

[G,H] = GetGH(M,4); % create transformation matrices (spline flexibility = 4)

C = CSD(EEG.data,G,H);

Given the sample-by-sample character of the CSD transformation, all data dimensions

(channels × samples × epochs), including EC/EO indices, are maintained (cf. Figure

1A):

size(EEG.data) % matrix dimension (channels-by-samples-by-epochs)

ans =

 71 512 710

size(C) % matrix dimension (channels-by-samples-by-epochs)

ans =

 71 512 710

EEG.data = C; % assign CSD-transformed epochs to EEG structure

Assuming that the same EEG montage is present for each data recording, the existing

G and H transformation matrices can be used for all other EEG recordings (i.e., subjects

× sessions).

Closely following the Matlab code published by Cohen (2014, chapter 26), dwPLI

functional connectivity matrices were calculated from the CSD-transformed epochs for

each subject and for all conditions (session × eyes open/closed × odd/even epochs)

using wavelets as follows (cf. Figure 1C):

fx_range = [2 50]; % set frequency range …

num_frex = 40; % … and number of frequencies

frex = logspace(log10(fx_range(1)),log10(fx_range(2)),num_frex); % wavelet ...

s_all = logspace(log10(3),log10(10),num_frex)./(2*pi*frex); % ... family

dwPLI = zeros(EEG.nbchan,EEG.nbchan,EEG.trials,num_frex); % initialize FC matrix

time2analyze = [-500 500]; % specify time-frequency parameters [ms]

tidx = dsearchn(EEG.times', time2analyze'); % time to analyze in indices

 % setup wavelets

time = -1:1/EEG.srate:1; % time [s]

half_wavelet = (length(time)-1)/2; % ½-wavelet time points

n_wavelet = length(time); % number of wavelet time points

n_data = EEG.pnts*EEG.trials; % total number of data points

n_convol = n_wavelet+n_data-1; % number of convolution points

WaveletFFT_ = @(nfx,time,n_convol) ... % box function for wavelet FFT:

 fft(exp(2*1i*pi*frex(nfx).*time) .* ... % nfx = frequency index for ...

 exp(-time.^2./(2*(s_all(nfx)^2))), ... % ... center frequency

 n_convol);

sig_ = @(i,A) squeeze(A(i,tidx(1):tidx(2),:)); % box function for data extraction

xsd_ = @(sg1,sg2) sg1 .* conj(sg2); % box function for complex conjugate

for nfx = 1:num_frex % loop on center frequencies

 tic

 disp(sprintf('%3d/%3d looping. Calculating FC for: %.4f Hz', ...

 nfx,num_frex,frex(nfx)));

 center_freq = frex(nfx); % center frequency [Hz]

 dwpli = zeros(EEG.nbchan,EEG.nbchan,EEG.trials); % initialize fc matrix

 wavelet_fft = WaveletFFT_(nfx,time,n_convol); % create wavelet for FFT

 ASig = zeros(EEG.nbchan,EEG.pnts,EEG.trials); % initialize signal matrix

 for chani = 1:EEG.nbchan % compute analytic signal for all channels

 data_fft = fft(reshape(EEG.data(chani,:,:),1,n_data), ... % FFT of data

 n_convol);

 conv_result = ifft(wavelet_fft.*data_fft,n_convol); % convolution

 conv_result = conv_result(half_wavelet+1:end-half_wavelet);

 ASig(chani,:,:) = reshape(conv_result,EEG.pnts,EEG.trials);

 end

 SIG = zeros(half_wavelet+1,size(ASig,3),EEG.nbchan); % initialize SIG matrix

 for ii = 1:EEG.nbchan; SIG(:,:,ii) = sig_(ii,ASig); end; % assign signals

 for chani = 1:EEG.nbchan-1 % compute dwPLI for all unique channel pairs

 sig1 = SIG(:,:,chani); % extract data for first channel

 for chanj = chani+1:EEG.nbchan

 sig2 = SIG(:,:,chanj); % extract data for second channel

 xsd = xsd_(sig1,sig2); % complex conjugate

 cdi = imag(xsd); % take imaginary part of signal only

 imagsum = sum(cdi);

 imagsumW = sum(abs(cdi));

 debiasfactor = sum(cdi.^2);

 dwpli(chani,chanj,:) = ... % fc matrix

 (imagsum.^2 - debiasfactor)./(imagsumW.^2 - debiasfactor);

 end

 end

 dwPLI(:,:,:,nfx) = dwpli; % assign data for this center frequency to FC matrix

 toc

end

Means for each condition of interest can now be easily obtained from the dwPLI matrix:

 % compute means for each condition

EO = squeeze(mean(dwPLI(:,:,eo_idx,:),3)); % mean FC for eyes open ...

