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Peer Review File

Multi-omics analysis defines highly refractory RAS burdened

immature subgroup of infant acute lymphoblastic leukemia



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The manuscript by Takita and colleagues provides an integrative genomics-based approach to 

subtyping of KMT2A-rearranged acute lymphoblastic leukemias in infants. The authors present a set of 

results that produces five distinct subtypes of the disease based on dual-omic analysis of transcription 

and methylation. The resulting subtypes are highly correlated with disease outcome based on Kaplan-

Meier analysis, and should provide a baseline for further genomics-based risk stratification. In 

addition, the use of novel deep sequencing approaches was able to identify sub-clonal RAS pathway 

gene mutation discovery, indicating that patients with the highest mutational burden in the RAS 

pathway have the worst outcomes and may be appropriate to consider treatment with drugs targeting 

this pathway. Taken together, the manuscript is well-written and conveys a logical and strategic 

approach to the results obtained and the conclusions/next steps. As such, the significance of this 

study to the field of pediatric (infant) ALL risk stratification and treatment is high. 

 

Although the work is well presented, there are minor comments that should be addressed to clarify 

the presentation of data and methods, as follows: 

 

Abstract; final sentence ‘provide a rationale for the future development of genomics-guided 

individualized therapy’ but what about risk stratification by genomics? The authors may wish to 

modify, since this reflects text in the conclusion of the paper. 

 

Samples: What were the treatment differences between the patients studied? A table of information 

about each patient and therapeutic modalities, duration of treatment, and other pertinent clinical data 

should be included. Also need to include their IC subtype assignment in this table. Consider adding to 

Table 1 in supplementary data. 

 

Results: line 113 through 115 is written in a very confusing way, by pointing out 'splice variants that 

skip exon 11 of KMT2A'…are the authors calling the KMT2A gene fusions “splice variants”? Certainly on 

one hand they are, but this is a very unorthodox way of describing a gene fusion event, especially 

because splice variants cause exon skipping in intragenic deletion events, which are not gene fusions. 

It would seem that, for the sake of clarity, the sentence should be re-written and refer to gene 

fusions, not to splice site mutations that lead to exon skipping. 

 

Line 146: The description here and the Figure 1a data display do not correlate. The description states 

the three HOXA- subtypes are clearly separated by fusion partners whereas there are, for example 

four different fusion partners delineated in Fig 1a as being IC5 subtype. The description in line 116 

should be more precise, according to the data in Fig 1a. This is restated on line 350-351 and should 

also be corrected. 

 

Line 201: was WES performed for only 19/61 and 12/23 cases due to lack of a comparator normal, or 

due to limited amounts of tumor DNA or both? What was the comparator normal tissue used for WES? 

While the sub-clonal detection of additional RAS/MAPK pathway genes is certainly of interest, can the 

authors speculate on how the sub-clonal mutations are impacting disease outcomes? This seems to be 

difficult to imagine, since they are only present in small proportions of tumor cells based on VAF. 

 

Line 472: please provide details on the number of known KMT2A fusions that were missed by 

Genomon analysis, also the number predicted by genomic SV predictions (and which algorithm was 

used for SV prediction) and proven correct should be provided. 

 

Line 567: Were the deep-seq libraries made with universal molecular identifiers (UMI) included on the 

library adapters? This is standard practice for high depth sequencing so that polymerase errors are not 

being reported as true variants. Without an orthogonal evaluation or verification of the low VAF 



variants from deep-seq, having UMI-corrected variant identification is critically important. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

In the current study, Isobe and colleagues performed a comprehensive multi-omics unsupervised 

clustering of infant ALL with KMT2A-rearrangement. A dual-omics clustering of expression and 

methylation data identified previously unknown subgroups within the IRX and HOXA subtypes. One 

interesting finding is that the IRX subtype can be classified into two groups. One of them, Integrative 

Cluster 2 (IC2), have particularly poor survival. The IC2 subgroup was also found to have high-

frequency RTK-RAS mutations. Further functional studies confirmed that KMT2A fusion is capable of 

inducing either IRX or HOXA subtypes, and the subtype selection between IRX and HOXA is potentially 

driven by cell origin. Overall, this is a solid study that provides many new insights into the molecular 

subtyping and mechanisms of infant ALL. The findings are novel and clinically relevant. There are 

some questions that might be better addressed. 

 

Major: 

 

1. Based on figure 1a, it seems IC2 patients might also be associated with younger age? 

 

2. One major conclusion is that the IC2 subgroup is associated with a higher frequency of RTK-RAS 

mutations than other subgroups. Is it because the IC2 cases have higher mutation burdens, or more 

heterogeneous clonal composition, or neither (which would indicate the mutations are solely enriched 

in RTK-RAS pathway genes)? Also do the mutations in IC2 cases have higher VAFs than those in other 

subgroups? 

 

3. It has been previously reported that RTK-RAS mutations in infant ALL are mostly subclonal and 

usually disappear in relapse (https://www.ncbi.nlm.nih.gov/pubmed/25730765). Would that 

contradict the current finding that RTK-RAS mutations are the most pronounced genomic feature of 

IC2 and potential driver of the poor prognosis? 

 

4. In figure 3a, one interesting observation is that FLT3 and KRAS/NRAS are mutually exclusive in 

most subgroups except for IC2. Could the co-occurrence of FLT3 and RAS mutations be a possible 

explanation of the poorer prognosis of IC2 in these patients? Further, based on the current data, is it 

possible to infer whether the FLT3 and KRAS/NRAS are from the same or different subclones in the 

IC2 cases with both of them? 

 

Minor: 

 

1. Figure 3a, since the genomic characterization was performed using different platforms (WES in 

some cases and deep sequencing in all), it would be helpful to add a horizontal bar to indicate the 

sequencing platforms used for each case. This information would be useful to rule out potential bias 

due to technical sensitivity. 

 

2. Line 115 “accounting for 95% of the total fusions identified” is confusing. Does it mean that 

105/111 fusions are KMT2A exon 11 skipping? 

 

 

3. In the discussion "the number of RTK-RAS mutations, but not simple positivity, significantly predicts 

patient prognosis", it might be pre-mature to claim the “number of RTK-RAS mutations” as the 

predictive biomarker, without knowing the exact cause of the observed high numbers of RTK-RAS 

mutations. Again, this is related to the previous question. 

 



 

 

Reviewer #3: 

Remarks to the Author: 

Isobe et al use a combination of RNASeq and DNA methylation to define 5 clusters within infant 

KMT2Ar infant ALL, a very difficulty to treat leukemia with poor outcomes. Previously, transcriptome 

analysis has defined a group based on IRX overexpression and a mutually exclusive HOXA group. In 

this manuscript, the authors breakdown the IRX group into two separate clusters, with IC2 being 

associated with particularly poor prognosis. The authors show that the IRX and HOXA subtypes are 

mostly mutually exclusive. Using single cell sequencing they focus on one of the “double” cases to 

show that the IRX and HOXA cells are not the same cells, though there are a few double cells. In 

general IRX subtypes tend to go along with leukemia that is earlier in development, with expression of 

KMT2A-AFF1 in HSC/MPP leading to IRX subtype where as expression of this construct in later, 

lymphoid primed progenitors, led to a HOXA subtype. The authors also used deep sequencing to 

discover a very high prevalence of RAS pathway and FLT3 mutations, many of these present as small 

clones. 

