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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

The authors apply a GAN toward native sequences of regulatory elements in an effort to identify 

the function of synthetic sequences. At the onset, this work appears to be of interest in the field. 

As the paper is being read, there is a lack of transparency as to (1) how this work compares with 

others in the field that have used both adversarial GANs as well as other approaches to do 

something similar and (2) what was actually achieved in this work esp. as it relates to Figure 4. 

For the later, I found this section very hard to unpack and see what was done. These figures look 

very similar to the prior ones whereas specific constructs were made here and a better 

representation of the data should be provided. Where is the proof that these synthetic operators 

actually perform? For the former, it would be good to see the results of Figure 4 contrasted with 

results of other computational approaches. How does this ExpressionGAN compare with other 

methods to do the same? How is the knowledge gained any different than what others have 

proposed previously? These overall metrics and comparisons are critical for understanding the 

impact of this work. 

Reviewer #2: 

Remarks to the Author: 

In this work, Zrimec et al. introduce a method for designing regulatory non-coding DNA sequences 

in yeast using deep neural networks. Specifically, the authors train a Generative Adversarial 

Network (GAN) on published genomic and RNA-seq data with the purpose of generating novel 

regulatory sequences that contain endogenous-like features. The GAN learns to simultaneously 

generate promoter, UTR, and terminator sequences. Furthermore, they combine the GAN’s 

generator network with a previously developed predictive model of gene expression to design 

sequences with specified performances. Finally, they experimentally test a small subset of 

designed promoters and find multiple sequences that result in stronger expression compared to 

highly expressed natural controls. 

Overall, the work presented is a positive contribution to the synthetic biology literature, where 

deep neural networks trained on large publicly available datasets are increasingly being used for 

sequence design. It is noteworthy that the GAN can be successfully trained on endogenous data 

only. However, given that the task is to design endogenous-like sequences, perhaps this result is 

not that surprising. Furthermore, the authors do a comprehensive job at ensuring that the 

designed sequences contain native-like features while being different from endogenous sequences 

and from one another. Finally, the approach of connecting the GAN’s generator to a predictor and 

optimizing in the latent space of the generator is simple yet effective. 

However, there are a few issues that I think need to be addressed before publication. 

● The introduction frames the present study as an improvement over the traditional method of 

“experimental screening of large amounts of random synthetic sequences” (lines 64-65). This is 

written as to imply that most sequence design efforts have consisted of little more than testing 

fully random sequences chosen without any direction. In reality, the first decade of synthetic 

biology was dominated by the moderately successful rational design approach, where regulatory 

sequences were handcrafted and tested in low-throughput assays. A bit further on the authors also 

write (line 114-115): “we aimed to improve upon random mutagenesis.” In reality, there is a rich 

literature of papers that use generative models to design functional sequences. I strongly 

recommend the authors modify their introduction accordingly and add relevant references. 

● It is very difficult to understand which regulatory sequence regions the generator model is 

actually trained on without reading the methods section. For example, lines 122 and 123 contain 

the vague descriptor “whole gene regulatory structures”, which I recommend should be replaced 

with the actual sequence regions (promoter, UTRs, terminator). Another set of vague descriptors 

are “variables describing the coding region” (lines 202-203) and “coding region information” (line 

226), which should be replaced by “codon frequencies” if that is the only feature. Furthermore, 

Figure 1A needs to be fully reworked so that it clearly indicates this information. The current thin 



dashed lines below the regulatory regions are hard to notice, and the figure gives the overall 

impression that even CDS sequences are generated. 

● There is a lack of baselines against which the presented method is evaluated. It is not clear why 

the authors did not compare to approaches other than random mutagenesis such as genetic 

algorithms proper and in particular simulated annealing. In addition, while we don’t expect the 

authors to run a full comparison against every model-based or generative neural network 

approach ever developed, they should more clearly acknowledge the existence of that literature. 

● The paper spends a lot of time dissecting the features of the generated sequences within each 

individual regulatory element, with some interesting + detailed analysis. It would have been 

interesting to see some kind of ablation study here, e.g. training a generator on the leave-one-out 

permutations of the promoter, 5’-UTR, 3’-UTR, terminator. This would make a more convincing 

argument on whether using the entire regulatory ecosystem for deep learning-based sequence 

design offers a real advantage; and would also lend the individual regulatory analysis breakdown 

more impact. Alternatively, it might suggest e.g. some regulatory regions have higher impact or 

are easier targets for design/have wider dynamic range, which would also be interesting. 

● Closely related to the previous point: one of the purported advantages of the authors’ design 

method is the ability to simultaneously design promoter, UTR, and terminator sequences to 

optimize expression. However, the extent to which this is an improvement over separately 

optimizing them is not explored. The following analysis could help address this issue: 1) Train 

separate GANs and predictors on each regulatory region. 2) Use these separate networks to design 

regulatory elements in isolation to maximize expression. 3) Use the combined predictive model to 

determine whether these elements in combination would lead to higher expression. 

● Please include the 24 designed sequences that could not be synthesized by either twist or IDT? 

● The authors mention in several places that their method allows designing gene expression across 

6 orders of magnitude (e.g. line 459), yet their experimental results show coverage of little more 

than two (Figure 5D). Please clarify. 

● Minor point: can the authors elaborate on why they find positive correlation between the number 

of adenines around the start codon and predicted expression levels of generated sequences (lines 

261-262)? The authors seem to be making the connection to Kozak sequences (line 259). 

However, Kozak sequences regulate translation, but the training data for the models in this study 

is genomic and RNA-seq information. 

● The following figure references might be incorrect: Figure 2G (line 365) and Figure 2F (line 371). 



Zrimec et al. 2020 - Revision document

Replies to reviewer comments

Reviewer #1 (Remarks to the Author):

Comment 1.1
The authors apply a GAN toward native sequences of regulatory elements in an effort
to identify the function of synthetic sequences. At the onset, this work appears to be of
interest in the field.

Reply 1.1
We thank the reviewer for his positive and constructive comments, which we have
addressed in full in the revised manuscript, with answers and explanations provided below.
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Comment 1.2
As the paper is being read, there is a lack of transparency as to (1) how this work
compares with others in the field that have used both adversarial GANs as well as
other approaches to do something similar

Reply 1.2
We have worked to resolve the issue of transparency toward existing similar work and
comparison with such work throughout the paper. To make our approach and results more
clear and accessible to a wider audience, we have reshaped and expanded the introduction
section (lines 41-124, pages 3-5), adding additional overview of recent approaches both
from the mutational and generative fields to explain state of the art approaches and the
potential benefits of using generative modeling. In total, 30 new references were added to
the manuscript in this revision. The key focus in the introduction was to pinpoint and clearly
explain the limitations of both types of approaches and how the present study goes beyond
these limitations, trying to resolve them. With mutagenesis, this includes producing and
exploring sequences with arbitrary random mutations in all the related approaches including
genetic algorithms [1,2]. Since these sequence candidates can be biologically infeasible, it
leads to untrustworthy predictions and resource inefficiency with multiple testing and design
rounds [2–5] (lines 59-78, pages 3-4).

Specifically, genetic algorithms and their derivatives also rely on random mutagenesis,
introducing arbitrary mutations in every round of candidate generation, since they do not
explicitly model the allowed sequence-function landscape in the sequence design step
[1,6–9]. Rather, they rely fully on the computational screening step (by predictive models,
also termed oracles) to understand sequence functionality and to guide sequence design
[1,2]. However, predictive models are highly sensitive to sequence validity and displaying
worsening performance with sequence deviations from the training data, especially when
traversing towards biologically infeasible sequence subspaces. Since also infeasible
sequences are produced in the random mutagenesis step, testing such candidates can
stress the computational screening methods and lead them into pathological states, where
predictions are highly untrustworthy [3–5]. Apart from this, only a small subset of sequences
actually conform to the target design principles, and finding them is hard among the
enormous sequence space, with many local minima that these algorithms can get stuck in
[2]. Therefore, present mutational approaches are highly resource inefficient, as they require
many separate runs to explore different settings, generally requiring unnecessary testing of
many infeasible sequences as well as experiments to verify the functionality of the designed
sequence sets. On the other hand, due to being capable of modeling the natural
sequence-function landscape, generative approaches can directly draw biologically feasible
sequence samples.

However, current approaches are limited to screening and designing DNA from individual
regulatory sequence parts, even in studies where generative modeling is used [3,10,11]. The
studies demonstrating the use of generative models to design regulatory DNA also display
other drawbacks, such as not including gene expression optimization [10], not performing
experimental validation, testing polyadenylation but not transcription design capability
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specifically [3], or focusing on genes but not regulatory regions [12] (lines 80-101, page 4).
On the other hand, in our previous work, we demonstrated that regulatory information is
encoded in the whole gene regulatory structure, including the promoter, UTRs, terminator,
and coding regions [13,14]. For instance, we experimentally showed that while using strong
native promoters it is possible to predictively increase/decrease mRNA levels by only
changing terminator sequences. This was the motivation to develop the ExpressionGAN
approach that is capable of generating an entire regulatory sequence that is matched to the
coding region. By including whole gene regulatory structure and experimentally verifying the
design approach, we expand current knowledge and capabilities and provide a highly useful
advancement in the field.

In the revised manuscript version, we tried to clarify the transparency of this work in
comparison with existing approaches and knowledge in the field as much as possible,
across all sections of the manuscript. We have made further detailed explanations of all the
revisions and especially how they relate to improving the transparency in the following
replies.
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Comment 1.3
and (2) what was actually achieved in this work esp. as it relates to Figure 4. For the
later, I found this section very hard to unpack and see what was done. These figures
look very similar to the prior ones whereas specific constructs were made here and a
better representation of the data should be provided.

