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Figure S1. Edge and node strength of mid-alpha (10.2 Hz) spatial FC components identified in the step-two PCA applied to subsample data sets
using step-one PCA components derived from the entire dataset (cf. Figures 2 and 3). For comparison, the top row shows edge and node strength
topographies of the first 4 spatial FC components obtained for the original PCA solution. Rows depicts the best match for each subsample PCA
solution, as determined by Tucker’s congruence coefficients ɸ (plotted in italics at the top left corner of each map); only loading maps having at
least “fair similarity” (ɸ ≥ .85) are shown. Rows 2-5 show results for subsamples (N = 35) created by crossing session (1/2) with epoch (odd/even); 
rows 6-9 show those for subgroups based on EEG acquisition site (n = 7-10). Each subplot title lists the total variance explained and the 
corresponding step-two variance (in parentheses). Note that for subgroup UM (row 9), the same spatial FC component provided the best match for
two different spatial FC components of the entire dataset (row 9, columns 1/5 and 3/7, respectively).
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Figure S2. Edge and node strength of low-alpha (8.0 Hz) spatial FC components (all other details as in Figure S1).
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Figure S3. Edge and node strength of high-alpha (13.0 Hz) spatial FC components (all other details as in Figure S1).
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Figure S4. Edge and node strength of low-theta (4.2 Hz) spatial FC components (all other details as in Figure S1).
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Figure S5. Edge and node strength of mid-theta (6.3 Hz) spatial FC components (all other details as in Figure S1).
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Figure S6. Edge and node strength of low/mid-theta (5.1 Hz) spatial FC components (all other details as in Figure S1).
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order of participants obtained for panel A is maintained for all other panels (B-H). Across RSNs, different participants contributed 
the largest (and smallest) component scores.
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Figure S8. Individual current source density (CSD) amplitude spectra (µV/m²) for eyes open (EO) and eyes closed (EC) conditions 
pooled across 19 posterior scalp sites (marked green in bottom row inset). Plots for 35 healthy adults (rows 1-7) are sorted by 
participants’ age as noted in subplot title (with subject number). Arrows above abscissa mark individual alpha frequency (IAF) 
peaks for each condition that were determined as local maxima between 6 and 15 Hz. Grand mean amplitude spectra (N = 35) are 
shown in bottom row (column 1) along with scatterplots between IAF and age for each condition (columns 3 and 4). Despite the 
sample’s considerable age range (18 to 65 years), age was not systematically associated with IAF estimates (Pearson’s r). 
Likewise, no age/IAF relationship was observed at any of these 19 posterior sites for either condition (−.24 < r < .22, all p > .16). 
Importantly, IAF estimates varied considerably across the scalp, manifesting as multiple local maxima in the pooled spectra (e.g., 
see subjects #4, #31 and #1 in rows 3-5, column 5), which is consistent with prior alpha generator findings (e.g., Smith et al., 2020).



Supplement A 

 

The following excerpts of Matlab code (The MathWorks, Inc., 2022) document the data 

dimensions and critical computations corresponding to the steps depicted in Figure 1. 

All code snipsets and functions can be retrieved from 

http://psychophysiology.cpmc.columbia.edu/CSDfcPCA2022supplA.html. 

 

For the purpose of this documentation, we assume that the preprocessed EEG epochs 

(artifact-corrected, only valid trials, referenced to any arbitrary scheme [e.g., Nose, 

linked mastoids, common average]) are stored for each participant in an EEGlab 

structure EEG (Delorme & Makeig, 2004). Resting EEG conditions (eyes open 

[O]/closed [C]) are appropriately coded (e.g., the block sequence O-C-C-O was coded 

as 110-20-30-140). For a single subject, the following data dimensions apply (not all 

fields are shown; cf. Figure 1A): 

 
load('EEG1.mat'); % load EEGlab EEG structure for single subject (session 1) 

 

EEG =  

  struct with fields: 

             setname: 'Neuroscan EEG data pruned with ICA' 

            comments: 'Original file: EEG1Bart.eeg' 

              nbchan: 71 

              trials: 710 

                pnts: 512 

               srate: 256 

                xmin: -0.9990 

                xmax: 0.9971 

                data: [71×512×710 double] 

               epoch: [1×710 struct] 

 

EEG.times = [EEG.xmin:1/EEG.rate:EEG.xmax]*1000; % timeline for each epoch [ms] 

 

Epoch tabulating reveals that 428 eyes-closed and 282 eyes-open epochs are included: 
 

T = tabulate(cell2mat({EEG.event.epochtype})); 

table(T(T(:,2)>0,:)) 