This paper is certainly informative and adds to the literature of this very aggressive leukemia. The 

idea of the “molecular switch” guided by the KMT2A-AFF1 fusion in early progenitors is interesting and 

will be great to explore more in the future. 

 

I do have a few questions/clarifying points: 

 

1. Cohort: The authors used samples from 61 leukemias initially and then have a another cohort of 23 

samples which are labeled as “validation” in Table 1 but also referred to as an “extended cohort” in 

extended figure 3. Given the small numbers, I am not sure that the extended cohort analysis adds to 

the paper—for example, the survival analysis for this smaller cohort is not significantly different 

between the clusters. Can these 23 samples be combined with the initial cohort and perhaps that 

would improve the outcome analysis Figure 1? Can published MLLr ALL datasets be used for RNASeq 

validation? 

 

 

2. Some infant ALL studies have used other clinical factors as predictors of poor outcome—high WBC, 

steroid response, young age. How are these other factors (especially steroid response) correlate with 

the clustering? 

 

3. The finding of very small RAS and FLT3 clones is very interesting. Given the very small size of the 

clones, how does their presence affect the leukemia biology? Do the authors have relapse samples 

from some of these patients? Do the RAS clones go up in size at the time of relapse? 

 

4. The presence of RAS/FLT3 mutations was not associated with EFS/OS in this study, but the 

presence of multiple RAS clones was associated with a worse EFS and this seems to be more present 

in the IC2 cluster. IF the authors focus on samples with the higher VAF, for example >25%, is there a 

EFS/OS difference then? 

 

5. The authors perform network analysis for IRX1. How does it compare to IRX2? Seems both are 

highly correlated in the RNASeq analysis. 

 

6. Survival analysis of KMT2A-AFF1 fusions in extended figure 1e is not statistically significant and 

thus should not be stated as “poorer” in the text (lines 131-133). 

 

7. Infant KMT2Ar leukemia often has myeloid co-expression and can undergo lineage switch to 

myeloid disease at the time to relapse. How are myeloid marker genes expression between the ICs? 

Would one cluster be more likely to undergo a myeloid switch versus another? 

 



8. The authors express KMT2A-AFF1 in embryonic cells from different stages of development to show 

that expression in HSC or MPP leads to a IRX1 type of leukemia vs expression in a lymphoid 

progenitor to a HOX subtype. How would expression of one of the other KMT2A fusions compare? 

 

9. I am interested in this “Molecular switch” between IRX/HOX subtypes. Perhaps beyond the scope of 

this paper, would be interesting to see if this switch in subtypes happens with relapse. 

 

10. There is only one supplementary table included. I could not locate Supplementary Table 2 and 

later. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

In this manuscript, the authors have performed RNA sequencing, methylation array analysis, whole 

exome and targeted deep sequencing on 84 infants with KMT2A-rearranged leukemia, using multi-

omics to define five robust integrative clusters (ICs) in KMT2A-rearranged ALL. What’s more, they 

revealed that the number of RAS pathway mutations predicts prognosis and plays an important way in 

IC2. They provided a more detailed ALL subtypes, which will be beneficial to genomics-guided 

individualized therapy, and those multi-omics data could be useful ALL resources database. Taken 

together, I think this manuscript is probably publishable, but major revision is needed. 

 

 

Major: 

1. The cohort only have ALL samples, but the normal sample should be included too, especially for 

transcriptome, DNA methylome and single-cell data. Though IRX-subtype and HOXA-subtype were 

identified by RNA-seq, some features of subtype may be shared by normal samples. Using control 

cohort helps define clearer ALL subtypes. What’s more, When the authors validate this clustering 

results, they should include normal cohort too. 

2.In Fig.1a, expression heatmap and methylation heatmap looks alike, whether the methylation 

probes overlapped with expression heatmap genes? If so, can single omics (transcriptome or DNA 

methylome) do this clusters? 

3.The authors do many omics, such as transcriptome, DNA methylome and WES, but the analysis of 

each omics is separate, and the authors can try a joint analysis to get more novelty. 

4.little investigation of the molecular heterogeneity of KMT2A-r infant ALL in DNA methylation. The 

authors identified more refined subtypes based on both transcriptome and DNA methylation, which 

indicated that the DNA methylation might be an important determinant of molecular profiles in 

KMT2A-r infant ALL. Thus, they need to explore the DNA methylation landscape more deeply and 

detailedly. 

 

 

Minor: 

1. For Fig2g, Endothelial signature gene set is small number, and it hard to convincing. It’s suggested 

for authors to collect better Endothelial signature gene set and re-analyze it. 

2. The authors have showed that enrichment analysis of hypo-methylated regions in HOXA subtype 

and IRX subtype, how about hyper-methylated regions enrichment analysis? 

3. The authors successfully identified five subgroups in KMT2A-r infant ALL by both transcriptome and 

DNA methylome-based clustering, while only two subgroups identified by transcriptome-based 

clustering. Their results demonstrated that multi-omics analysis performed better than single-omics 

clustering in revealing more complex and clinically relevant disease subtypes. The reason should be 

given in the discussion section. 



We would like to thank the reviewers for their constructive comments, which helped us to further 
improve our manuscript. We have conducted additional data analysis and revised parts of our 
manuscript where appropriate. We have provided a point-by-point response below in blue font 
and marked all changes in the manuscript text in red font. 
 
Reviewer #1, expertise in paediatric precision oncology/genomics (Remarks to the Author): 
 
The manuscript by Takita and colleagues provides an integrative genomics-based approach to 
subtyping of KMT2A-rearranged acute lymphoblastic leukemias in infants. The authors present a 
set of results that produces five distinct subtypes of the disease based on dual-omic analysis of 
transcription and methylation. The resulting subtypes are highly correlated with disease outcome 
based on Kaplan-Meier analysis, and should provide a baseline for further genomics-based risk 
stratification. In addition, the use of novel deep sequencing approaches was able to identify sub-
clonal RAS pathway gene mutation discovery, indicating that patients with the highest mutational 
burden in the RAS pathway have the worst outcomes and may be appropriate to consider 
treatment with drugs targeting this pathway. Taken together, the manuscript is well-written and 
conveys a logical and strategic approach to the results obtained and the conclusions/next steps. 
As such, the significance of this study to the field of pediatric (infant) ALL risk stratification and 
treatment is high. 
 
Although the work is well presented, there are minor comments that should be addressed to clarify 
the presentation of data and methods, as follows: 
 
Abstract; final sentence ‘provide a rationale for the future development of genomics-guided 
individualized therapy’ but what about risk stratification by genomics? The authors may wish to 
modify, since this reflects text in the conclusion of the paper. 
 
We thank the reviewer for this suggestion. As the reviewer suggests, genomics-based risk 
stratification is one of the major implications of our study. We have therefore revised the last 
sentence of the abstract as follows: 

“Our findings highlight the previously under-appreciated intra- and inter-patient heterogeneity of 
KMT2A-rearranged infant ALL and provide a rationale for the future development of genomics-
guided risk stratification and individualized therapy.” (Lines 74-77) 
 
Samples: What were the treatment differences between the patients studied? A table of 
information about each patient and therapeutic modalities, duration of treatment, and other 
pertinent clinical data should be included. Also need to include their IC subtype assignment in this 
table. Consider adding to Table 1 in supplementary data. 
 