Reply 1.3
The ExpressionGAN devised in the present study is based on existing thoroughly validated
published methods, which include the following. (i) Generative adversarial networks (GAN)
[15], which have been demonstrated as the top generative modeling approach for producing
optimal sequence-function mappings [3,10,11,16,17]. (ii) An activation-maximization
optimization [2,18–20] approach, which, due to multiple tests in the vision domain with
human performance verification, has had its performance tested at a level equal to
experimental validation [5,19,20]. (iii) Sequences spanning the whole gene regulatory
structure [14] (Figure 1A) and (iv) highly-accurate predictive models of gene expression
levels that can explain over 82% of expression variation from regulatory sequence alone
(Figure 1B), both tested in a previous study [13]. This is detailed in the second paragraph of
the discussion section (lines 550-576, pages 21-22).

We further test and validate this generative approach in numerous ways in separate
controlled experiments, demonstrating its performance and usefulness, including the
following comparisons. (i) Comparing the properties of generated sequences to natural ones
(Figure 2). (ii) Comparing the use of the whole gene regulatory structure to single regulatory
regions and shorter promoter parts, which are commonly used with both generative
approaches [10] and mutagenesis [6,8,9] (Figure 4). (iii) Testing whether generated
sequences contain known DNA regulatory grammar properties that drive gene expression to
low and high values (Figure 5). (iv) experimental demonstration and validation of
ExpressionGAN-generated sequences (Figure 6A-D), designed specifically to test as
different sequences as possible (both to natural and among themselves, Figure 6A,B) to
properly validate the approach. (v) Further experimentally contrasting the generative
approach with a standard mutational one that does not inherently model the allowed
sequence-function landscape (Figure 6E-F). The above comparisons are further explained
and discussed in the third and following paragraphs of the discussion section (lines 578-614,
pages 22-23).

Regarding the Figure 4 (presently renamed as Figure 5), we agree with the reviewer that the
section has very dense material and we also revised this chapter of the results (lines
271-337, pages 11-13) by inviting 3 separate native or well trained English speaking
researchers to read and comment on the whole manuscript, to make sure that it is clear for
the readers. Additionally, we tested all reported values with statistical tests, where possible,
to ensure proper statistical stringency and reporting only on significant values, though
unfortunately this contributed to the density of the text. We also tried to further aid the
analysis with Figure 5C, which gives an overview of the results and findings in this section.
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While in Figure 2 (chapter 2 of results section, lines 183-221, pages 8-9), we analyze the
DNA regulatory grammar carried in generated sequences and compare it with the grammar
present in natural sequences, in Figure 5, the generated sequences are segregated into
groups with overall 'high' or 'low' expression levels (Figure 5A) and we explore more specific
DNA regulatory properties that are known to drive gene expression, determining if they
correspond to the overall predicted expression levels of the sequences. We believe that this
section is very crucial for the manuscript as it aggregates a large part of the knowledge of
cis-regulatory sequence grammar and demonstrates that ExpressionGAN recapitulates
known DNA patterns that are important for mRNA level control in its sequence designs
(please see overview in Figure 5C). Briefly, non-coding DNA sequences comprise many
different cis-regulatory elements (Figure 1A), including multiple binding sites for transcription
factors [21], components of the transcription machinery [22,23] and chromatin remodeling
proteins [14], as well as transcription initiation [24,25] and termination [26–28] related
factors, which ultimately regulate and define the levels of gene expression. Recent studies
have also shown that other factors, such as weak motifs and interactions [29], motif
associations across multiple regulatory regions [13] and DNA structural properties [30–32]
are also strongly informative for gene expression predictions and might play an important
role in expression regulation [14,29]. It is thus challenging to objectively define what is a
'proper' functional DNA just by looking at the sequence alone. Nevertheless, we explored
sequences generated by our models for the majority of the known, previously uncovered
DNA regulatory grammar (Figure 1A). We found that already with the initial non-optimized
generator variant, generated sequences exhibit properties highly similar to those of natural
regulatory DNA (Figure 2), suggesting that adversarial network training sufficiently captures
the regulatory sequence diversity present in natural DNA. Furthermore, coupling the
generative and predictive models enables further rational design of regulatory DNA (Figure
3), as the generator is guided to operate within the feasible DNA sequence space
'understood' by the predictor to produce correct functional DNA across the whole range of
expression levels. The optimized ExpressionGAN-generated sequence variants are
therefore found to carry known determinants of gene expression control (Figure 5), reflecting
the high and low expression-related properties expected based on previous published
results [13,14,33–36].

Therefore the present Figure 5 and fifth chapter of results (lines 271-337, pages 11-13) go
beyond what is shown in previous parts, namely, chapter and Figure 2, as explained below.
In chapter and Figure 2 (lines 183-221, pages 8-9), the initial trained generative model was
used, to verify its general capability of producing sequences with overall distributions of
known DNA regulatory grammar and if they are similar to those of the natural data that was
used to train the model. However, despite generating DNA across a range of expression
levels, the initial generator was not further optimized to truly span the whole possible
dynamic range of gene expression and properly generate sequences with increased or
decreased expression levels, as it enables only random sampling of sequences in relation to
their expression levels. On the other hand, with further development, using the optimization
procedure as described in chapter 3 of the results (lines 223-270, pages 10-11, Figure 3A),
the optimized ExpressionGAN enables directly sampling sequences with desired expression
levels, on demand. Therefore, in chapter 5 we then tested these specific capabilities of the
optimized generative procedure (ExpressionGAN), by testing large batches of samples of
both sequences optimized for low expression as well as high expression (Figure 5A: 10,000
samples each). As is detailed in the text, we tested for the presence of regulatory motifs and
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properties both across the whole gene regulatory structure, as well as focused more
specifically on the crucial properties in the core promoter region (Figure 5C), finding that
ExpressionGAN can recreate both low and high expression-related properties across the
whole gene regulatory structure in accordance with existing knowledge. This gave us the
green light to go ahead with experimental validation of the method - for more details on this,
please see Reply 1.4 below.

We hope that we have clarified the content and specifics of this section and that the reviewer
will find it suitable for publication.
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Comment 1.4

Where is the proof that these synthetic operators actually perform?

Reply 1.4
In our study, we provide multiple separate computational and experimental analyses
together providing proof that our generative approach (ExpressionGAN) generates fully
functional regulatory DNA designs that perform in vivo within their desired expression level
targets. After training the initial generative model (Figure 1, results lines 127-182, pages
6-7), we gained control over the generator's mapping of the regulatory sequence space to
the respective expression levels and navigated the functional regulatory
sequence-expression landscape, to produce generated sequences with desired expression
levels in a range of almost 6 orders of magnitude of TPM according to computational
predictions (Figures 3 and 4A,B, results lines 223-270, pages 10-11). We performed in-depth
computational analyses showing that the newly generated DNA designs contain natural-like
properties and cis-regulatory grammar (Figure 2, results lines 183-221, pages 8-9) that is
known to regulate gene expression levels [13,14,33–36] (Figure 5, results lines 271-337,
pages 11-13) - please see also Reply 1.3 for more details.

Then, as detailed in chapter 6 of the results section (lines 433-537, pages 17-20), by testing
sequence designs generated by the generative models, we found that the sequences could
achieve the overall predicted expression levels (Figure 6D, Figure S17, Spearman's ⍴ =
0.74, p-value < 1.6e-14) and 57% of them surpassed the naturally highly-expressed controls.
This was achieved despite preferentially selecting sequences with the lowest sequence
similarity to natural ones (Figure 6A, Figure S14: >30% difference in avg. sequence identity)
and maximizing sequence diversity in each expression range (Figure 6B, Figure S14),
meaning that the sequences were completely novel and unlike any other natural DNA. The
experimental analysis was designed specifically to test the most divergent possible
sequence variants, with an average sequence identity well below 70% both to natural
sequences and amongst themselves (Figure 6A,B). This validated the approach in vivo
across 3 orders of magnitude of expression levels with a wide range of unique sequence
variants (Figure 6D), not merely identifying mutational varieties of a common conserved and
active regulatory scaffold. Despite this, the sequences were feasible and properly
recognized by the predictor (Spearman's ⍴ = 0.74, p-value < 1.6e-14). To increase clarity of
these results in the manuscript, apart from overall proofreading and revisions to the text in
chapter 6 of the results section (lines 433-537, pages 17-20), we have also expanded and
revised the discussion section to explain the results (e.g. lines 578-614, pages 22-23),
putting them in a more general validation context and relaying the information more clearly.
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Comment 1.5
For the former, it would be good to see the results of Figure 4 contrasted with results
of other computational approaches. How does this ExpressionGAN compare with
other methods to do the same?