 

ans = 

 

  4×1 table 

 

             Var1           

    _______________________ 

 

     20       214    30.141 

     30       214    30.141 

    110       143    20.141 

    140       139    19.577 

  



The respective indices of eyes-closed (EC) and eyes-open (EO) epochs are: 
 
ec_idx = find( cell2mat({EEG.event.epochtype})  ==  20 | ... 

               cell2mat({EEG.event.epochtype})  ==  30); 

eo_idx = find( cell2mat({EEG.event.epochtype})  == 110 | ... 

               cell2mat({EEG.event.epochtype})  == 140); 

 

 

Spherical spline interpolations (Perrin et al., 1989) as implemented in the CSD toolbox 

(Kayser, 2009; for a hands-on tutorial, see 

https://psychophysiology.cpmc.columbia.edu/software/csdtoolbox/tutorial.html) may be 

used to transform these EEG epochs to corresponding CSD epochs: 

 
E = {EEG.chanlocs.labels}';                % get EEG montage and predefined ... 

M = ExtractMontage('10-5-System_Mastoids_EGI129.csd',E);  % ... scalp locations 

[G,H] = GetGH(M,4);   % create transformation matrices (spline flexibility = 4) 

C = CSD(EEG.data,G,H); 

 

Given the sample-by-sample character of the CSD transformation, all data dimensions 

(channels × samples × epochs), including EC/EO indices, are maintained (cf. Figure 

1A): 

 
size(EEG.data)    % matrix dimension (channels-by-samples-by-epochs) 

 

ans = 

 

    71   512   710 

 

size(C)           % matrix dimension (channels-by-samples-by-epochs) 

 

ans = 

 

    71   512   710 

 

EEG.data = C; % assign CSD-transformed epochs to EEG structure 

 

Assuming that the same EEG montage is present for each data recording, the existing 

G and H transformation matrices can be used for all other EEG recordings (i.e., subjects 

× sessions). 

 

Closely following the Matlab code published by Cohen (2014, chapter 26), dwPLI 

functional connectivity matrices were calculated from the CSD-transformed epochs for 

each subject and for all conditions (session × eyes open/closed × odd/even epochs) 

using wavelets as follows (cf. Figure 1C): 
 

fx_range = [2 50]; % set frequency range … 

num_frex = 40;     % … and number of frequencies 

frex = logspace(log10(fx_range(1)),log10(fx_range(2)),num_frex); % wavelet ... 

s_all = logspace(log10(3),log10(10),num_frex)./(2*pi*frex);      % ... family 

dwPLI  = zeros(EEG.nbchan,EEG.nbchan,EEG.trials,num_frex); % initialize FC matrix 



time2analyze = [-500 500]; % specify time-frequency parameters [ms] 

tidx = dsearchn(EEG.times', time2analyze'); % time to analyze in indices 

                                            % setup wavelets 

time          = -1:1/EEG.srate:1;           % time [s] 

half_wavelet  = (length(time)-1)/2;         % ½-wavelet time points 

n_wavelet     = length(time);               % number of wavelet time points 

n_data        = EEG.pnts*EEG.trials;        % total number of data points 

n_convol      = n_wavelet+n_data-1;         % number of convolution points 

WaveletFFT_ = @(nfx,time,n_convol) ...      % box function for wavelet FFT: 

    fft(exp(2*1i*pi*frex(nfx).*time) .* ... % nfx = frequency index for ... 

    exp(-time.^2./(2*(s_all(nfx)^2))), ...  %       ... center frequency 

    n_convol); 

sig_ = @(i,A) squeeze(A(i,tidx(1):tidx(2),:)); % box function for data extraction 

xsd_ = @(sg1,sg2) sg1 .* conj(sg2);         % box function for complex conjugate 

  

for nfx = 1:num_frex % loop on center frequencies 

    tic 

    disp(sprintf('%3d/%3d looping. Calculating FC for: %.4f Hz', ... 

         nfx,num_frex,frex(nfx)));  

    center_freq = frex(nfx); % center frequency [Hz] 

    dwpli = zeros(EEG.nbchan,EEG.nbchan,EEG.trials); % initialize fc matrix 

    wavelet_fft = WaveletFFT_(nfx,time,n_convol); % create wavelet for FFT 

    ASig = zeros(EEG.nbchan,EEG.pnts,EEG.trials); % initialize signal matrix 

    for chani = 1:EEG.nbchan % compute analytic signal for all channels 

        data_fft = fft(reshape(EEG.data(chani,:,:),1,n_data), ... % FFT of data 

                       n_convol); 

        conv_result = ifft(wavelet_fft.*data_fft,n_convol); % convolution 

        conv_result = conv_result(half_wavelet+1:end-half_wavelet); 