In response to the reviewer's comment, we have now added relevant clinical data as well as the 
IC subtype of each patient in Supplementary Table 1 (Columns I-Q and S-T). Further details of 
the treatment protocols are separately reported in the respective clinical trial papers cited in the 
Methods section (line 525). 



 
Results: line 113 through 115 is written in a very confusing way, by pointing out 'splice variants 
that skip exon 11 of KMT2A'…are the authors calling the KMT2A gene fusions “splice variants”? 
Certainly on one hand they are, but this is a very unorthodox way of describing a gene fusion 
event, especially because splice variants cause exon skipping in intragenic deletion events, which 
are not gene fusions. It would seem that, for the sake of clarity, the sentence should be re-written 
and refer to gene fusions, not to splice site mutations that lead to exon skipping. 
 
We apologize for the confusing wording. We have observed alternative splicing of KMT2A fusions 
skipping the exon 11 of KMT2A, resulting in the identification of two different KMT2A fusion 
transcripts within a single patient sample in 25 of 61 cases (e.g., KMT2A exon10-AFF1 and 
KMT2A exon11-AFF1 in MLL_10_004; Supplementary Table 3). This skipping of exon 11 has 
been reported in normal and fused KMT2A gene (Meyer et al., PMID: 15626757). To make this 
clearer, we have revised the text to: 

“In 25 of 61 cases (41%), alternative splicing of KMT2A fusions skipping the exon 11 of KMT2A 
was detected.” (Lines 117-118) 
 
Line 146: The description here and the Figure 1a data display do not correlate. The description 
states the three HOXA- subtypes are clearly separated by fusion partners whereas there are, for 
example four different fusion partners delineated in Fig 1a as being IC5 subtype. The description 
in line 116 should be more precise, according to the data in Fig 1a. This is restated on line 350-
351 and should also be corrected. 
 
We thank the reviewer for raising this point. We agree that the separation of fusion partners in the 
three HOXA-type ICs is not completely exclusive. To quantitatively describe our observation, we 
statistically evaluated the association between fusion partners and the IC assignment and have 
revised our statements: 

“Thereby, the IRX-subtype was divided into IC1 and IC2, whereas the HOXA-subtype was split 
into three ICs, which significantly correlated with fusion partners: MLLT1 (IC3; Fisher’s exact P = 
3.7 × 10−8), MLLT3 (IC4; Fisher’s exact P = 5.6 × 10−6), and AFF1 (IC5; Fisher’s exact P = 5.7 × 
10−6), respectively.” (Lines 147-150) 

“Notably, our unsupervised analysis revealed significant correlations between multi-omics 
molecular profiles and fusion partners, particularly in the HOXA-subtype: MLLT1 (IC3), MLLT3 
(IC4) and AFF1 (IC5).” (Lines 405-407) 
 
Line 201: was WES performed for only 19/61 and 12/23 cases due to lack of a comparator normal, 
or due to limited amounts of tumor DNA or both? What was the comparator normal tissue used 
for WES? While the sub-clonal detection of additional RAS/MAPK pathway genes is certainly of 
interest, can the authors speculate on how the sub-clonal mutations are impacting disease 
outcomes? This seems to be difficult to imagine, since they are only present in small proportions 
of tumor cells based on VAF. 
 



We thank the reviewer for raising this important point. Firstly, WES was performed in the cases 
for which paired normal samples were available. For the paired normal samples, we used normal 
CD3+ T-cells sorted and expanded from the diagnostic samples. We apologize for not making 
this clear in our original submission. We have added the following details in the Methods section 
(lines 614-617): 

“WES was performed in the cases for which paired tumor and normal DNA samples were 
available. For the paired normal samples, CD3+ T-cells were sorted from the diagnostic samples 
using MACS beads (Miltenyi). Isolated CD3+ T-cells were expanded using T Cell 
Activation/Expansion Kit (Miltenyi), and DNA was extracted using QIAamp DNA minikit 
(QIAGEN).” 

Regarding the prognostic significance of subclonal RAS pathway mutations, Ma and colleagues 
recently analyzed 20 pairs of diagnostic and relapse pediatric B-ALL samples (PMID: 25790293) 
and showed that relapse founder clones are often subclonal at diagnosis, with a median 
population frequency of 7%. They have further revealed that subclonal RAS pathway mutations 
with VAFs at diagnosis of ~2% can expand and initiate relapse. Therefore, we speculate that the 
existence of multiple RTK-RAS mutant subclones in IC2 may increase the likelihood that at least 
one of these mutant subclones will survive treatment and lead to relapse. We have now added 
this speculation to the text in the Discussion section (lines 364-373): 

“Recently, Ma and colleagues have shown that the relapse founder clone in pediatric B-ALL often 
originates from a minor subclone at diagnosis, and that subclonal RAS pathway mutations with 
low VAFs of ~2% can expand and seed relapse32. Therefore, the existence of multiple different 
RTK-RAS mutant subclones in IC2 may increase the chances that at least one of these mutant 
subclones will break through treatment and lead to relapse. In fact, our sequencing of a paired 
relapse sample from a case of IC2 (UT_INF_001) demonstrated that two RTK-RAS mutations at 
diagnosis had contributed to relapse in this case. However, disappearance of RTK-RAS mutations 
at relapse has also been reported8, indicating that RTK-RAS wild-type subclones can compete 
and predominate in such cases, necessitating further investigation into the mechanisms of how 
RTK-RAS mutant subclones contribute to relapse.” 
 
Line 472: please provide details on the number of known KMT2A fusions that were missed by 
Genomon analysis, also the number predicted by genomic SV predictions (and which algorithm 
was used for SV prediction) and proven correct should be provided. 
 
Thank you for making this point. SVs were detected using Genomon as described in the Methods 
section (lines 592-593), and the “Pipeline” column of Supplementary Table 3 contains the 
information about which fusions were identified with which pipeline. To clarify this, we have added 
the following sentence in the Methods section (lines 546-548): 

“Overall, 85 fusions were identified by Genomon, and 21 and 5 fusions were restored by Pizzly 
and SV-based prediction, respectively (Supplementary Table 3).” 
 



Line 567: Were the deep-seq libraries made with universal molecular identifiers (UMI) included 
on the library adapters? This is standard practice for high depth sequencing so that polymerase 
errors are not being reported as true variants. Without an orthogonal evaluation or verification of 
the low VAF variants from deep-seq, having UMI-corrected variant identification is critically 
important. 
 
We agree with the reviewer that it is important to use UMI-incorporated sequencing or perform 
orthogonal validation for the detection of low-VAF variants. Since our deep-seq does not include 
UMIs, we have performed amplicon-deep sequencing to validate all low-VAF variants with VAFs 
≤ 0.10. In total, 50 variants were subjected to the orthogonal DNA sequencing, and all 50 variants 
were successfully validated. A Reviewer Table containing the results of validation sequencing has 
been uploaded separately as a spreadsheet file. Accordingly, we have revised the Methods 
section in lines 634-640: 

“Among the variants identified with deep-seq, all subclonal SNVs/indels with VAFs ≤0.10 were 
subjected to PCR-based amplicon deep sequencing for validation. For PCR amplification, a NotI 
restriction site was attached to each primer as a linker sequence. Amplified products were 
digested with NotI, ligated, fragmented, and then used for deep sequencing library preparation as 
previously described54. In total, 90 of 96 (94%) WES-based candidate mutations and 50 of 50 
(100%) deep-seq-based subclonal mutations were validated across the discovery and extended 
cohorts.” 
 