Reply 1.5
Indeed, we fully agree with the reviewer’s suggestion and have prepared a whole new set of
analyses that are presented in chapter 4 of the results section (lines 271-337, pages 11-13,
Figure 4). Here, we compared our work to the current existing state of the art solutions,
which are all based on single regulatory regions or parts of these [6,8–10] (please see also
Reply 1.2 above), in order to assess whether using the whole gene regulatory structure
outperforms these single-region solutions. Continuing with the explanation in the above
Reply 1.2, already in previous studies, including our own recent one [13], it was shown that
regulatory regions each contribute a certain amount of information for predicting gene
expression levels [9,28,37–40], with each region carrying a given amount of overlapping as
well as unique information, thus jointly contributing to gene expression variation [13,14]. In
fact, whereas the initiating 5' regions (promoters and 5' UTRs) seem to define large scale
gene expression properties (turning expression on/off), the role of terminating 3' regions
(including 3' UTRs and terminators) is to fine-tune expression levels [14,41]. Hence, varying
a regulatory region while keeping others intact can lead to a large measurable degree of
regulatory freedom per gene [13]. Additionally, from the technical point of view, only the
whole gene regulatory structure constrains the functional sequence space to the biologically
feasible regulatory variants. Even when sampling only a single region, it must still be based
on the knowledge of the effect of the whole surrounding regulatory structure, as this is the
primary state of natural regulatory systems [13,14,41] according to which also experimental
systems are designed [42–45].

As suggested by the reviewer, in order to compare our approach with existing solutions and
to determine whether using the whole gene regulatory structure outperforms solutions based
on single regulatory regions, we trained and optimized 6 additional generative models using
the same procedures as for ExpressionGAN (Methods M2,4). In addition to using whole
single regions in the respective ranges as defined in Figure 1A, specifically the promoter
(400 bp), UTRs (100 bp and 250 bp, respectively) and terminator (250 bp), we also used two
shorter parts of the promoter featured in recent studies [6,8]. This included an 80 bp
proximal promoter region located between -170 and -90 bp upstream of the transcription
start site (TSS) [6,29] and the core promoter region located -170 bp upstream up to the TSS
[8,46]. Firstly, we compared the dynamic ranges between either median or extreme
predicted expression levels in generated sequence samples after 100,000 optimizer
iterations of maximization and minimization (Figure 4A,B). Out of the single region
generators, the terminator-based generator showed the highest expression range of ~3
orders of magnitude, whereas the 5' UTR and 80 bp proximal promoter-based generators
resulted in the lowest ranges of ~1 and ~2 orders of magnitude, respectively. The dynamic
range of ExpressionGAN was from 29% to 277% larger in the case of median expression
values with best performing (terminator) and worst performing (5' UTR) generator variants,
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respectively (Figure 4B), reflecting a 6 to 358-fold increase between median expression
levels of maximization- and minimization-based sequence samples (Figure 4A).

Additionally, we have also performed an analysis of the relevance of different regulatory
region combinations, adding the results to the supplementary information (Figure S7). Here,
combinations of regions were occluded and absolute relevance scores were computed using
the training dataset (see Methods M1,3). As expected, a larger amount of jointly occluded
regions generally has a higher effect on perturbing gene expression levels, which is
reflected in the absolute relevance score, with the largest effect observed when occluding
combinations of three regions (Figure S7). Specifically, median absolute relevance values
were 0.13, 0.19 and 0.24 with a number of 1, 2 or 3 occluded regions, respectively. Apart
from the knowledge that promoter and UTRs are the key regulators of gene expression, we
find that also the terminator region can enable the design of a relatively large dynamic range
of expression levels compared to the other tested regions (Figure 4A,B). Unsurprisingly, it is
therefore the combination of all regulatory regions that lead to the highest dynamic range,
supporting the knowledge that the whole gene regulatory structure is important for
fine-tuning gene expression [13,14]. We have also further discussed and clarified these
aspects in an additional paragraph in the discussion section (lines 578-614, pages 22-23).

Finally, in order to further compare our approach with current state of the art solutions for
regulatory DNA design [6,8], we used two of the above developed generative solutions,
namely, the 80 bp proximal-promoter region [6] and 5' UTR region [9] (Figure 4). This
enabled us to further verify the predictive capacity of our models, achieving significant
correlation with published gene expression values (Figure 4C,E: Spearman's ⍴ was 0.51 and
0.55, p-value < 1e-16, respectively). Importantly, since we found that using whole gene
regulatory structures leads to much larger dynamic ranges of gene expression, we tested
how expanding the single regulatory parts to whole gene regulatory structure would affect
their performance (i.e. expand their dynamic range). For both single-region generators, we
sampled 128 of the existing sequence designs [6] and expanded them with all 4238
available native gene regulatory structures, yielding 2 x 542,464 sequence constructs that
were used to analyze any additional dynamic potential with the already optimized short
sequences. Indeed, we observed that a dynamic range spanning an order of magnitude of
predicted expression levels was achievable with both solutions (Figure 4D,F: between 10th
and 90th percentiles of expression levels). This suggests that short single-region sequence
designs are not capable of controlling gene expression across its full dynamic range, despite
the sequences being optimized previously [6,9]. In order to fully drive gene expression to its
actual extremes, proper optimization of the gene regulatory structure with all adjacent
regulatory regions is required.

The results described above are presented as a new chapter 4 in the results section (lines
271-337, pages 11-13) with a newly added Figure 4 that includes 6 panels and
supplementary Figure S7. We have also expanded and revised the discussion section to
clearly explain these results and put them into context of the whole study (lines 578-614,
pages 22-23). Apart from this, we would like to restate that no other study has performed
experimental validations of a fully optimized generative strategy to design regulatory DNA
across a range of common expression levels (Figures 3 and 6A-D, please see reply 1.4
above), as we have done here.
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Furthermore, we have also compared our method with another state of the art DNA design
strategy - a mutational approach (Figure 6E-G, results lines 479-537, pages 18-20). Briefly,
based on the knowledge that mutagenesis relies on testing arbitrary sequence mutations
that can lead to predictor pathologies (please see Reply 1.5 and the revised Introduction
section, lines 41-124, pages 3-5) we accurately controlled the amount of mutations in the
designed candidates, producing only 1, 2, 5 and 10% of mutated sequence. In this way, we
could control predictor functionality and potentially avoid pathologies, whereby generating
sequences far outside the biologically allowed sequence space could push it into
unpredictable behavior. Therefore, we computed a whole distribution of mutated sequences
(Figure S20: altogether 16.8 million mutations tested) with different levels of mutations and
expression levels, where we could controllably check which ones achieved desired changes.
By testing the best sequence designs experimentally, we found that only those with 5 and
10% of mutations led to sequences that achieved the desired 2-fold expression level
changes, and these were experimentally tested. However, despite sequences predicted to
achieve >2-fold increase in expression level, they did not achieve a meaningful increase in
expression levels compared to natural controls (Figure 6F, Table S4). Here, the key
differentiator in the tested approaches was the type of sequence design approach that is
joined with the predictive model: (i) either a generative approach that actually models the
sequence-function landscape and provides the predictive screening model with valid
candidates, or (ii) a 'blind' approach, that performs random mutagenesis and relies
completely on predictor guidance, with random chance dictating whereas the predictor will
produce accurate predictions. Due to predictor pathologies, the mutational approach restricts
us to remain closeby in the tested sequence space in order to not produce too many
infeasible sequences, whereas with the generative approach, we can traverse much further
in the amount of sequence deviations from the training data (Figure 6A: <70% sequence
similarity) and still get functional sequences. Therefore, our proof of concept results suggest
that sticking 'smart' generation approaches to selection procedures can improve them,
outperforming 'blind' design approaches.

Apart from the above stated manuscript changes, to increase the clarity of the results
described in the above paragraph, we have performed overall proofreading and minor
revisions to the text in chapter 6 of the results section (lines 433-537, pages 17-20) as well
as completely revision of the third paragraph of that chapter as well as the text following it
(lines 479-516, pages 18-19), in line with the revision of the introduction section (lines
41-124, pages 3-5, see Reply 1.2). We have also completely revised the paragraph in the
discussion section describing this analysis (lines 648-682, page 24-25).

We hope that our revisions and additional set of analyses brings previously missed
transparency and further clarifies our work.
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Comment 1.6
How is the knowledge gained any different than what others have proposed
previously? These overall metrics and comparisons are critical for understanding the
impact of this work.

Reply 1.6
The key novelties in the present study include:
(i) Learning the regulatory landscape of gene expression control directly from endogenous
genomic and RNA-Seq data without performing experimental screening of random DNA;
(ii) building generative models spanning the whole gene regulatory structure and not merely
single regulatory regions (Figure 1A, please see Replies 1.2 and 1.3);
(iii) devising an optimization strategy that connects the noncoding regulatory DNA properties
with those of the coding regions to truly characterize the whole gene regulatory structure and
enable traversal and targeted design of DNA across the whole dynamic range of gene
expression levels (Figure 3);
(iv) analysis of the capability of the generative models to recapitulate the natural DNA
cis-regulatory grammar that is known to upregulate and downregulate gene expression
levels [13,14,33–36] (Figures 2 and 5, please see Reply 1.3);
(v) comparison of the use of whole gene regulatory structures and single regulatory regions
or regulatory part as are commonly used in other approaches [6,8–10], showing that a large
range of expression control remains potentially untapped with existing single-region
approaches and whole gene regulatory structures offers a promising avenue for unlocking
the full potential of gene expression control (Figure 4, please see Reply 1.5);
(vi) in vivo experimental validation of our optimized ExpressionGAN approach across the
most relevant range of gene expression levels spanning 3 orders of magnitude (Figure 6D)
and preferentially selecting sequences with the lowest sequence similarity to natural ones
and amongst themselves  (Figure 6A,B, please see Reply 1.4);
(vii) comparing our generative strategy with a mutational one to show how a generative
approach modeling the sequence-function landscape directly designs biologically feasible
sequences, which enables it to deviate much farther from the known sequence space and
generate completely novel DNA designs with natural level of sequence divergence (Figure 6,
please see Reply 1.5).