        ASig(chani,:,:) = reshape(conv_result,EEG.pnts,EEG.trials); 

    end 

    SIG = zeros(half_wavelet+1,size(ASig,3),EEG.nbchan); % initialize SIG matrix 

    for ii = 1:EEG.nbchan; SIG(:,:,ii) = sig_(ii,ASig); end; % assign signals 

    for chani = 1:EEG.nbchan-1 % compute dwPLI for all unique channel pairs 

        sig1 = SIG(:,:,chani); % extract data for first channel 

        for chanj = chani+1:EEG.nbchan 

            sig2 = SIG(:,:,chanj); % extract data for second channel 

            xsd = xsd_(sig1,sig2); % complex conjugate 

            cdi = imag(xsd);       % take imaginary part of signal only 

            imagsum      = sum(cdi); 

            imagsumW     = sum(abs(cdi)); 

            debiasfactor = sum(cdi.^2); 

            dwpli(chani,chanj,:) = ... % fc matrix 

                 (imagsum.^2 - debiasfactor)./(imagsumW.^2 - debiasfactor); 

        end 

    end 

    dwPLI(:,:,:,nfx) = dwpli; % assign data for this center frequency to FC matrix 

    toc 

end 

 

 

Means for each condition of interest can now be easily obtained from the dwPLI matrix: 
 

                                           % compute means for each condition 

EO = squeeze(mean(dwPLI(:,:,eo_idx,:),3)); % mean FC for eyes open ... 

EC = squeeze(mean(dwPLI(:,:,ec_idx,:),3)); % ... and eyes closed ... 

EO_odd = squeeze(mean(dwPLI(:,:,eo_idx([1:2:end]),:),3));  % ... EO odd epochs ... 

EO_even = squeeze(mean(dwPLI(:,:,eo_idx([2:2:end]),:),3)); % ... EO even epochs ... 

EC_odd = squeeze(mean(dwPLI(:,:,ec_idx([1:2:end]),:),3));  % ... EC odd epochs ... 

EC_even = squeeze(mean(dwPLI(:,:,ec_idx([2:2:end]),:),3)); % ... EC even epochs 

 

  



Example code for visualizing an FC matrix: 
 
% visualize FC matrix for first frequency (eyes closed, odd) 

for nfx = 21 

    idx=triu(ones(EEG.nbchan),+1); 

    ec_odd = EC_odd(:,:,nfx); 

    ec_odd(~idx)=nan; 

    figure('name','FC Matrix'); 

    ax = imagesc(ec_odd,[min(ec_odd,[],'all') max(ec_odd,[],'all')]); 

    xlabel('Site','FontWeight','bold'); 

    ylabel('Site','FontWeight','bold'); 

    h = colorbar; 

    ylabel(h,'dwPLI'); 

    colormap([1 1 1; jet]); 

    title(sprintf('Subject #%d, %s, %.1f Hz',1,'EC odd',frex(nfx))); 

end 

 

 
 

 
After obtaining all FC matrices (subject × session × eyes open/closed × odd/even 
epochs), all dwPLI values are re-arranged into an edges-by-frequency bins matrix: 
 

n_sites = EEG.nbchan; % number of electrode sites 

n_edges = (n_sites * (n_sites-1))/2; % number of unique channel pairs 

A = zeros(n_edges,num_frex); % initialize matrix 

for nfx = 1:num_frex % loop through all frequencies 

    ec_odd = EC_odd(:,:,nfx); % get FC matrix for one condition and mark ... 

    ec_odd(~idx)=nan;         % ... lower triangle and diagonale as NaN 

    d = reshape(ec_odd,n_sites^2,1); % reshape to column vector and ... 

    A(:,nfx) = d(~isnan(d));         % ... remove all NaNs 

end 

  

B = zeros(n_edges,2*num_frex); % initialize matrix for frequency interpolation 

InterpFreqs = logspace(log10(fx_range(1)),log10(fx_range(2)),2*num_frex); 



for c = 1:n_edges                              % loop through all edges 

    B(c,:) = interp1(frex,A(c,:),InterpFreqs); % interpolate frequency bins 

end 

  

fx_range2 = [3 16]; % set new frequency range [Hz] 

R = InterpFreqs >= fx_range2(1) & InterpFreqs <= fx_range2(2); 

frex2 = InterpFreqs(R); % interpolated frequency bin vector  

B2 = B(:,R); % matrix for interpolated new frequency range 

  

frex2([1:4 end-3:end]) % first and last four interpolated frequency bins 

 

ans = 

 