Reviewer #2, expertise in multi-omics and bioinformatics (Remarks to the Author): 
 
In the current study, Isobe and colleagues performed a comprehensive multi-omics unsupervised 
clustering of infant ALL with KMT2A-rearrangement. A dual-omics clustering of expression and 
methylation data identified previously unknown subgroups within the IRX and HOXA subtypes. 
One interesting finding is that the IRX subtype can be classified into two groups. One of them, 
Integrative Cluster 2 (IC2), have particularly poor survival. The IC2 subgroup was also found to 
have high-frequency RTK-RAS mutations. Further functional studies confirmed that KMT2A 
fusion is capable of inducing either IRX or HOXA subtypes, and the subtype selection between 
IRX and HOXA is potentially driven by cell origin. Overall, this is a solid study that provides many 
new insights into the molecular subtyping and mechanisms of infant ALL. The findings are novel 
and clinically relevant. There are some questions that might be better addressed. 
 
Major:  
 
1. Based on figure 1a, it seems IC2 patients might also be associated with younger age? 
 
In response to the reviewer’s comment, we performed a statistical comparison of clinical 
characteristics including age between the five ICs and found no significant difference. This has 
been added as Supplementary Table 4 and the following statement has been added to the text 
(lines 150-152): 



“Other patient characteristics, including known clinical prognostic factors such as age, did not 
correlate significantly with the IC assignment (Supplementary Table 4).” 
 
2. One major conclusion is that the IC2 subgroup is associated with a higher frequency of RTK-
RAS mutations than other subgroups. Is it because the IC2 cases have higher mutation burdens, 
or more heterogeneous clonal composition, or neither (which would indicate the mutations are 
solely enriched in RTK-RAS pathway genes)? Also do the mutations in IC2 cases have higher 
VAFs than those in other subgroups? 

We thank the reviewer for raising this important point. We have now compared the exome-wide 
mutation burdens in our discovery cases studied with WES (n=19). In these patients, the total 
number of mutations per exome did not differ significantly between ICs (please see Reviewer Fig. 
1a,b below). However, whether the mutations are solely enriched in the RTK-RAS pathway cannot 
be concluded, because when comparing only the WES-based mutations, even RTK-RAS pathway 
mutations are not significantly different (Reviewer Fig. 1c), due to the limited sample size 
assessed with WES as well as the lower sensitivity of WES for subclonal mutations. Since we 
took advantage of deep-sequencing by targeting a panel of recurrently mutated genes in infant 
ALL, another large-scale study utilizing exome-wide deep-sequencing would be needed to 
compare mutation rates within and outside the RTK-RAS pathway.  

Furthermore, VAFs of RTK-RAS mutations were similarly low with medians of <0.2 in all five ICs 
(Reviewer Fig. 1d), suggesting that the individual VAFs may not be a crucial genomic feature to 
distinguish the ICs. Please see comments 3 and 4 below for further discussion on the clonal 
architecture. 

Reviewer Fig. 1 

 
Reviewer Fig. 1. Comparison of the numbers and VAFs of mutations in the ICs. a-c, The numbers 
of all mutations (a), non-RTK-RAS mutations (b) and RTK-RAS mutations (c) per case in the 
discovery cases examined with WES (n = 19). d, VAFs of all individual mutations in the RTK-RAS 
pathway identified with deep-seq. 
 
3. It has been previously reported that RTK-RAS mutations in infant ALL are mostly subclonal 
and usually disappear in relapse (https://www.ncbi.nlm.nih.gov/pubmed/25730765). Would that 
contradict the current finding that RTK-RAS mutations are the most pronounced genomic feature 
of IC2 and potential driver of the poor prognosis? 



Again, we thank the reviewer for this important point. As the reviewer points out, the clinical and 
biological significance of subclonal RTK-RAS mutations is still under debate, as disappearance 
of RTK-RAS mutations at relapse has been reported. In the paper suggested by the reviewer 
(PMID: 25730765), Andersson and colleagues examined five relapse samples whose paired 
diagnostic samples had one or two mutations in the RTK-RAS pathway. They identified two cases 
with maintained and expanded RTK-RAS mutant clones at relapse as well as one case with a 
persisting RTK-RAS mutant subclone, while in the remaining two cases the RAS mutant 
subclones were eradicated. 

To our knowledge, Ma and colleagues have conducted another comprehensive study on the 
subclonal architecture and evolution from diagnosis to relapse of pediatric B-ALL using deep 
sequencing (PMID: 25790293). Although they did not include KMT2A-r ALL, they showed that 
nine out of 20 B-ALL cases had multiple subclonal mutations in the RTK-RAS pathway genes at 
diagnosis. More importantly, they reported that in seven of the nine cases, the multiple RTK-RAS 
mutations converged so that only one mutation (NRAS in five cases and KRAS in two cases) 
expanded and the others disappeared at relapse. In the remaining two out of the nine cases, two 
different RTK-RAS mutations persisted from diagnosis to relapse. 

These complex observations may indicate the following: 
1) Since RTK-RAS pathway mutations are mostly subclonal, they may not be necessary for 

disease initiation or maintenance. 
2) It is also possible that RTK-RAS wild-type subclones compete with and predominate over RTK-

RAS mutant subclones to initiate relapse, as was observed in the two out of five cases in the 
Andersson cohort. 

3) However, RTK-RAS mutant subclones may have a greater advantage in overcoming treatment, 
since RTK-RAS mutant subclones contributed to relapse in nine out of nine and three out of 
five cases in the Ma and Andersson cohorts, respectively. 

4) Therefore, the existence of multiple different RTK-RAS mutant subclones in IC2 may increase 
the chances that at least one of these mutant subclones will break through treatment and lead 
to relapse. 

We have included these speculations in the Discussion section (lines 364-373) as a possible 
interpretation of our results. Concurrently, we have also toned down our statement about the 
predictive value of the number of RTK-RAS mutations (lines 380-383), since further validation of 
the prognostic significance and mechanistic studies are still needed in the future.  
 
4. In figure 3a, one interesting observation is that FLT3 and KRAS/NRAS are mutually exclusive 
in most subgroups except for IC2. Could the co-occurrence of FLT3 and RAS mutations be a 
possible explanation of the poorer prognosis of IC2 in these patients? Further, based on the 
current data, is it possible to infer whether the FLT3 and KRAS/NRAS are from the same or 
different subclones in the IC2 cases with both of them? 
 