To facilitate improved and expanded content, transparency, clarity and placement of the
present study in the state of the art of the present field, we have performed the following
major revisions:

- complete revision of the abstract section (lines 24-36, page 2);
- complete expansion and rewriting of 2 paragraphs in the introduction section (lines

41-124, pages 3-5);
- in the results section, addition of chapter 4 (lines 271-337, pages 11-13) and apart

from revision of text across all chapters for clarity, revision of chapter content to
facilitate clarity, with manuscript now including 6 chapters instead of 4, revision and
expansion of the first chapter (lines 127-182, pages 6-7), revision of the final chapter
(lines 433-537, pages 17-20), ;
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- in figures and tables, revision of 4 plots in figure 1, addition of Figure 4 with 6 plots
(lines 322-337, page 13), addition of supplementary figures S7, S9 and table S5,
revision of figure and table order in supplementary material;

- in the discussion section, apart from the whole text being revised, updated and
expanded, a new paragraph was added (lines 578-614, pages 22-23) and another
completely revised (lines 648-682, page 24-25);

- methods section updated;
- to improve the language and clarity, 3 separate native or well trained English

speaking researchers have read and commented on the whole manuscript;
- references expanded with addition of 30 new references;
- the code and data have been made available over public repositories Github and

Zenodo (see statements added at end, lines 932-942, page 34)

12
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Reviewer #2 (Remarks to the Author):

Comment 2.1

In this work, Zrimec et al. introduce a method for designing regulatory non-coding DNA
sequences in yeast using deep neural networks. Specifically, the authors train a
Generative Adversarial Network (GAN) on published genomic and RNA-seq data with
the purpose of generating novel regulatory sequences that contain endogenous-like
features. The GAN learns to simultaneously generate promoter, UTR, and terminator
sequences. Furthermore, they combine the GAN’s generator network with a previously
developed predictive model of gene expression to design sequences with specified
performances. Finally, they experimentally test a small subset of designed promoters
and find multiple sequences that result in stronger expression compared to highly
expressed natural controls.

Overall, the work presented is a positive contribution to the synthetic biology literature,
where deep neural networks trained on large publicly available datasets are
increasingly being used for sequence design. It is noteworthy that the GAN can be
successfully trained on endogenous data only. However, given that the task is to
design endogenous-like sequences, perhaps this result is not that surprising.
Furthermore, the authors do a comprehensive job at ensuring that the designed
sequences contain native-like features while being different from endogenous
sequences and from one another. Finally, the approach of connecting the GAN’s
generator to a predictor and optimizing in the latent space of the generator is simple
yet effective.

Reply 2.1
We thank the reviewer for his positive and constructive comments, which we have
addressed in full in the revised manuscript, with answers and explanations provided below.

Briefly, to facilitate improved and expanded content, transparency, clarity and placement of
the present study in the state of the art of the present field, we have performed the following
major revisions:

- complete revision of the abstract section (lines 24-36, page 2);
- complete expansion and rewriting of 2 paragraphs in the introduction section (lines

41-124, pages 3-5);
- in the results section, addition of chapter 4 (lines 271-337, pages 11-13) and apart

from revision of text across all chapters for clarity, revision of chapter content to
facilitate clarity, with manuscript now including 6 chapters instead of 4, revision and
expansion of the first chapter (lines 127-182, pages 6-7), revision of the final chapter
(lines 433-537, pages 17-20), ;
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- in figures and tables, revision of 4 plots in figure 1, addition of Figure 4 with 6 plots
(lines 322-337, page 13), addition of supplementary figures S7, S9 and table S5,
revision of figure and table order in supplementary material;

- in the discussion section, apart from the whole text being revised, updated and
expanded, a new paragraph was added (lines 578-614, pages 22-23) and another
completely revised (lines 648-682, page 24-25);

- methods section updated;
- to improve the language and clarity, 3 separate native or well trained English

speaking researchers have read and commented on the whole manuscript;
- references expanded with addition of 30 new references;
- the code and data have been made available over public repositories Github and

Zenodo (see statements added at end, lines 932-942, page 34)
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Comment 2.2
However, there are a few issues that I think need to be addressed before publication.

● The introduction frames the present study as an improvement over the
traditional method of “experimental screening of large amounts of random
synthetic sequences” (lines 64-65). This is written as to imply that most
sequence design efforts have consisted of little more than testing fully random
sequences chosen without any direction. In reality, the first decade of synthetic
biology was dominated by the moderately successful rational design approach,
where regulatory sequences were handcrafted and tested in low-throughput
assays. A bit further on the authors also write (line 114-115): “we aimed to
improve upon random mutagenesis.” In reality, there is a rich literature of papers
that use generative models to design functional sequences. I strongly
recommend the authors modify their introduction accordingly and add relevant
references.

Reply 2.2
Yes, we are aware that painstaking sequence design and step-by-step design-and-test
approaches were applied in the past to design regulatory DNA and uncover the basic
principles of regulator functionality. We are thus not trying to imply that most sequence
design efforts have consisted of little more than testing fully random sequences chosen
without any direction. We have thus also specifically stated these types of design strategies
in the introduction section (lines 59-62, page 3), building and testing regulators by stacking
different known functional sequence motifs , which references recent efforts to design
batches of minimal regulators by including well known DNA motifs at different positions,
orientations and potentially multiples [36,43,47,48]. However, due to the amount of material
that needs to be covered to give a proper background, whereas standard scientific
paper-shaping directions limit the introduction to be short and concise, e.g. [2,3,6,29], we
have made effort to shape the present introduction into a succinct overview that focuses on
the points central to the present study and which are the key differentiators between the
present approach and the most recent other approaches - including generative and
mutagenesis studies.

As suggested by the reviewer, we have reshaped and expanded the introduction section
(lines 41-124, pages 3-5), adding additional overview of recent approaches both from the
mutational and generative fields. The key focus was to pinpoint and clearly explain the
limitations of both types of approaches and how the present study goes beyond these
limitations, trying to resolve them. With mutagenesis, this includes producing and exploring
sequences with arbitrary random mutations in all the related approaches including genetic
algorithms [1,2]. Since these sequence candidates can be biologically infeasible, it leads to
untrustworthy predictions and resource inefficiency with multiple testing and design rounds
[2–5] (lines 59-78, pages 3-4). Please see also Reply 2.5 below for a more detailed
discussion.
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Indeed, the literature of papers that use generative models to design functional sequences is
rich, however focusing on design of regulatory DNA, there are actually not that many studies
and they display big drawbacks, namely: (i) either without optimization [10], (ii) or on single
regions (all of them), (iii) or not testing experimentally, testing e.g. polyadenylation but not
transcription capability specifically [3], (iv) or genes but not regulatory regions [12] (lines
80-101, page 4). By including whole gene regulatory structure and experimentally verifying a
portion of the design approach, we expand current results and provide a highly useful
advancement in the field.
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Comment 2.3

● It is very difficult to understand which regulatory sequence regions the
generator model is actually trained on without reading the methods section. For
example, lines 122 and 123 contain the vague descriptor “whole gene regulatory
structures”, which I recommend should be replaced with the actual sequence
regions (promoter, UTRs, terminator). Another set of vague descriptors are
“variables describing the coding region” (lines 202-203) and “coding region
information” (line 226), which should be replaced by “codon frequencies” if that
is the only feature. Furthermore, Figure 1A needs to be fully reworked so that it
clearly indicates this information. The current thin dashed lines below the
regulatory regions are hard to notice, and the figure gives the overall impression
that even CDS sequences are generated.

Reply 2.3
Figure 1A has been fixed as suggested by the reviewer. Namely, figure partitioning has been
made more clear, with dashed lines removed where specified, and additional lines and text
added to explain how data partitions were used for training either the predictors or
generators, respectively. The text 'codon frequencies' was clearly written in a non-shortened
form to make it clear this is what we are using. Otherwise the current version of the figure
contains all the information and regulatory region limits required to assist the reader in
understanding the specific part of our approach.

Additionally, to improve clarity, we have revised the introduction and expanded the first
chapter of the results section (lines 127-182, pages 6-7), with this chapter split into two
chapters (chapter 2 lines 182-221, pages 8-9). Accordingly, we have moved panels from the
supplementary information to the main Figure 1B,C to visualize data properties and predictor
performance. Figure 1D was similarly moved here to explain the generative adversarial
network approach, as this is a key methodology in the study.

All of the reviewers' comments have been fixed as suggested, giving exact regions for the
whole gene regulatory structure as well as codon frequencies (line 240, page 10). Due to
this journal and manuscript being targeted for a wide audience, we have left the term
“variables describing the coding region” (lines 239-240, page 10) as next to it is a clear
description of the meaning that 64 codon frequencies are used, thus enabling both expert
and general audience readers to understand this.
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Comment 2.4

● There is a lack of baselines against which the presented method is evaluated.

Reply 2.4
The ExpressionGAN devised in the present study is based on existing thoroughly validated
published methods, which include the following. (i) Generative adversarial networks (GAN)
[15], which have been demonstrated as the top generative modeling approach for producing
optimal sequence-function mappings [3,10,11,16,17]. (ii) An activation-maximization
optimization [2,18–20] approach, which, due to multiple tests in the vision domain with
human performance verification, has had its performance tested at a level equal to
experimental validation [5,19,20]. (iii) Sequences spanning the whole gene regulatory
structure [14] (Figure 1A) and (iv) highly-accurate predictive models of gene expression
levels that can explain over 82% of expression variation from regulatory sequence alone
(Figure 1B), both tested in a previous study [13]. This is detailed in the second paragraph of
the discussion section (lines 550-576, pages 21-22).