    3.0060    3.1310    3.2612    3.3968  ...  14.1388   14.7267   15.3392   15.9771 

 

size(B2)               % matrix dimension (edges-by-frequency bins) 

 

ans = 

 

        2485          42 

 

After re-arranging all FC matrices (subject × session × eyes open/closed × odd/even 
epochs), these are vertically concatenated to create a single 2-D data matrix, consisting 
of 695,800 observations or cases (rows = 35 subjects × 2 sessions × 2 eyes 
open/closed × 2 odd/even epochs × 2485 edges) and 42 variables (columns). With this 
combined data matrix D1, a solution for step 1 (spectral FC PCA) is obtained as follows 
(cf. Figure 1D): 
 

size(D1)    % dimensions (edges-by-frequency bins) of dwPLI data matrix 

disp(sprintf('dwPLI value range: %.3f .. %.3f',min(min(D1)),max(max(D1)))); 

Y = erpPCA_Varimax4M_progress(D1) % PCA solution for step 1 

 

The core function erpPCA_Varimax4M_progress.m is an improved implementation of 

function erpPCA.m originally published in the appendix of Kayser & Tenke (2003). This 

original function, along with two required Matlab routines (Varimax4M.m, SimplicityG.m), 

can be retrieved from 

https://psychophysiology.cpmc.columbia.edu/mmedia/Kayser2003a/Appendix.html.  
 

The PCA solution Y includes the rotated factor loadings LR, a variance table VT, and 

the grand mean mu with its standard deviation sigma: 
 

Y =  

 

  struct with fields: 

 

       LU: [42×23 double] 

       LR: [42×23 double] 

      FSr: [695800×12 double] 

       VT: [23×4 double] 

        G: [23×4 double] 

       mu: [1×42 double] 

    sigma: [1×42 double] 

    FSCFr: [42×23 double] 

     rank: 23 

 

  



The factor loadings can be labelled and visualized as follows: 
 

figure('name','Spectral FC Loadings'); 

n_factors = size(Y.LR,2); % number of extracted PCA factors 

[m,idx] = max(Y.LR); % get maxima of factor loadings with index 

clear flab; % get labels: peak loadings frequency (variance explained) 

for i = 1:n_factors 

    fspec = ['%4.1f Hz (%4.1f%%)']; 

    flab(i,:) = {sprintf(fspec,frex2(idx(i)),Y.VT(i,4))}; 

end; 

R = Y.VT(:,4) >= 1;       % plot factor loadings >= 1% explained variance 

plot(frex2,Y.LR(:,R')); 

xlabel('Frequency [Hz]'); 

ylabel('dwPLI'); 

ax = gca; 

ax.XLim = [frex2(1)-0.2 frex2(end)+0.2]; 

title('PCA factor loadings'); 

legend(flab(R),'location','northwest'); 

 

 
 

 

For the next step (cf. Figure 1E), each factor of interest is back-projected to dwPLI data 

space using the fact that a PCA solution represents a linear, multivariate decomposition 

of the original data matrix, which is now represented by factor loadings (across 

variables), associated factor scores (across cases), and the matrix grand mean. Using 

all extracted factors and the grand mean with an unrestricted PCA solution will recreate 

the original data matrix (see also the appendix of Kayser et al., 2019). Conversely, 

using only a subset of factors will create a virtual data matrix, effectively a factor-based 



filter of the original data. In the current scenario, only a single factor was back-projected 

at a time without re-inserting the grand mean to the recreated data matrix: 

 
theFact = 1;                     % spectral factor for back-projection ... 

disp(sprintf('Factor %d: %s',theFact,flab{theFact})); 

U = Y.FSr(:,theFact) * Y.LR(:,theFact)';         % ... to dwPLI unit space 

size(U) % matrix dimension (all edges-by-frequency bins) 

 

 
For the final step, the back-projected dwPLI values in the matrix U are transposed for 
each FC matrix (i.e., from 2,485 edges × 42 frequency bins to 42 frequency bins × 
2,485 edges): 
 
n_freqs = size(U,2); % number of frequency bins 

n_all = size(U,1)/n_edges; % number of all FC matrices 

D2 = zeros(n_all*n_freqs,n_edges); % initialize re-arranged matrix <U> 

for i = 1:n_all 

    D2((i-1)*n_freqs+1:i*n_freqs,:) = ... % transpose each FC matrix and ... 