We thank the reviewer for this interesting suggestion. We performed a survival analysis 
comparing patients with and without concurrent FLT3 and RAS (KRAS/NRAS) mutations but 



found no significant difference in survival. We have added this result as Supplementary Figure 6d 
and revised the text accordingly (lines 255-257): 

“Of note, although neither simple positivity of RTK-RAS pathway mutations nor co-occurrence of 
FLT3 and RAS mutations was significantly associated with survival rates (Supplementary Fig. 6a-
d)” 

We also agree with the reviewer that it would be of particular interest to know whether the FLT3 
and RAS mutations are in the same or different subclones. Given the mutually exclusive pattern 
in other ICs, we speculate that they occur in different subclones. However, determining the clonal 
architecture would require either samples at different time points or single-cell-based approaches. 
Chronological analysis (e.g., paired sequencing of diagnostic and relapse samples) would reveal 
co-existing mutations by subgrouping mutations with a similar increase or decrease in VAFs over 
time, as shown in Ma and colleagues’ study discussed in comment 3 above (PMID: 25790293). 
Otherwise, single-cell DNA sequencing would also elucidate the co-occurrence of mutations even 
with only diagnostic samples. Although we would be interested in pursuing this in the future, we 
feel that it is beyond the scope of this paper.  
 
Minor: 
 
1. Figure 3a, since the genomic characterization was performed using different platforms (WES 
in some cases and deep sequencing in all), it would be helpful to add a horizontal bar to indicate 
the sequencing platforms used for each case. This information would be useful to rule out potential 
bias due to technical sensitivity. 
 
Following the reviewer’s suggestion, we have now added a horizontal bar in the figure (revised 
Figure 4a) to show the sequencing platforms used in each case.  
 
2. Line 115 “accounting for 95% of the total fusions identified” is confusing. Does it mean that 
105/111 fusions are KMT2A exon 11 skipping? 
 
We apologize for the confusing description. What we have observed is that 106/111 fusions are 
involving KMT2A gene, and among these, 25 KMT2A fusion transcripts that skip exon 11 are 
included. We have revised the text in lines 115-118: 

“In total, 111 fusion transcripts were identified and experimentally validated (Supplementary Table 
3), of which 95% were KMT2A-related fusions. In 25 of 61 cases (41%), alternative splicing of 
KMT2A fusions skipping the exon 11 of KMT2A was detected.” 
 
3. In the discussion "the number of RTK-RAS mutations, but not simple positivity, significantly 
predicts patient prognosis", it might be pre-mature to claim the “number of RTK-RAS mutations” 
as the predictive biomarker, without knowing the exact cause of the observed high numbers of 
RTK-RAS mutations. Again, this is related to the previous question. 
 



As we discussed in our response to comment 3 above, we agree with the reviewer that it would 
be premature to draw conclusions before we and other groups can confirm the prognostic 
significance of these subclonal mutations using a cohort including paired diagnostic and relapse 
samples. We have toned down our statement in lines 380-383: 

“Because infant ALL is particularly enriched with subclonal RTK-RAS mutations and our results 
show potential contribution of subclonal diversity to higher relapse rates, accurate recognition of 
subclonal RTK-RAS mutations based on deep sequencing would be of particular importance for 
clinical decision making.” 
 
 
Reviewer #3, expertise in acute leukemia genomics and models (Remarks to the Author): 
 
Isobe et al use a combination of RNASeq and DNA methylation to define 5 clusters within infant 
KMT2Ar infant ALL, a very difficulty to treat leukemia with poor outcomes. Previously, 
transcriptome analysis has defined a group based on IRX overexpression and a mutually 
exclusive HOXA group. In this manuscript, the authors breakdown the IRX group into two 
separate clusters, with IC2 being associated with particularly poor prognosis. The authors show 
that the IRX and HOXA subtypes are mostly mutually exclusive. Using single cell sequencing they 
focus on one of the “double” cases to show that the IRX and HOXA cells are not the same cells, 
though there are a few double cells. In general IRX subtypes tend to go along with leukemia that 
is earlier in development, with expression of KMT2A-AFF1 in HSC/MPP leading to IRX subtype 
where as expression of this construct in later, lymphoid primed progenitors, led to a HOXA 
subtype. The authors also used deep sequencing to discover a very high prevalence of RAS 
pathway and FLT3 mutations, many of these present as small clones.  
This paper is certainly informative and adds to the literature of this very aggressive leukemia. The 
idea of the “molecular switch” guided by the KMT2A-AFF1 fusion in early progenitors is interesting 
and will be great to explore more in the future.  
 
I do have a few questions/clarifying points: 
 
1. Cohort: The authors used samples from 61 leukemias initially and then have a another cohort 
of 23 samples which are labeled as “validation” in Table 1 but also referred to as an “extended 
cohort” in extended figure 3. Given the small numbers, I am not sure that the extended cohort 
analysis adds to the paper—for example, the survival analysis for this smaller cohort is not 
significantly different between the clusters. Can these 23 samples be combined with the initial 
cohort and perhaps that would improve the outcome analysis Figure 1? Can published MLLr ALL 
datasets be used for RNASeq validation? 
 
We thank the reviewer for raising this point, and we apologize for the inconsistent labelling of our 
secondary cohort. As suggested by the reviewer, we have performed a methylation-based re-
clustering using the entire cohort of 84 infants. However, even with the 84 cases, methylation-
based single-omics clustering did not identify more than two stable clusters, as clustering stability 



based on average silhouette width drops rapidly with cluster numbers >2 (Reviewer Fig. 1a,b). 
This clustering (k = 2) also did not correlate with patient outcomes (Reviewer Fig. 1c). 

Reviewer Fig. 1 

 
Reviewer Fig. 1. Methylation-based clustering of the entire cohort of 84 infants. a, DNA 
methylation heatmap of the methylation-based clusters (k = 2). b, Average silhouette widths for k 
= 2 to k = 8. c, Survival analysis based on the methylation-based clusters of 84 infants. 

On the other hand, although statistical significance was not achieved, the 23 cases of methylation 
cohort showed similar methylation profiles (Extended Data Fig. 3d), survival rates (Extended Data 
Fig. 3e), and mutational landscapes (Extended Data Fig. 3f) to our discovery cohort (Fig. 1a-c 
and Fig. 4a). Therefore, we consider that these 23 cases are still of some value and could be 
presented as a secondary cohort. However, as the validation power of this small secondary cohort 
is limited, we have amended the name of the cohort to “extended cohort” throughout the text and 
data. 

Finally, we have performed additional expression-based validation using a published dataset by 
Andersson and colleagues of St Jude Children’s Research Hospital (PMID: 25730765; accession 
no. EGAS00001000246), which includes RNA sequencing data for 31 diagnostic samples of 
KMT2A-r infant B-ALL with typical partner genes (i.e., 16 AFF1, six MLLT1, five MLLT3 and four 
MLLT10 cases). We have employed the same KNN classifier modelling approach that we used 
for methylation-based validation in our extended cohort. As a result, the St Jude cohort also 
recapitulated the cluster-specific expression profiles as well as the characteristic separation of 
specific fusion partners in the HOXA-type ICs. Since whole genome sequencing was used for the 
exploratory purpose of their study, the number of RAS pathway mutations cannot be fully 



evaluated and should be validated in the future using a deep sequencing method. However, all 
five IC2 cases had one or more RTK-RAS pathway mutations, which was a significantly higher 
frequency than the other ICs (100% vs 35%; Fisher’s exact P = 0.012). These results have been 
added as Supplementary Fig. 8 and the following statement has been added to the text (lines 
272-278): 

“Finally, for additional validation, we exploited a published RNA sequencing dataset of 31 
diagnostic samples of KMT2A-r infant B-ALL (EGAS00001000246)8. By building and applying an 
expression-based KNN classifier, the 31 infants were assigned with IC labels that recapitulated 
the cluster-specific expression patterns and characteristic distribution of fusion partners 
(Supplementary Fig. 8). Again, IC2 was shown to have a significantly higher frequency of RTK-
RAS pathway mutations than the other ICs (100% vs. 35%; Fisher’s exact P = 0.012), although 
the number of subclonal mutations should be further validated using a deep sequencing method.” 