We further test and validate this generative approach in numerous ways in separate
controlled experiments, demonstrating its performance and usefulness, including the
following comparisons. (i) Comparing the properties of generated sequences to natural ones
(Figure 2). (ii) We expanded the results section (lines 271-337, pages 11-13) with additional
analyses comparing the use of the whole gene regulatory structure to single regulatory
regions and shorter promoter parts, which are commonly used with both generative
approaches [10] and mutagenesis [6,8,9] (Figure 4). (iii) Testing whether generated
sequences contain known DNA regulatory grammar properties that drive gene expression to
low and high values (Figure 5). (iv) Experimental demonstration and validation of
ExpressionGAN-generated sequences (Figure 6A-D), designed specifically to test as
different sequences as possible (both to natural and among themselves, Figure 6A,B) to
properly validate the approach. (v) Further experimentally contrasting the generative
approach with a standard mutational one that does not inherently model the allowed
sequence-function landscape (Figure 6E-F). The above comparisons are further explained
and discussed in the third and following paragraphs of the discussion section (lines 578-682,
pages 22-25).
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Comment 2.5
It is not clear why the authors did not compare to approaches other than random
mutagenesis such as genetic algorithms proper and in particular simulated annealing.
In addition, while we don’t expect the authors to run a full comparison against every
model-based or generative neural network approach ever developed, they should
more clearly acknowledge the existence of that literature.

Reply 2.5

We thank the reviewer for pointing this out. Indeed, we see that in the previous version of the
manuscript we did not explain our rationale for the experiments and comparisons correctly
nor clearly. We have now strived to improve this, focusing on improving all parts related to
the specific topic of comparing mutational and generative strategies, in the respective
introduction, results and discussion sections.

Specifically, we have expanded the literature overview in the present version, explaining the
key limitations of mutational strategies in the light of generative approaches already in the
introduction section (lines 41-124, pages 3-5). Notably, genetic algorithms and their
derivatives also rely on random mutagenesis, introducing arbitrary mutations in every round
of candidate generation, since they do not explicitly model the allowed sequence-function
landscape in the sequence design step [1,6–9]. Rather, they rely fully on the computational
screening step (by predictive models, also termed oracles) to understand sequence
functionality and to guide sequence design [1,2]. However, predictive models are highly
sensitive to sequence validity and displaying worsening performance with sequence
deviations from the training data, especially when traversing towards biologically infeasible
sequence subspaces. Since also infeasible sequences are produced in the random
mutagenesis step, testing such candidates can stress the computational screening methods
and lead them into pathological states, where predictions are highly untrustworthy [3–5].
Apart from this, only a small subset of sequences actually conform to the target design
principles, and finding them is hard among the enormous sequence space, with many local
minima that these algorithms can get stuck in [2]. Therefore, present mutational approaches
are highly resource inefficient, as they require many separate runs to explore different
settings, generally requiring unnecessary testing of many infeasible sequences as well as
experiments to verify the functionality of the designed sequence sets. On the other hand,
due to being capable of modeling the natural sequence-function landscape, generative
approaches can directly draw biologically feasible sequence samples.

In our experiments, detailed in chapter 6 of the results section (lines 433-537, pages 17-20),
we presumed that full-scale mutagenesis was unnecessary as we did not require testing the
full dynamic range. Also, we could computationally afford a brute force mutational approach.
This was highly advantageous, as, importantly, based on the knowledge that mutagenesis
relies on testing arbitrary sequence mutations that can lead to predictor pathologies, we
wanted to accurately control the amount of mutations in the designed candidates, producing
only 1, 2, 5 and 10% of mutated sequence. In this way, we could control predictor
functionality and potentially avoid pathologies, whereby generating sequences far outside
the biologically allowed sequence space could push it into unpredictable behavior.
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Therefore, instead of obtaining sequences from merely small specific subspaces, the most
straightforward approach was to obtain a whole distribution of mutated sequences (Figure
S20: altogether 16.8 million mutations tested) with different levels of mutations and
expression levels, where we could controllably check which ones achieved desired changes.
We thus produced sequences with desired levels just as we would with a potentially more
advanced procedure, like genetic algorithms, just that we had the entire set of these
candidates available for inspection. Of the sequence designs, only those with 5 and 10% of
mutations led to sequences that achieved the desired 2-fold expression level changes, and
these were experimentally tested. However, despite sequences predicted to achieve >2-fold
increase in expression level, when tested experimentally, they did not achieve a meaningful
increase in expression levels compared to natural controls (Figure 6F, Table S4).

On the other hand, as detailed in the same chapter of results (lines 433-537, pages 17-20),
by testing sequence designs generated by the generative models, we found that sequences
could achieve the overall predicted expression levels (Figure 6D, Figure S17, Spearman's ⍴
= 0.74, p-value < 1.6e-14) and 57% of them surpassed the naturally highly-expressed
controls. This was achieved despite preferentially selecting sequences with the lowest
sequence similarity to natural ones (Figure 6A, Figure S14: >30% difference in avg.
sequence identity) and maximizing sequence diversity in each expression range (Figure 6B,
Figure S14), meaning that the sequences deviated much farther from any known natural
variant compared to those tested with the mutational procedure. Despite this, the sequences
were feasible and properly recognized by the predictor (Spearman's ⍴ = 0.74, p-value <
1.6e-14).

This key differentiator in the tested approaches is thus not in the type of mutational approach
(i.e. either brute force randomization or iterating via genetic selections), as all of them rely on
random mutagenesis, but in the type of sequence design approach that is joined with the
predictor: (i) either a generative approach that actually models the sequence-function
landscape and provides the predictive screening model with valid candidates, or (ii) a 'blind'
approach, that performs random mutagenesis and relies completely on predictor guidance,
with random chance dictating whereas the predictor will produce accurate predictions. Due
to predictor pathologies, the mutational approach restricts us to remain closeby in the tested
sequence space in order to not produce too many infeasible sequences, whereas with the
generative approach, we can traverse much further in the amount of sequence deviations
from the training data (Figure 6A: <70% sequence similarity) and still get functional
sequences. Therefore, our proof of concept results suggest that sticking 'smart' generation
approaches to selection procedures can improve them, outperforming 'blind' design
approaches.

Apart from the above stated manuscript changes, to increase the clarity of the results
described in the above paragraph, we have performed overall proofreading and minor
revisions to the text in chapter 6 of the results section as well as completely revision of the
third paragraph of that chapter as well as the text following it (lines 479-516, pages 18-19), in
line with the revision of the introduction section (lines 41-124, pages 3-5, please see Reply
2.2). We have also completely revised the paragraphs in the discussion section describing
this analysis (lines 578-614, pages 22-23, and lines 648-682, pages 24-25).
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Comment 2.6

● The paper spends a lot of time dissecting the features of the generated sequences
within each individual regulatory element, with some interesting + detailed analysis. It
would have been interesting to see some kind of ablation study here, e.g. training a
generator on the leave-one-out permutations of the promoter, 5’-UTR, 3’-UTR,
terminator. This would make a more convincing argument on whether using the entire
regulatory ecosystem for deep learning-based sequence design offers a real
advantage; and would also lend the individual regulatory analysis breakdown more
impact. Alternatively, it might suggest e.g. some regulatory regions have higher impact
or are easier targets for design/have wider dynamic range, which would also be
interesting.

Reply 2.6
Yes, we agree with the reviewer that it is beneficial to apply a rational engineering design
aspect, as it can be very beneficial to the study overall. We left this out due to our knowledge
from past research as well as the focus and large amount of work with all the development
and testing of other key issues included in the study (please see reply 2.4 giving a general
overview of all the analyses and comparisons performed). Already in previous studies,
including our own recent one [13], it was shown that regulatory regions each contribute a
certain amount of information for predicting gene expression levels [9,28,37–40], with each
region carrying a given amount of overlapping as well as unique information, thus jointly
contributing to gene expression variation [13,14]. In fact, whereas the initiating 5' regions
(promoters and 5' UTRs) seem to define large scale gene expression properties (turning
expression on/off), the role of terminating 3' regions (including 3' UTRs and terminators) is to
fine-tune expression levels [14,41]. Hence, varying a regulatory region while keeping others
intact can lead to a large measurable degree of regulatory freedom per gene [13].
Additionally, from the technical point of view, only the whole gene regulatory structure
constrains the functional sequence space to the biologically feasible regulatory variants.
Even when sampling only a single region, it must still be based on the knowledge of the
effect of the whole surrounding regulatory structure, as this is the primary state of natural
regulatory systems [13,14,41] according to which also experimental systems are designed
[42–45].