      U((i-1)*n_edges+1:i*n_edges,:)';    % ... assign to new matrix <D2> 

end 

 
With this new spectrally-filtered FC data matrix D2, a solution for step 2 (spatial FC 
PCA) is obtained as follows (cf. Figure 1F): 
 
Y2 = erpPCA_Varimax4M_progress(D2) % PCA solution for step 2 

 

Y2 =  

 

  struct with fields: 

 

       LU: [2485×280 double] 

       LR: [2485×280 double] 

      FSr: [11760×245 double] 

       VT: [280×4 double] 

        G: [101×4 double] 

       mu: [1×2485 double] 

    sigma: [1×2485 double] 

    FSCFr: [2485×280 double] 

     rank: 280 

 

For additional step-2 PCAs involving data subsets, component extraction was restricted 

to 50 to reduce computation time using the modified syntax: 
 

Y2 = erpPCA_Varimax4M_progress(D2,'rank',50) % syntax for data subsets 

 

These step-2 factor loadings can be visualized as follows: 
 

figure('name','Spatial FC Loadings');  

theFact2 = 1; % spatial factor selected for visualization 

subplot(1,2,1); % plot edges 

axis square;  

load('chanlocs.mat'); % load EEGlab structure with EEG montage locations  

pct2display = 10; % display top 10% of loadings 

load('mod_parula.mat');      % load and assign a color ...  

cmap = colormap(mod_parula); % ... map for plotting 



ConnPCA_Plot_Pct_Top_Links(Y2.LR,theFact,n_sites,chanlocs,pct2display,cmap); 

cbe = colorbar; 

topidx = 1:round([(pct2display/100)*size(Y2.LR,1)]); 

set(cbe,'Position',[.46 .46 .04 .2], ... % include scale 

        'Ticks',[0 1],'TickLabels',[1 length(topidx)],'FontWeight','bold'); 

Step1Var = Y.VT(theFact,4);   % variance of step-1 PCA solution  

Step2Var = Y2.VT(theFact2,4); % variance of step-2 PCA solution 

Step1x2Var = (Step1Var/100)*(Step2Var/100)*100; % total explained variance 

title(sprintf('Edges (top %.0f%%)',pct2display)); 

 

The function ConnPCA_Plot_Pct_Top_Links.m, an adaption of routines developed by Johann 
(2022), depicts the strongest edges (specified here as the top 10%) via a head map 
showing linked pairs of sites (left subplot in figure below). 
 

 
 

  

subplot(1,2,2); % plot node degree 

[B,I] = sort(Y2.LR(:,theFact2),1,'descend'); % identify suprathreshold connections 

top_loads = I(topidx); 

axis square; 

nLR = nan(n_edges,1); 

nLR(top_loads,1) = Y2.LR(top_loads,theFact2); 

binarizedLR = nLR(:,1); 

binarizedLR(~isnan(binarizedLR)) = 1; 

adjmat = nan(n_sites,n_sites); 

c = 0; 

for i = 1:n_sites-1 

    for j = i+1:n_sites 

        c = c + 1; 

        adjmat(i,j) = binarizedLR(c,1); 

    end 

end 

symmat = triu(adjmat) + triu(adjmat)'; 

node_degree = nansum(symmat); 

topoplot_MG(node_degree,chanlocs, 'electrodes','off', 'style','map', ... 

            'shading','interp', 'whitebk','on', ... 

            'maplimits',[0 max(node_degree)],'colormap',cmap); 

cbn = colorbar; 

set(cbn,'Position',[.92 .46 .04 .2], ... % include scale 

        'Ticks',[0 max(node_degree)],'TickLabels',[1 max(node_degree)], ... 

        'FontWeight','bold'); 



title(sprintf('Nodes (top %.0f%%)',pct2display)); 

set(gcf,'color','w'); % set figure background to white 

 

The EEGlab function topoplot_MG.m (modified from its original topoplot.m [© Colin 
Humphries & Scott Makeig] by Michael Goldstein) was used to depict the most-
connected nodes (right subplot in figure above). 
 

Finally, the following code inserts a main title giving the respective explained variance of 

the depicted component for the step-1 and step-2 PCA solutions as well as their 

combined overall total variance explained: 
 

MainTitle = sprintf('Step-1 %s × Step-2 #%d (%.1f%%) = %.1f%%', ... 

                    flab{theFact},theFact2,Step2Var,Step1x2Var); 

annotation('textbox',[.13 .85 .8 .1], 'string',MainTitle, ... 

           'HorizontalAlignment','center', 'FontWeight','bold', ... 

           'LineSTyle','none', 'FontSize',12); 
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