The procedures for generating the expression-based classifier have also been added to the 
Methods section (lines 600-612). 
 
2. Some infant ALL studies have used other clinical factors as predictors of poor outcome—high 
WBC, steroid response, young age. How are these other factors (especially steroid response) 
correlate with the clustering? 
 
In response to the reviewer’s comment, we compared clinical characteristics between the five ICs 
and found no significant difference, although data on steroid response are not fully available for 
most patients treated in the MLL96/98 trial. The relevant clinical data have been added to 
Supplementary Table 1 (Columns I-Q and S-T), and the results of the statistical comparison have 
been added as new Supplementary Table 4. Accordingly, the following statement has been added 
to the text (lines 150-152): 

“Other patient characteristics, including known clinical prognostic factors such as age, did not 
correlate significantly with the IC assignment (Supplementary Table 4).” 
 
3. The finding of very small RAS and FLT3 clones is very interesting. Given the very small size of 
the clones, how does their presence affect the leukemia biology? Do the authors have relapse 
samples from some of these patients? Do the RAS clones go up in size at the time of relapse? 
 
We thank the reviewer for this important suggestion. Since no relapse samples were collected in 
our previous clinical trials, only one relapse sample (UT_INF_001_R) could be newly collected 
for the evaluation of this point. Since our original deep-seq of the diagnostic sample 
(UT_INF_001) had identified mutations in FLT3, PTPN11 and TP53, we have performed PCR-
based amplicon deep sequencing of these three mutations in the diagnostic and relapse samples. 
As a result, all three mutations were identified in the relapse sample with higher VAFs than in the 
diagnostic sample (please see our new Supplementary Table 14). This suggests the contribution 
of these mutations to relapse in this case, although the significance of RTK-RAS mutations as 
relapse drivers should be further evaluated with a larger number of paired diagnostic/relapse 
samples. Accordingly, we have added the following statement in the text (lines 261-265): 



“Indeed, in one case of IC2 (UT_INF_001) for which a relapse sample was available, the two 
RTK-RAS mutations (FLT3 and PTPN11) at diagnosis increased the VAFs at relapse 
(Supplementary Table 14), indicating the contribution of these mutations to relapse in this case, 
although the significance of RTK-RAS mutations as relapse drivers should be further evaluated 
with a larger cohort.” 

Although only one diagnosis/relapse pair was evaluable in our cohort, Ma and colleagues recently 
analyzed 20 pairs of diagnostic and relapse samples of pediatric B-ALL (PMID: 25790293), where 
they showed that relapse founder clones are often subclonal at diagnosis, with a median 
population frequency of 7%. Of note, they also demonstrated that subclonal RAS pathway 
mutations with VAFs at diagnosis of ~2% actually expanded and initiated relapse. Therefore, we 
speculate that the existence of multiple RTK-RAS mutant subclones in IC2 may increase the 
probability of at least one of these mutant subclones surviving treatment and leading to relapse. 
We have now added this speculation to the text in the Discussion section (lines 364-373): 

“Recently, Ma and colleagues have shown that the relapse founder clone in pediatric B-ALL often 
originates from a minor subclone at diagnosis, and that subclonal RAS pathway mutations with 
low VAFs of ~2% can expand and seed relapse32. Therefore, the existence of multiple different 
RTK-RAS mutant subclones in IC2 may increase the chances that at least one of these mutant 
subclones will break through treatment and lead to relapse. In fact, our sequencing of a paired 
relapse sample from a case of IC2 (UT_INF_001) demonstrated that two RTK-RAS mutations at 
diagnosis had contributed to relapse in this case. However, disappearance of RTK-RAS mutations 
at relapse has also been reported8, indicating that RTK-RAS wild-type subclones can compete 
and predominate in such cases, necessitating further investigation into the mechanisms of how 
RTK-RAS mutant subclones contribute to relapse.” 
 
 
4. The presence of RAS/FLT3 mutations was not associated with EFS/OS in this study, but the 
presence of multiple RAS clones was associated with a worse EFS and this seems to be more 
present in the IC2 cluster. IF the authors focus on samples with the higher VAF, for example 
>25%, is there a EFS/OS difference then? 
 
We thank the reviewer for this suggestion. We have performed a survival analysis based on the 
presence of RTK-RAS mutations with VAFs >0.25 but the survival rates were not significantly 
different (Reviewer Fig. 2). From our original results showing an association between the number 
of RTK-RAS pathway mutations and clinical outcomes, we speculate that the presence of multiple 
RTK-RAS mutant subclones may confer a probabilistic advantage to leukemia subclones in 
overcoming treatment. Please see our comments in response to point 3 above for further 
discussion. 

 

 

 



Reviewer Fig. 2 

 
Reviewer Fig. 2. Survival analysis based on the presence of RTK-RAS pathway mutations with 
VAFs >0.25. 
 
5. The authors perform network analysis for IRX1. How does it compare to IRX2? Seems both 
are highly correlated in the RNASeq analysis.  
 
Thank you for raising this point. Our network analysis identified C5orf38 gene as the only target 
(regulon) of IRX2. Due to the small regulon size (<15 targets), IRX2 was one of the transcription 
factors removed before the master regulator inference step. As the reviewer points out, the 
expression levels of IRX1 and IRX2 show a weak but significant positive correlation (Reviewer 
Fig. 3a). However, the expression of IRX1 is 3.3-fold higher than IRX2 (mean TPM in the IRX 
subtype of 125.9 and 37.9; Reviewer Fig. 3b), which presumably led to the difference in the 
network analysis.  

Reviewer Fig. 3 

 
Reviewer Fig. 3. a, Correlation analysis of IRX1 and IRX2 expression. The regression line is 
drawn in black and the 95% confidence interval is shaded in gray. Pearson’s correlation coefficient 
R and P-value are indicated. b, Expression levels (TPM) of IRX1 and IRX2. 
 
6. Survival analysis of KMT2A-AFF1 fusions in extended figure 1e is not statistically significant 
and thus should not be stated as “poorer” in the text (lines 131-133).  
 
We agree with the reviewer and have now rephrased the statement in lines 132-135: 



“A trend towards the previously reported poor prognosis of IRX-subtype13,20 was also observed 
among KMT2A-AFF1 cases, whereas no survival differences were observed when all fusion 
partners were included (Extended Data Fig. 1e,f).” 
 
7. Infant KMT2Ar leukemia often has myeloid co-expression and can undergo lineage switch to 
myeloid disease at the time to relapse. How are myeloid marker genes expression between the 
ICs? Would one cluster be more likely to undergo a myeloid switch versus another?  
 