As suggested by the reviewer, we have now included a whole new chapter 4 in the results
section (lines 271-337, pages 11-13), comparing the use of whole gene regulatory structures
with solutions based on single regions and smaller parts that are commonly used in other
studies [6,8–10] (Figure 4, please see Reply 2.7 for more details). Moreover, we have also
performed an analysis of the relevance of different regulatory region combinations, adding
the results to the supplementary information (Figure S7). Here, combinations of regions were
occluded and absolute relevance scores were computed using the training dataset (see
Methods M1,3). As expected, a larger amount of jointly occluded regions generally has a
higher effect on perturbing gene expression levels, which is reflected in the absolute
relevance score, with the largest effect observed when occluding combinations of three
regions (Figure S7). Specifically, median absolute relevance values were 0.13, 0.19 and 0.24
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with a number of 1, 2 or 3 occluded regions, respectively. Apart from the knowledge that
promoter and UTRs are the key regulators of gene expression, we find that also the
terminator region can enable the design of a relatively large dynamic range of expression
levels compared to the other tested regions (Figure 4A,B). Unsurprisingly, it is therefore the
combination of all regulatory regions that lead to the highest dynamic range, supporting the
knowledge that the whole gene regulatory structure is important for fine-tuning gene
expression [13,14]. We have also further discussed and clarified these aspects by expanding
the discussion section with an additional paragraph (lines 578-614, pages 22-23).
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Comment 2.7
● Closely related to the previous point: one of the purported advantages of the
authors’ design method is the ability to simultaneously design promoter, UTR, and
terminator sequences to optimize expression. However, the extent to which this is an
improvement over separately optimizing them is not explored. The following analysis
could help address this issue: 1) Train separate GANs and predictors on each
regulatory region. 2) Use these separate networks to design regulatory elements in
isolation to maximize expression. 3) Use the combined predictive model to determine
whether these elements in combination would lead to higher expression.

Reply 2.7
As suggested by the reviewer, in order to compare our approach with existing solutions and
to determine whether using the whole gene regulatory structure outperforms solutions based
on single regulatory regions, we trained and optimized 6 additional generative models using
the same procedures as for ExpressionGAN (Methods M2,4). In addition to using whole
single regions in the respective ranges as defined in Figure 1A, specifically the promoter
(400 bp), UTRs (100 bp and 250 bp, respectively) and terminator (250 bp), we also used two
shorter parts of the promoter featured in recent studies [6,8]. This included an 80 bp
proximal promoter region located between -170 and -90 bp upstream of the transcription
start site (TSS) [6,29] and the core promoter region located -170 bp upstream up to the TSS
[8,46]. Firstly, as suggested by the reviewer already in Comment 2.6, we compared the
dynamic ranges between either median or extreme predicted expression levels in generated
sequence samples after 100,000 optimizer iterations of maximization and minimization
(Figure 4A,B). Out of the single region generators, the terminator-based generator showed
the highest expression range of ~3 orders of magnitude, whereas the 5' UTR and 80 bp
proximal promoter-based generators resulted in the lowest ranges of ~1 and ~2 orders of
magnitude, respectively. The dynamic range of ExpressionGAN was from 29% to 277%
larger in the case of median expression values with best performing (terminator) and worst
performing (5' UTR) generator variants, respectively (Figure 4B), reflecting a 6 to 358-fold
increase between median expression levels of maximization- and minimization-based
sequence samples (Figure 4A).

Additionally, in order to further compare our approach with current state of the art solutions
for regulatory DNA design [6,8], we used two of the above developed generative solutions,
namely, the 80 bp proximal-promoter region [6] and 5' UTR region [9] (Figure 4). This
enabled us to further verify the predictive capacity of our models, achieving significant
correlation with published gene expression values (Figure 4C,E: Spearman's ⍴ was 0.51 and
0.55, p-value < 1e-16, respectively). Importantly, since we found that using whole gene
regulatory structures leads to much larger dynamic ranges of gene expression, we tested
how expanding the single regulatory parts to whole gene regulatory structure would affect
their performance (i.e. expand their dynamic range). For both single-region generators, we
randomly sampled 128 of the existing sequence designs [6] and expanded them with all
4238 available native gene regulatory structures, yielding 2 x 542,464 sequence constructs
that were used to analyze any additional dynamic potential with the already optimized short
sequences. Indeed, we observed that a dynamic range spanning an order of magnitude of
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predicted expression levels was achievable with both solutions (Figure 4D,F: between 10th
and 90th percentiles of expression levels). This suggests that short single-region sequence
designs might not be capable of controlling gene expression across its full dynamic range,
despite the sequences being optimized in their restricted sense [6,9]. In order to fully drive
gene expression to its actual extremes, proper optimization of the gene regulatory structure
with all adjacent regulatory regions is required. The results are presented as a new chapter 4
in the results section (lines 271-337, pages 11-13) with a newly added Figure 4 that includes
6 panels and supplementary Figure S7.
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Comment 2.8
● Please include the 24 designed sequences that could not be synthesized by either
twist or IDT?

Reply 2.8
The generated sequences that could not be synthesized have been added as Table
S5.
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Comment 2.9
● The authors mention in several places that their method allows designing gene
expression across 6 orders of magnitude (e.g. line 459), yet their experimental results
show coverage of little more than two (Figure 5D). Please clarify.

Reply 2.9
Yes, with computational predictions, by comparing generated sequences with the lowest
and highest predicted expression levels, we obtain a maximum dynamic range spanning
almost 6 orders of magnitude (Figure 4A,B). The experiments show a much lower
coverage than the predictions, however we were currently not able to test the method
across a larger dynamic range. We reported on the possibilities based on our
computational assessment of the method, as detailed in chapters 3 and 4 in the results
section (lines 223-270, pages 10-11 and lines 271-337, pages 11-13, respectively, Figures
3B,C and 4A,B). To note, since many studies have not been thoroughly experimentally
tested in the given field, reporting on computationally assessed capabilities is commonly
done by many other studies. Nevertheless, we agree that it can be misleading to the
readers to specify this value without specifying the way it was obtained, and we have thus
corrected this statement in the discussion , by specifying that it was obtained according
to computational predictions, with also those figures specified (line 566, page 21),
whereas the experimental results linking to that figure are mentioned in the next
sentence (line 569, page 21).
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Comment 2.10
● Minor point: can the authors elaborate on why they find positive correlation between
the number of adenines around the start codon and predicted expression levels of
generated sequences (lines 261-262)? The authors seem to be making the connection
to Kozak sequences (line 259). However, Kozak sequences regulate translation, but
the training data for the models in this study is genomic and RNA-seq information.

Reply 2.10
Indeed, untranslated regions and the specific regulatory elements within generally affect
translation. With 5' UTRs, the key factors for translation initiation are ribosome recruitment to
the mRNA and correct positioning over the start codon, where the presence of a Kozak
sequence [49] in the 5' UTR increases the efficiency of translation [24,50]. Here, also
nucleotides upstream of Kozak were shown to be involved in transcriptional regulation [25].
On the other hand, the overall levels of mRNA expression, as measured by RNA-seq, are
defined both by rates of synthesis and degradation (also termed mRNA stability). Despite not
excluding possible effects on transcription [38], multiple studies have demonstrated a
general coupling between translation and mRNA degradation [51–53] and suggest that 5'
UTRs affect mRNA levels via translation-mediated RNA degradation [38,54–56]. The 5'
UTRs and Kozak sequence context thus functionally affects mRNA levels by regulating
mRNA stability [38,55,57], with different amounts of mRNA degradation observed based on
weak or strong Kozak sequences [58]. We thank the reviewer for pointing this out and have
thus expanded the text in the results section to clarify it (lines 361-363, page 14).
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Comment 2.11
● The following figure references might be incorrect: Figure 2G (line 365) and Figure
2F (line 371).

Reply 2.11
We have fixed the figure references in question and checked all others for correctness.

28



Zrimec et al. 2020 - Revision document

References

1. Eiben AE, Smith J. From evolutionary computation to the evolution of things. Nature.
2015;521: 476–482.

2. Bogard N, Linder J, Rosenberg AB, Seelig G. A Deep Neural Network for Predicting and
Engineering Alternative Polyadenylation. Cell. 2019;178: 91–106.e23.

3. Linder J, Bogard N, Rosenberg AB, Seelig G. A Generative Neural Network for
Maximizing Fitness and Diversity of Synthetic DNA and Protein Sequences. Cell Syst.
2020;11: 49–62.e16.

4. Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, et al. Intriguing
properties of neural networks. arXiv [cs.CV]. 2013. Available:
http://arxiv.org/abs/1312.6199

5. Nguyen A, Yosinski J, Clune J. Deep Neural Networks are Easily Fooled: High
Confidence Predictions for Unrecognizable Images. arXiv [cs.CV]. 2014. Available:
http://arxiv.org/abs/1412.1897

6. Vaishnav ED, de Boer CG, Molinet J, Yassour M, Fan L, Adiconis X, et al. The evolution,
evolvability and engineering of gene regulatory DNA. Nature. 2022;603: 455–463.

7. Sample PJ, Wang B, Reid DW, Presnyak V, McFadyen IJ, Morris DR, et al. Human 5′
UTR design and variant effect prediction from a massively parallel translation assay. Nat
Biotechnol. 2019;37: 803–809.

8. Jores T, Tonnies J, Wrightsman T, Buckler ES, Cuperus JT, Fields S, et al. Synthetic
promoter designs enabled by a comprehensive analysis of plant core promoters. Nat
Plants. 2021;7: 842–855.

9. Cuperus JT, Groves B, Kuchina A. Deep learning of the regulatory grammar of yeast 5′
untranslated regions from 500,000 random sequences. Genome Res. 2017;27: 1–10.

10. Wang Y, Wang H, Wei L, Li S, Liu L, Wang X. Synthetic promoter design in Escherichia
coli based on a deep generative network. Nucleic Acids Res. 2020;48: 6403–6412.