EC = squeeze(mean(dwPLI(:,:,ec_idx,:),3)); % ... and eyes closed ...

EO_odd = squeeze(mean(dwPLI(:,:,eo_idx([1:2:end]),:),3)); % ... EO odd epochs ...

EO_even = squeeze(mean(dwPLI(:,:,eo_idx([2:2:end]),:),3)); % ... EO even epochs ...

EC_odd = squeeze(mean(dwPLI(:,:,ec_idx([1:2:end]),:),3)); % ... EC odd epochs ...

EC_even = squeeze(mean(dwPLI(:,:,ec_idx([2:2:end]),:),3)); % ... EC even epochs

Example code for visualizing an FC matrix:

% visualize FC matrix for first frequency (eyes closed, odd)

for nfx = 21

 idx=triu(ones(EEG.nbchan),+1);

 ec_odd = EC_odd(:,:,nfx);

 ec_odd(~idx)=nan;

 figure('name','FC Matrix');

 ax = imagesc(ec_odd,[min(ec_odd,[],'all') max(ec_odd,[],'all')]);

 xlabel('Site','FontWeight','bold');

 ylabel('Site','FontWeight','bold');

 h = colorbar;

 ylabel(h,'dwPLI');

 colormap([1 1 1; jet]);

 title(sprintf('Subject #%d, %s, %.1f Hz',1,'EC odd',frex(nfx)));

end

After obtaining all FC matrices (subject × session × eyes open/closed × odd/even
epochs), all dwPLI values are re-arranged into an edges-by-frequency bins matrix:

n_sites = EEG.nbchan; % number of electrode sites

n_edges = (n_sites * (n_sites-1))/2; % number of unique channel pairs

A = zeros(n_edges,num_frex); % initialize matrix

for nfx = 1:num_frex % loop through all frequencies

 ec_odd = EC_odd(:,:,nfx); % get FC matrix for one condition and mark ...

 ec_odd(~idx)=nan; % ... lower triangle and diagonale as NaN

 d = reshape(ec_odd,n_sites^2,1); % reshape to column vector and ...

 A(:,nfx) = d(~isnan(d)); % ... remove all NaNs

end

B = zeros(n_edges,2*num_frex); % initialize matrix for frequency interpolation

InterpFreqs = logspace(log10(fx_range(1)),log10(fx_range(2)),2*num_frex);

for c = 1:n_edges % loop through all edges

 B(c,:) = interp1(frex,A(c,:),InterpFreqs); % interpolate frequency bins

end

fx_range2 = [3 16]; % set new frequency range [Hz]

R = InterpFreqs >= fx_range2(1) & InterpFreqs <= fx_range2(2);

frex2 = InterpFreqs(R); % interpolated frequency bin vector

B2 = B(:,R); % matrix for interpolated new frequency range

frex2([1:4 end-3:end]) % first and last four interpolated frequency bins

ans =

 3.0060 3.1310 3.2612 3.3968 ... 14.1388 14.7267 15.3392 15.9771

size(B2) % matrix dimension (edges-by-frequency bins)

ans =

 2485 42

After re-arranging all FC matrices (subject × session × eyes open/closed × odd/even
epochs), these are vertically concatenated to create a single 2-D data matrix, consisting
of 695,800 observations or cases (rows = 35 subjects × 2 sessions × 2 eyes
open/closed × 2 odd/even epochs × 2485 edges) and 42 variables (columns). With this
combined data matrix D1, a solution for step 1 (spectral FC PCA) is obtained as follows
(cf. Figure 1D):

size(D1) % dimensions (edges-by-frequency bins) of dwPLI data matrix

disp(sprintf('dwPLI value range: %.3f .. %.3f',min(min(D1)),max(max(D1))));

Y = erpPCA_Varimax4M_progress(D1) % PCA solution for step 1

The core function erpPCA_Varimax4M_progress.m is an improved implementation of

function erpPCA.m originally published in the appendix of Kayser & Tenke (2003). This

original function, along with two required Matlab routines (Varimax4M.m, SimplicityG.m),

can be retrieved from

https://psychophysiology.cpmc.columbia.edu/mmedia/Kayser2003a/Appendix.html.