In response to the reviewer’s comment, we have evaluated the myeloid marker enrichment using 
a list of marker genes obtained from the same single-cell atlas of fetal liver hematopoiesis as used 
in original Figure 2b (Popescu et al., PMID: 31597962). Although no significant difference was 
observed, we have added this result as Extended Data Fig. 5b, as we agree with the reviewer 
that myeloid lineage switch is an important issue in the management of KMT2A-r infant ALL. We 
have also added the marker gene list in Supplementary Table 7 and added the following statement 
in the text accordingly: 

“Although myeloid marker co-expression and lineage switch are commonly observed in the 
treatment of KMT2A-r infant ALL, expression of myeloid lineage signatures did not differ 
significantly between ICs (Extended Data Fig. 5b).” (Lines: 203-205) 

Susceptibility of individual ICs to lineage switch is not evaluable in our current study, since only 
one lineage switch event was recorded in our discovery cohort (scmc09 in IC4). 
 
8. The authors express KMT2A-AFF1 in embryonic cells from different stages of development to 
show that expression in HSC or MPP leads to a IRX1 type of leukemia vs expression in a lymphoid 
progenitor to a HOX subtype. How would expression of one of the other KMT2A fusions compare? 
 
We thank the reviewer for this interesting suggestion. We agree that it would be very interesting 
to create multiple cellular models using different KMT2A fusions and explore phenotypic and 
mechanistic differences. Although this is certainly an area we would like to explore in a future 
study, we feel it is beyond the scope of this paper. 
 
9. I am interested in this “Molecular switch” between IRX/HOX subtypes. Perhaps beyond the 
scope of this paper, would be interesting to see if this switch in subtypes happens with relapse.  
 
Thank you for your positive comment and interesting suggestion. We have examined the same 
pair of diagnostic and relapse sample used in our response to comment 3 above (UT_INF_001) 
for the expression pattern of IRX1 and HOXA9, and the “IRX/HOXA subtype switch” was not 
observed in this case (Reviewer Fig. 4). However, as we consider this result premature to make 
any statement in our current paper, we would like to investigate this in the future with a larger 
cohort of relapsed cases. 

 

 



Reviewer Fig. 4 
 
 
 
 
 
 
Reviewer Fig. 4. RT-PCR of IRX1 and HOXA9 in the 
diagnostic (D) and relapse (R) sample of UT_INF_001. 
 

 
10. There is only one supplementary table included. I could not locate Supplementary Table 2 
and later. 
 
We apologize for the inconvenience. We have submitted the revised spreadsheet including all 
supplementary tables with this letter. 
 
Reviewer #4, expertise in sc-RNAseq and DNA methylation analysis (Remarks to the Author): 
 
In this manuscript, the authors have performed RNA sequencing, methylation array analysis, 
whole exome and targeted deep sequencing on 84 infants with KMT2A-rearranged leukemia, 
using multi-omics to define five robust integrative clusters (ICs) in KMT2A-rearranged ALL. What’s 
more, they revealed that the number of RAS pathway mutations predicts prognosis and plays an 
important way in IC2. They provided a more detailed ALL subtypes, which will be beneficial to 
genomics-guided individualized therapy, and those multi-omics data could be useful ALL 
resources database. Taken together, I think this manuscript is probably publishable, but major 
revision is needed. 
 
 
Major: 
1. The cohort only have ALL samples, but the normal sample should be included too, especially 
for transcriptome, DNA methylome and single-cell data. Though IRX-subtype and HOXA-subtype 
were identified by RNA-seq, some features of subtype may be shared by normal samples. Using 
control cohort helps define clearer ALL subtypes. What’s more, When the authors validate this 
clustering results, they should include normal cohort too. 
 
We thank the reviewer for this suggestion. We have now utilized a published RNA sequencing 
dataset (GSE122982) and a methylation array dataset (GSE45459) of hematopoietic and B-
lineage progenitors to compare with our infant ALL dataset. As the reviewer suggests, clustering 
with normal samples has improved the single-omics clustering and successfully separated the 
IC4 infants (please see our new Supplementary Fig. 5), which was not clear in the leukemia-only 
single-omics clustering (Extended Data Fig. 1 and Supplementary Fig. 2). This clustering has 
shown that, compared to the other ICs, IC4 leukemia has greater similarity to normal B-cell 
progenitors in terms of expression and methylation of a set of B-cell developmental genes, which 



has likely caused the better separation of IC4 by using normal samples. Our extended methylation 
cohort also recapitulated this similarity between IC4 and normal B-cell progenitors (new 
Supplementary Fig. 5c). Accordingly, we have added the following statement to the text (lines 
197-200): 

“Comparison with published RNA sequencing24 and methylation array25 datasets of normal B-cell 
progenitors further confirmed the more mature status of IC4 by identifying shared expression and 
methylation signatures between IC4 and normal progenitors (Supplementary Fig. 5).” 

Accession information for the published datasets have also been added to the Methods section 
(lines: 558-559 and 571-573). 

Although the addition of normal samples has improved the single-omics clustering by separating 
IC4, we have also found that the clustering resolution is still better with the original dual-omics 
clustering approach. This is presumably because the differences within KMT2A-r leukemias are 
relatively small compared to the large differences between KMT2A-r leukemias and normal 
progenitors, and therefore, the leukemia-only dual-omics approach may be more sensitive in 
capturing the small but significant heterogeneity within KMT2A-r infant ALL. 

Finally, we have also performed an integrative single-cell analysis using the fetal liver atlas 
dataset (Popescu et al., PMID: 31597962). Our original observation of developmental 
heterogeneity within leukemic blasts has been confirmed by leukemia cell projection and 
pseudotime inference based on the normal B-cell progenitors (please see new Extended Data 
Fig. 7b-d). Comparison with normal progenitors has also illustrated lineage markers showing 
ordered sequential expression as well as aberrant early and/or prolonged expression in leukemia 
cells (Extended Data Fig. 7e-g). Detailed methods have been included in the Methods section 
(lines 729-738) and the original Extended Data Fig. 6b-g have been moved to new Supplementary 
Fig. 10. Accordingly, the following statement has been added to the Results section (lines 297-
302): 

“Nearest neighbor projection and pseudotime inference based on the fetal liver B-cell progenitors 
further confirmed the developmental hierarchy within leukemic blasts (Extended Data Fig. 7b-d), 
where leukemia cells showed sequential expression of developmental markers resembling 
normal B-cell progenitors (Extended Data Fig. 7e,f), while also exhibiting ectopic early and/or 
prolonged expression of other developmental regulators (Extended Data Fig. 7g).” 
 
 
2. In Fig.1a, expression heatmap and methylation heatmap looks alike, whether the methylation 
probes overlapped with expression heatmap genes? If so, can single omics (transcriptome or 
DNA methylome) do this clusters?  
 
In response to the reviewer’s comment, we have compared the lists of genes and probes used in 
Fig. 1a. As shown in Reviewer Fig. 1 below, the overlap was less than 5% for both expression 
and methylation heatmaps. The 13 overlapping genes included CPNE8, HOXA9, IRAK2, IRX1, 
KCNH8, LGR5, PDGFC, ROR1, SLC6A3, TNNI3K, WFS1, ZFHX3, ZNF503. Please also see 



comment 3 below, where we have further jointly investigated the overlaps of differential 
expression and methylation. As for single-omics clustering, neither expression- nor methylation-
based clustering identified more than two stable clusters as described in lines 122-125 and 139-
142 and in Extended Data Fig. 1 and Supplementary Fig. 2. 

Reviewer Fig. 1 
 
 
 
 
 
Reviewer Fig. 1. Venn diagram of the genes and probes 
used in Fig. 1a. Methylation probes were annotated with 
the corresponding genes according to the Illumina’s v1.2 
annotation. 