11. Killoran N, Lee LJ, Delong A, Duvenaud D, Frey BJ. Generating and designing DNA
with deep generative models. arXiv [cs.LG]. 2017. Available:
http://arxiv.org/abs/1712.06148

12. Gupta A, Zou J. Feedback GAN for DNA optimizes protein functions. Nature Machine
Intelligence. 2019;1: 105–111.

13. Zrimec J, Börlin CS, Buric F, Muhammad AS, Chen R, Siewers V, et al. Deep learning
suggests that gene expression is encoded in all parts of a co-evolving interacting gene
regulatory structure. Nat Commun. 2020;11: 6141.

14. Zrimec J, Buric F, Kokina M, Garcia V, Zelezniak A. Learning the regulatory code of
gene expression. Front Mol Biosci. 2021;8. doi:10.3389/fmolb.2021.673363

15. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al.
Generative Adversarial Networks. arXiv [stat.ML]. 2014. Available:
http://arxiv.org/abs/1406.2661

16. Repecka D, Jauniskis V, Karpus L, Rembeza E, Rokaitis I, Zrimec J, et al. Expanding

29

http://paperpile.com/b/FcnV0R/F3VmL
http://paperpile.com/b/FcnV0R/F3VmL
http://paperpile.com/b/FcnV0R/tZkE
http://paperpile.com/b/FcnV0R/tZkE
http://paperpile.com/b/FcnV0R/brO1
http://paperpile.com/b/FcnV0R/brO1
http://paperpile.com/b/FcnV0R/brO1
http://paperpile.com/b/FcnV0R/zkr4
http://paperpile.com/b/FcnV0R/zkr4
http://arxiv.org/abs/1312.6199
http://paperpile.com/b/FcnV0R/Lc7R
http://paperpile.com/b/FcnV0R/Lc7R
http://arxiv.org/abs/1412.1897
http://paperpile.com/b/FcnV0R/5z4m
http://paperpile.com/b/FcnV0R/5z4m
http://paperpile.com/b/FcnV0R/MWfJE
http://paperpile.com/b/FcnV0R/MWfJE
http://paperpile.com/b/FcnV0R/MWfJE
http://paperpile.com/b/FcnV0R/zgEQJ
http://paperpile.com/b/FcnV0R/zgEQJ
http://paperpile.com/b/FcnV0R/zgEQJ
http://paperpile.com/b/FcnV0R/ce9uE
http://paperpile.com/b/FcnV0R/ce9uE
http://paperpile.com/b/FcnV0R/huOS
http://paperpile.com/b/FcnV0R/huOS
http://paperpile.com/b/FcnV0R/oN7O
http://paperpile.com/b/FcnV0R/oN7O
http://arxiv.org/abs/1712.06148
http://paperpile.com/b/FcnV0R/trI2Z
http://paperpile.com/b/FcnV0R/trI2Z
http://paperpile.com/b/FcnV0R/AAEms
http://paperpile.com/b/FcnV0R/AAEms
http://paperpile.com/b/FcnV0R/AAEms
http://paperpile.com/b/FcnV0R/6HhbS
http://paperpile.com/b/FcnV0R/6HhbS
http://dx.doi.org/10.3389/fmolb.2021.673363
http://paperpile.com/b/FcnV0R/onbh
http://paperpile.com/b/FcnV0R/onbh
http://arxiv.org/abs/1406.2661
http://paperpile.com/b/FcnV0R/bgjX


Zrimec et al. 2020 - Revision document

functional protein sequence spaces using generative adversarial networks. Nature
Machine Intelligence. 2021. doi:10.1038/s42256-021-00310-5

17. Riesselman AJ, Ingraham JB, Marks DS. Deep generative models of genetic variation
capture the effects of mutations. Nat Methods. 2018;15: 816–822.

18. Killoran N, Lee LJ, Delong A, Duvenaud D, Frey BJ. Generating and designing DNA
with deep generative models. arXiv [cs.LG]. 2017. Available:
http://arxiv.org/abs/1712.06148

19. Simonyan K, Vedaldi A, Zisserman A. Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps. arXiv [cs.CV]. 2013. Available:
http://arxiv.org/abs/1312.6034

20. Yosinski J, Clune J, Nguyen A, Fuchs T, Lipson H. Understanding Neural Networks
Through Deep Visualization. arXiv [cs.CV]. 2015. Available:
http://arxiv.org/abs/1506.06579

21. Inukai S, Kock KH, Bulyk ML. Transcription factor–DNA binding: beyond binding site
motifs. Curr Opin Genet Dev. 2017;43: 110–119.

22. Rhee HS, Pugh BF. Genome-wide structure and organization of eukaryotic pre-initiation
complexes. Nature. 2012;483: 295–301.

23. Yang C, Bolotin E, Jiang T, Sladek FM, Martinez E. Prevalence of the initiator over the
TATA box in human and yeast genes and identification of DNA motifs enriched in human
TATA-less core promoters. Gene. 2007;389: 52–65.

24. Nakagawa S, Niimura Y, Gojobori T, Tanaka H, Miura K-I. Diversity of preferred
nucleotide sequences around the translation initiation codon in eukaryote genomes.
Nucleic Acids Res. 2008;36: 861–871.

25. Li J, Liang Q, Song W, Marchisio MA. Nucleotides upstream of the Kozak sequence
strongly influence gene expression in the yeast S. cerevisiae. J Biol Eng. 2017;11: 25.

26. Guo Z, Sherman F. 3’-end-forming signals of yeast mRNA. Trends Biochem Sci.
1996;21: 477–481.

27. Zhao J, Hyman L, Moore C. Formation of mRNA 3’ ends in eukaryotes: mechanism,
regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol
Rev. 1999;63: 405–445.

28. Shalem O, Sharon E, Lubliner S, Regev I, Lotan-Pompan M, Yakhini Z, et al. Systematic
dissection of the sequence determinants of gene 3’end mediated expression control.
PLoS Genet. 2015;11: e1005147.

29. de Boer CG, Vaishnav ED, Sadeh R, Abeyta EL, Friedman N, Regev A. Deciphering
eukaryotic gene-regulatory logic with 100 million random promoters. Nat Biotechnol.
2020;38: 56–65.

30. Zhou T, Shen N, Yang L, Abe N, Horton J, Mann RS, et al. Quantitative modeling of
transcription factor binding specificities using DNA shape. Proc Natl Acad Sci U S A.
2015;112: 4654–4659.

31. Yang L, Orenstein Y, Jolma A, Yin Y, Taipale J, Shamir R, et al. Transcription factor
family-specific DNA shape readout revealed by quantitative specificity models. Mol Syst
Biol. 2017;13: 910.

30

http://paperpile.com/b/FcnV0R/bgjX
http://paperpile.com/b/FcnV0R/bgjX
http://dx.doi.org/10.1038/s42256-021-00310-5
http://paperpile.com/b/FcnV0R/LcBV
http://paperpile.com/b/FcnV0R/LcBV
http://paperpile.com/b/FcnV0R/FzuR
http://paperpile.com/b/FcnV0R/FzuR
http://arxiv.org/abs/1712.06148
http://paperpile.com/b/FcnV0R/2Ygg
http://paperpile.com/b/FcnV0R/2Ygg
http://arxiv.org/abs/1312.6034
http://paperpile.com/b/FcnV0R/YEcQ
http://paperpile.com/b/FcnV0R/YEcQ
http://arxiv.org/abs/1506.06579
http://paperpile.com/b/FcnV0R/XuDC2
http://paperpile.com/b/FcnV0R/XuDC2
http://paperpile.com/b/FcnV0R/5VA9x
http://paperpile.com/b/FcnV0R/5VA9x
http://paperpile.com/b/FcnV0R/LUwOO
http://paperpile.com/b/FcnV0R/LUwOO
http://paperpile.com/b/FcnV0R/LUwOO
http://paperpile.com/b/FcnV0R/CFqg
http://paperpile.com/b/FcnV0R/CFqg
http://paperpile.com/b/FcnV0R/CFqg
http://paperpile.com/b/FcnV0R/723e
http://paperpile.com/b/FcnV0R/723e
http://paperpile.com/b/FcnV0R/5ZfbK
http://paperpile.com/b/FcnV0R/5ZfbK
http://paperpile.com/b/FcnV0R/Gv9kf
http://paperpile.com/b/FcnV0R/Gv9kf
http://paperpile.com/b/FcnV0R/Gv9kf
http://paperpile.com/b/FcnV0R/qNUb4
http://paperpile.com/b/FcnV0R/qNUb4
http://paperpile.com/b/FcnV0R/qNUb4
http://paperpile.com/b/FcnV0R/mcLR
http://paperpile.com/b/FcnV0R/mcLR
http://paperpile.com/b/FcnV0R/mcLR
http://paperpile.com/b/FcnV0R/Q5oNO
http://paperpile.com/b/FcnV0R/Q5oNO
http://paperpile.com/b/FcnV0R/Q5oNO
http://paperpile.com/b/FcnV0R/kau5d
http://paperpile.com/b/FcnV0R/kau5d
http://paperpile.com/b/FcnV0R/kau5d


Zrimec et al. 2020 - Revision document

32. Zrimec J. Structural representations of DNA regulatory substrates can enhance
sequence-based algorithms by associating functional sequence variants. Proceedings
of the 11th ACM International Conference on Bioinformatics, Computational Biology and
Health Informatics. New York, NY, USA: Association for Computing Machinery; 2020.
pp. 1–6.

33. Lubliner S, Keren L, Segal E. Sequence features of yeast and human core promoters
that are predictive of maximal promoter activity. Nucleic Acids Res. 2013;41:
5569–5581.