The PCA solution Y includes the rotated factor loadings LR, a variance table VT, and

the grand mean mu with its standard deviation sigma:

Y =

 struct with fields:

 LU: [42×23 double]

 LR: [42×23 double]

 FSr: [695800×12 double]

 VT: [23×4 double]

 G: [23×4 double]

 mu: [1×42 double]

 sigma: [1×42 double]

 FSCFr: [42×23 double]

 rank: 23

The factor loadings can be labelled and visualized as follows:

figure('name','Spectral FC Loadings');

n_factors = size(Y.LR,2); % number of extracted PCA factors

[m,idx] = max(Y.LR); % get maxima of factor loadings with index

clear flab; % get labels: peak loadings frequency (variance explained)

for i = 1:n_factors

 fspec = ['%4.1f Hz (%4.1f%%)'];

 flab(i,:) = {sprintf(fspec,frex2(idx(i)),Y.VT(i,4))};

end;

R = Y.VT(:,4) >= 1; % plot factor loadings >= 1% explained variance

plot(frex2,Y.LR(:,R'));

xlabel('Frequency [Hz]');

ylabel('dwPLI');

ax = gca;

ax.XLim = [frex2(1)-0.2 frex2(end)+0.2];

title('PCA factor loadings');

legend(flab(R),'location','northwest');

For the next step (cf. Figure 1E), each factor of interest is back-projected to dwPLI data

space using the fact that a PCA solution represents a linear, multivariate decomposition

of the original data matrix, which is now represented by factor loadings (across

variables), associated factor scores (across cases), and the matrix grand mean. Using

all extracted factors and the grand mean with an unrestricted PCA solution will recreate

the original data matrix (see also the appendix of Kayser et al., 2019). Conversely,

using only a subset of factors will create a virtual data matrix, effectively a factor-based

filter of the original data. In the current scenario, only a single factor was back-projected

at a time without re-inserting the grand mean to the recreated data matrix:

theFact = 1; % spectral factor for back-projection ...

disp(sprintf('Factor %d: %s',theFact,flab{theFact}));

U = Y.FSr(:,theFact) * Y.LR(:,theFact)'; % ... to dwPLI unit space

size(U) % matrix dimension (all edges-by-frequency bins)

For the final step, the back-projected dwPLI values in the matrix U are transposed for
each FC matrix (i.e., from 2,485 edges × 42 frequency bins to 42 frequency bins ×
2,485 edges):

n_freqs = size(U,2); % number of frequency bins

n_all = size(U,1)/n_edges; % number of all FC matrices

D2 = zeros(n_all*n_freqs,n_edges); % initialize re-arranged matrix <U>

for i = 1:n_all

 D2((i-1)*n_freqs+1:i*n_freqs,:) = ... % transpose each FC matrix and ...

 U((i-1)*n_edges+1:i*n_edges,:)'; % ... assign to new matrix <D2>

end

With this new spectrally-filtered FC data matrix D2, a solution for step 2 (spatial FC
PCA) is obtained as follows (cf. Figure 1F):

Y2 = erpPCA_Varimax4M_progress(D2) % PCA solution for step 2

Y2 =

 struct with fields:

 LU: [2485×280 double]

 LR: [2485×280 double]

 FSr: [11760×245 double]

 VT: [280×4 double]

 G: [101×4 double]

 mu: [1×2485 double]

 sigma: [1×2485 double]

 FSCFr: [2485×280 double]

 rank: 280

For additional step-2 PCAs involving data subsets, component extraction was restricted

to 50 to reduce computation time using the modified syntax:

Y2 = erpPCA_Varimax4M_progress(D2,'rank',50) % syntax for data subsets

These step-2 factor loadings can be visualized as follows:

figure('name','Spatial FC Loadings');

theFact2 = 1; % spatial factor selected for visualization

subplot(1,2,1); % plot edges

axis square;

load('chanlocs.mat'); % load EEGlab structure with EEG montage locations

pct2display = 10; % display top 10% of loadings

load('mod_parula.mat'); % load and assign a color ...

cmap = colormap(mod_parula); % ... map for plotting

ConnPCA_Plot_Pct_Top_Links(Y2.LR,theFact,n_sites,chanlocs,pct2display,cmap);

cbe = colorbar;

topidx = 1:round([(pct2display/100)*size(Y2.LR,1)]);

set(cbe,'Position',[.46 .46 .04 .2], ... % include scale

 'Ticks',[0 1],'TickLabels',[1 length(topidx)],'FontWeight','bold');

Step1Var = Y.VT(theFact,4); % variance of step-1 PCA solution

Step2Var = Y2.VT(theFact2,4); % variance of step-2 PCA solution

Step1x2Var = (Step1Var/100)*(Step2Var/100)*100; % total explained variance

title(sprintf('Edges (top %.0f%%)',pct2display));

The function ConnPCA_Plot_Pct_Top_Links.m, an adaption of routines developed by Johann
(2022), depicts the strongest edges (specified here as the top 10%) via a head map
showing linked pairs of sites (left subplot in figure below).