 
 
3. The authors do many omics, such as transcriptome, DNA methylome and WES, but the 
analysis of each omics is separate, and the authors can try a joint analysis to get more novelty. 
 
We thank the reviewer for raising this important point. We agree that our downstream cluster 
comparisons were not fully omics-integrative, and we have now performed an integrative analysis 
to identify dual-omics marker genes that exhibit both significant differential expression and 
methylation. Indeed, as the reviewer suggests, the integrative analysis has helped to refine the 
cluster markers, and consequently, FLT1 gene (encoding VEGFR1) has emerged as a novel dual-
omics marker of IC2. It is also important that key hematopoietic marker genes, such as CD34, 
have been confirmed to be not only differentially expressed but also differentially methylated 
between ICs. These new results have been added as new main Fig. 2 and new Extended Data 
Fig. 4. The list of dual-omics marker genes has also been added as new Supplementary Table 6. 
Please see comment 4 below for further discussion. 
 
4. little investigation of the molecular heterogeneity of KMT2A-r infant ALL in DNA methylation. 
The authors identified more refined subtypes based on both transcriptome and DNA methylation, 
which indicated that the DNA methylation might be an important determinant of molecular profiles 
in KMT2A-r infant ALL. Thus, they need to explore the DNA methylation landscape more deeply 
and in more detail. 
 
We thank the reviewer for this important suggestion. We have now explored the global and local 
DNA methylation profiles in greater detail. In terms of global methylation status, the five ICs 
showed similar methylation distributions across the genomic tiling regions as well as gene and 
promoter loci (please see our new Extended Data Fig. 4a,b). This suggests that small and specific 
target loci, rather than genome-wide drastic differences, distinguish the methylomes of ICs. 
Regarding the local methylation differences, thanks to the reviewer’s suggestion, the joint 
transcriptome-methylome comparisons have provided a refined list of dual-omics cluster markers 



with both differential expression and methylation, as discussed in comment 3 above. We have 
further created new Supplementary Fig. 4 to show variable methylation profiles of B-cell marker 
genes. To describe these new results for this comment and comment 3 above, we have revised 
the text in lines 170-189: 

“Since the addition of methylation information improved the clustering resolution, we next 
examined the genome-wide DNA methylation status of these five ICs. Globally, DNA methylation 
levels showed similar distributions between ICs across the genome as well as within gene and 
promoter loci (Extended Data Fig. 4a,b), suggesting that small sets of IC-specific target loci, rather 
than genome-wide drastic differences, distinguish the IC methylomes. To define IC-specific 
markers, we next jointly analyzed the transcriptome and DNA methylome of our discovery cases. 
First, expression-based marker genes were identified for each cluster (Supplementary Table 5), 
which were further narrowed down based on differential methylation status. Consequently, 38, 32 
and 73 genes were identified as dual-omics marker genes of IC2, IC3 and IC4, respectively (Fig. 
2a,b and Extended Data Fig. 4c and Supplementary Table 6), although no genes were identified 
as dual-omics markers for IC1 and IC5. Among the dual-omics markers, FLT1 showed the 
greatest methylation reduction and concordant upregulation in IC2 (Fig. 2c). FLT1 encodes 
vascular endothelial growth factor receptor 1 (VEGFR1), which is not physiologically expressed 
in hematopoietic progenitors22 (Extended Data Fig. 4d) but is reported to be responsible for intra-
bone marrow localization and survival of ALL cells23. Furthermore, key hematopoietic and B-
lineage markers, including CD34, MME (encoding CD10) and DNTT, were found among the dual-
omics marker genes (Fig. 2d and Extended Data Fig. 4e), suggesting that different ICs have 
different developmental status towards the B-cell lineage. In fact, conventional B-cell 
developmental marker genes were variably expressed and methylated between ICs 
(Supplementary Figs. 3 and 4).” 
 
Minor: 
1. For Fig2g, Endothelial signature gene set is small number, and it hard to convincing. It’s 
suggested for authors to collect better Endothelial signature gene set and re-analyze it. 
 
Thank you for making this point. We have now utilized an additional endothelial signature gene 
set (199 genes) defined by Zeng, et al. in their single-cell transcriptome study of human embryonic 
hemato-endothelial development (PMID: 31501518). Gene set enrichment was re-analyzed 
including this new gene set, and the result has been added to Figure 3f. The list of 199 signature 
genes has also been included in Supplementary Table 7. We have therefore revised the text in 
lines 214-216: 

“Accordingly, endothelial cell signatures derived from human fetal liver22 as well as early human 
embryonic development27 were enriched in the IRX subtype compared with the HOXA subtype 
(Fig. 3f)” 
 
2. The authors have showed that enrichment analysis of hypo-methylated regions in HOXA 
subtype and IRX subtype, how about hyper-methylated regions enrichment analysis? 
 



We apologize for the confusion. Since Figure 2h and 2i (now Figure 3g and 3h) show a 
comparison between IRX subtype and HOXA subtype, hypo-methylated regions in IRX subtype 
can be interpreted as hyper-methylated regions in HOXA subtype, and vice versa. 
 
3. The authors successfully identified five subgroups in KMT2A-r infant ALL by both transcriptome 
and DNA methylome-based clustering, while only two subgroups identified by transcriptome-
based clustering. Their results demonstrated that multi-omics analysis performed better than 
single-omics clustering in revealing more complex and clinically relevant disease subtypes. The 
reason should be given in the discussion section. 
 
We thank the reviewer for this suggestion to highlight the reasons why multi-omics clustering 
performs better in subclass discovery. We have added the following statement in the Discussion 
section (lines: 348-352). 

“Since SNF identifies both consistent and complementary patient-to-patient similarities across 
multiple omics layers21, it is most likely that our SNF-based clustering approach successfully 
integrated the shared and distinct patient similarities captured with transcriptome and methylome 
information, which were, however, not distinct enough to cluster in a single-omics analysis.” 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Thank you for your careful consideration of the critiques and suggestions that were offered. Your 

responses were appropriate and the revisions that were incorporated into the manuscript have 

improved the clarity and conclusions obtained. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors have appropriately addressed all my previous questions. No further questions from me. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors addressed all of my comments completely. they also addressed the extensive comments 

from the other 3 reviewers. This work should be accepted and published. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

The authors have adequately addressed my major concerns. No further comments. 



Reviewer #1 (Remarks to the Author):  
 
Thank you for your careful consideration of the critiques and suggestions that were offered. Your 
responses were appropriate and the revisions that were incorporated into the manuscript have 
improved the clarity and conclusions obtained.  
 
Thank you very much for your previous suggestions. 
 
 
Reviewer #2 (Remarks to the Author):  
 
The authors have appropriately addressed all my previous questions. No further questions from 
me.  
 
Thank you very much for your previous suggestions. 
 
 
Reviewer #3 (Remarks to the Author):  
 
The authors addressed all of my comments completely. they also addressed the extensive 
comments from the other 3 reviewers. This work should be accepted and published.  
 
Thank you very much for your previous suggestions. 
 
 
Reviewer #4 (Remarks to the Author):  
 
The authors have adequately addressed my major concerns. No further comments. 
 
Thank you very much for your previous suggestions. 

 