34. Struhl K, Segal E. Determinants of nucleosome positioning. Nat Struct Mol Biol.
2013;20: 267–273.

35. Liu R, Liu L, Li X, Liu D, Yuan Y. Engineering yeast artificial core promoter with
designated base motifs. Microb Cell Fact. 2020;19: 38.

36. Zürcher E, Tavor-Deslex D, Lituiev D, Enkerli K, Tarr PT, Müller B. A robust and
sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling
network in planta. Plant Physiol. 2013;161: 1066–1075.

37. Espinar L, Schikora Tamarit MÀ, Domingo J, Carey LB. Promoter architecture
determines cotranslational regulation of mRNA. Genome Res. 2018;28: 509–518.

38. Dvir S, Velten L, Sharon E, Zeevi D. Deciphering the rules by which 5′-UTR sequences
affect protein expression in yeast. Proc Natl Acad Sci. 2013;110: E2792–E2801.

39. Cheng J, Maier KC, Avsec Ž, Rus P, Gagneur J. Cis-regulatory elements explain most
of the mRNA stability variation across genes in yeast. RNA. 2017;23: 1648–1659.

40. Morse NJ, Gopal MR, Wagner JM, Alper HS. Yeast Terminator Function Can Be
Modulated and Designed on the Basis of Predictions of Nucleosome Occupancy. ACS
Synth Biol. 2017;6: 2086–2095.

41. Washburn JD, Mejia-Guerra MK, Ramstein G, Kremling KA, Valluru R, Buckler ES, et al.
Evolutionarily informed deep learning methods for predicting relative transcript
abundance from DNA sequence. Proc Natl Acad Sci U S A. 2019;116: 5542–5549.

42. Dhillon N, Shelansky R, Townshend B, Jain M, Boeger H, Endy D, et al. Permutational
analysis of Saccharomyces cerevisiae regulatory elements. Synth Biol. 2020;5:
ysaa007.

43. Cai Y-M, Kallam K, Tidd H, Gendarini G, Salzman A, Patron NJ. Rational design of
minimal synthetic promoters for plants. Nucleic Acids Res. 2020;48: 11845–11856.

44. Keren L, Zackay O, Lotan-Pompan M, Barenholz U, Dekel E, Sasson V, et al. Promoters
maintain their relative activity levels under different growth conditions. Mol Syst Biol.
2013;9: 701.

45. Yamanishi M, Ito Y, Kintaka R, Imamura C, Katahira S, Ikeuchi A, et al. A genome-wide
activity assessment of terminator regions in Saccharomyces cerevisiae provides a
″terminatome″ toolbox. ACS Synth Biol. 2013;2: 337–347.

46. Lubliner S, Regev I, Lotan-Pompan M, Edelheit S, Weinberger A, Segal E. Core
promoter sequence in yeast is a major determinant of expression level. Genome Res.
2015;25: 1008–1017.

47. Redden H, Alper HS. The development and characterization of synthetic minimal yeast

31

http://paperpile.com/b/FcnV0R/NlUqS
http://paperpile.com/b/FcnV0R/NlUqS
http://paperpile.com/b/FcnV0R/NlUqS
http://paperpile.com/b/FcnV0R/NlUqS
http://paperpile.com/b/FcnV0R/NlUqS
http://paperpile.com/b/FcnV0R/HcXI9
http://paperpile.com/b/FcnV0R/HcXI9
http://paperpile.com/b/FcnV0R/HcXI9
http://paperpile.com/b/FcnV0R/4ecj5
http://paperpile.com/b/FcnV0R/4ecj5
http://paperpile.com/b/FcnV0R/XJ4vC
http://paperpile.com/b/FcnV0R/XJ4vC
http://paperpile.com/b/FcnV0R/KcGv2
http://paperpile.com/b/FcnV0R/KcGv2
http://paperpile.com/b/FcnV0R/KcGv2
http://paperpile.com/b/FcnV0R/YAuTD
http://paperpile.com/b/FcnV0R/YAuTD
http://paperpile.com/b/FcnV0R/Xouwn
http://paperpile.com/b/FcnV0R/Xouwn
http://paperpile.com/b/FcnV0R/hZyYo
http://paperpile.com/b/FcnV0R/hZyYo
http://paperpile.com/b/FcnV0R/N4STU
http://paperpile.com/b/FcnV0R/N4STU
http://paperpile.com/b/FcnV0R/N4STU
http://paperpile.com/b/FcnV0R/eDYI
http://paperpile.com/b/FcnV0R/eDYI
http://paperpile.com/b/FcnV0R/eDYI
http://paperpile.com/b/FcnV0R/NbTc
http://paperpile.com/b/FcnV0R/NbTc
http://paperpile.com/b/FcnV0R/NbTc
http://paperpile.com/b/FcnV0R/4hQ5E
http://paperpile.com/b/FcnV0R/4hQ5E
http://paperpile.com/b/FcnV0R/L2UM
http://paperpile.com/b/FcnV0R/L2UM
http://paperpile.com/b/FcnV0R/L2UM
http://paperpile.com/b/FcnV0R/bzcq
http://paperpile.com/b/FcnV0R/bzcq
http://paperpile.com/b/FcnV0R/bzcq
http://paperpile.com/b/FcnV0R/5fRiW
http://paperpile.com/b/FcnV0R/5fRiW
http://paperpile.com/b/FcnV0R/5fRiW
http://paperpile.com/b/FcnV0R/rfRVH


Zrimec et al. 2020 - Revision document

promoters. Nat Commun. 2015;6: 7810.

48. Curran KA, Morse NJ, Markham KA, Wagman AM, Gupta A, Alper HS. Short Synthetic
Terminators for Improved Heterologous Gene Expression in Yeast. ACS Synth Biol.
2015;4: 824–832.

49. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that
modulates translation by eukaryotic ribosomes. Cell. 1986;44: 283–292.

50. Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5’-untranslated
regions of eukaryotic mRNAs. Science. 2016;352: 1413–1416.

51. Roy B, Jacobson A. The intimate relationships of mRNA decay and translation. Trends
Genet. 2013;29: 691–699.

52. Huch S, Nissan T. Interrelations between translation and general mRNA degradation in
yeast. Wiley Interdiscip Rev RNA. 2014;5: 747–763.

53. Radhakrishnan A, Green R. Connections Underlying Translation and mRNA Stability. J
Mol Biol. 2016;428: 3558–3564.

54. Muhlrad D, Parker R. Recognition of yeast mRNAs as “nonsense containing” leads to
both inhibition of mRNA translation and mRNA degradation: implications for the control
of mRNA decapping. Mol Biol Cell. 1999;10: 3971–3978.

55. Schwartz David C., Parker Roy. Mutations in Translation Initiation Factors Lead to
Increased Rates of Deadenylation and Decapping of mRNAs inSaccharomyces
cerevisiae. Mol Cell Biol. 1999;19: 5247–5256.

56. Barnes CA. Upf1 and Upf2 proteins mediate normal yeast mRNA degradation when
translation initiation is limited. Nucleic Acids Res. 1998;26: 2433–2441.

57. LaGrandeur T, Parker R. The cis acting sequences responsible for the differential decay
of the unstable MFA2 and stable PGK1 transcripts in yeast include the context of the
translational start codon. RNA. 1999;5: 420–433.

58. Acevedo JM, Hoermann B, Schlimbach T, Teleman AA. Changes in global translation
elongation or initiation rates shape the proteome via the Kozak sequence. Sci Rep.
2018;8: 4018.

32

http://paperpile.com/b/FcnV0R/rfRVH
http://paperpile.com/b/FcnV0R/jbc8j
http://paperpile.com/b/FcnV0R/jbc8j
http://paperpile.com/b/FcnV0R/jbc8j
http://paperpile.com/b/FcnV0R/pH9J
http://paperpile.com/b/FcnV0R/pH9J
http://paperpile.com/b/FcnV0R/XApO
http://paperpile.com/b/FcnV0R/XApO
http://paperpile.com/b/FcnV0R/0nbu
http://paperpile.com/b/FcnV0R/0nbu
http://paperpile.com/b/FcnV0R/IcdO
http://paperpile.com/b/FcnV0R/IcdO
http://paperpile.com/b/FcnV0R/XZvX
http://paperpile.com/b/FcnV0R/XZvX
http://paperpile.com/b/FcnV0R/dC2e
http://paperpile.com/b/FcnV0R/dC2e
http://paperpile.com/b/FcnV0R/dC2e
http://paperpile.com/b/FcnV0R/jeYw
http://paperpile.com/b/FcnV0R/jeYw
http://paperpile.com/b/FcnV0R/jeYw
http://paperpile.com/b/FcnV0R/aEKE
http://paperpile.com/b/FcnV0R/aEKE
http://paperpile.com/b/FcnV0R/CEYD
http://paperpile.com/b/FcnV0R/CEYD
http://paperpile.com/b/FcnV0R/CEYD
http://paperpile.com/b/FcnV0R/m6IK
http://paperpile.com/b/FcnV0R/m6IK
http://paperpile.com/b/FcnV0R/m6IK


Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

The authors have indeed addressed all of my prior concerns and have greatly improved the impact 

and readability of this manuscript. This is an interesting study that will lead to others using similar 

GAN approaches to broad datasets. 

Reviewer #2: 

Remarks to the Author: 

The paper improved on revision and can be published. 

I found the reply to the reviewers difficult to follow. Many pages of text are used to argue points 

that only the reviewers will see. I would be prefer it if the authors focused on highlighting the 

changes they made /in the paper/ in response to the concerns raised. 
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