subplot(1,2,2); % plot node degree

[B,I] = sort(Y2.LR(:,theFact2),1,'descend'); % identify suprathreshold connections

top_loads = I(topidx);

axis square;

nLR = nan(n_edges,1);

nLR(top_loads,1) = Y2.LR(top_loads,theFact2);

binarizedLR = nLR(:,1);

binarizedLR(~isnan(binarizedLR)) = 1;

adjmat = nan(n_sites,n_sites);

c = 0;

for i = 1:n_sites-1

 for j = i+1:n_sites

 c = c + 1;

 adjmat(i,j) = binarizedLR(c,1);

 end

end

symmat = triu(adjmat) + triu(adjmat)';

node_degree = nansum(symmat);

topoplot_MG(node_degree,chanlocs, 'electrodes','off', 'style','map', ...

 'shading','interp', 'whitebk','on', ...

 'maplimits',[0 max(node_degree)],'colormap',cmap);

cbn = colorbar;

set(cbn,'Position',[.92 .46 .04 .2], ... % include scale

 'Ticks',[0 max(node_degree)],'TickLabels',[1 max(node_degree)], ...

 'FontWeight','bold');

title(sprintf('Nodes (top %.0f%%)',pct2display));

set(gcf,'color','w'); % set figure background to white

The EEGlab function topoplot_MG.m (modified from its original topoplot.m [© Colin
Humphries & Scott Makeig] by Michael Goldstein) was used to depict the most-
connected nodes (right subplot in figure above).

Finally, the following code inserts a main title giving the respective explained variance of

the depicted component for the step-1 and step-2 PCA solutions as well as their

combined overall total variance explained:

MainTitle = sprintf('Step-1 %s × Step-2 #%d (%.1f%%) = %.1f%%', ...

 flab{theFact},theFact2,Step2Var,Step1x2Var);

annotation('textbox',[.13 .85 .8 .1], 'string',MainTitle, ...

 'HorizontalAlignment','center', 'FontWeight','bold', ...

 'LineSTyle','none', 'FontSize',12);

References

Cohen, M.X. (2014). Analyzing neural time series data: theory and practice. Cambridge, MA:

MIT Press.

Delorme, A., Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial

EEG dynamics including independent component analysis. J. Neurosci. Methods,

134(1), 9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009

Johann (2022). Easy Plot EEG Brain Network Matlab. MATLAB Central File Exchange.

https://www.mathworks.com/matlabcentral/fileexchange/57372-easy-plot-eeg-brain-

network-matlab

Kayser, J. (2009). Current source density (CSD) interpolation using spherical splines - CSD

Toolbox (Version 1.1). http://psychophysiology.cpmc.columbia.edu/Software/CSDtoolbox

Kayser, J., & Tenke, C.E. (2003). Optimizing PCA methodology for ERP component

identification and measurement: theoretical rationale and empirical evaluation. Clin.

Neurophysiol., 114, 2307-2325. https://doi.org/10.1016/s1388-2457(03)00241-4

Kayser, J., Tenke, C.E., Svob, C., Gameroff, M.J., Miller, L., Skipper, J., Warner, V.,

Wickramaratne, P., Weissman, M. M. (2019). Family risk for depression and prioritization

of religion or spirituality: early neurophysiological modulations of motivated attention.

Front. Hum. Neurosci., 13, 436. https://doi.org/10.3389/fnhum.2019.00436

Perrin, F., Pernier, J., Bertrand, O., & Echallier, J.F. (1989). Spherical splines for scalp potential

and current density mapping. EEG Clin. Neurophysiol., 72, 184-187. [Corrigenda EEG

02274, EEG Clin. Neurophysiol., 1990, 76, 565] https://doi.org/10.1016/0013-

4694(89)90180-6

The MathWorks, Inc. (2022). MatLab. The language of technical computing.

https://www.mathworks.com/products/matlab.html

https://doi.org/10.1016/j.jneumeth.2003.10.009
https://www.mathworks.com/matlabcentral/fileexchange/57372-easy-plot-eeg-brain-network-matlab
https://www.mathworks.com/matlabcentral/fileexchange/57372-easy-plot-eeg-brain-network-matlab
http://psychophysiology.cpmc.columbia.edu/Software/CSDtoolbox
https://doi.org/10.1016/s1388-2457(03)00241-4
https://doi.org/10.3389/fnhum.2019.00436
https://doi.org/10.1016/0013-4694(89)90180-6
https://doi.org/10.1016/0013-4694(89)90180-6
https://www.mathworks.com/products/matlab.html

