Supplementary Information

Tackling Recalcitrant *Pseudomonas aeruginosa* Infections In Critical Illness via Antivirulence Monotherapy

Vijay K. Singh^{1,2,3}, Marianna Almpani^{1,2,3}, Damien Maura^{1,2,3,11}, Tomoe Kitao^{1,2,3,11}, Livia Ferrari⁴, Stefano Fontana⁵, Gabriella Bergamini⁴, Elisa Calcaterra⁴, Chiara Pignaffo⁵, Michele Negri⁶, Thays de Oliveira Pereira⁷, Frances Skinner⁸, Manos Gkikas⁸, Danielle Andreotti⁹, Antonio Felici^{10,11}, Eric Déziel⁷, Francois Lépine⁷, Laurence G. Rahme^{1,2,3*}

¹Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, USA

²Shriners Hospitals for Children, Boston, USA

³Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA

⁴Translational Biology Department, Aptuit (Verona) S.rl, *an Evotec Company*, 37135 Via A. Fleming 4, Verona, Italy

⁵DMPK Department, Aptuit (Verona) S.rl, an Evotec Company, 37135 Via A. Fleming 4, Verona, Italy

⁶*In vitro* Chemotherapy Laboratory, Aptuit (Verona) S.r.l., *an Evotec Company*, 37135 Via A. Fleming 4, Verona, Italy

⁷Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Quebec, H7V 1B7 Canada

⁸Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA

⁹Global Synthetic Chemistry Department, Aptuit (Verona) S.r.l., *an Evotec Company*, 37135 Via A. Fleming 4, Verona, Italy

¹⁰Department of Microbiology Discovery, *In Vitro* Biology, Aptuit (Verona) S.r.I., *an Evotec Company*, 37135 Via A. Fleming 4, Verona, Italy

¹¹Current address:

D. Maura, Voyager Therapeutics, Cambridge, MA 02139, USA

T. Kitao, Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan

A Felici, Academic Partnership, Evotec SE, 37135 Via A. Fleming 4, Verona, Italy

*Corresponding author:

e-mail: rahme@molbio.mgh.harvard.edu (LGR)

address: Massachusetts General Hospital, 340 Their Research Building, 50 Blossom Street, Boston, MA 02114; phone: 617-724-5003

These authors contributed equally: Vijay K. Singh, Marianna Almpani, Damien Maura

Structure activity relationship (SAR) studies.

The assessment of inhibitors potency was based on pyocyanin production, *pqs* operon gene expression using the *pqsA*-GFP reporter, and the production of the MvfR-regulated low molecular weight molecules HHQ, PQS, HQNO, DHQ, 2-AA in the presence of 50µM of each inhibitor. Assessment of the anthranilic acid (AA) production was used as additional control of the inhibition of the low molecular weight molecules since their synthesis depends on AA, their primary precursor.

Supplementary Table 1. Optimization starting with M17

SAR studies of N 2-[(4-fluoro-2-methylphenyl)amino]-N-phenylacetamide as anti-MvfR agents via exploration of the aryl portion of the N-phenylacetamide side.

	(Compou	nd		% Production								
	R ₁	R_2	R ₃	R ₄	Pyocyanin	<i>pqsA</i> - GFP	HHQ	PQS	HQNO	2-AA	DHQ	AA	
M17			CN		67	32	3	11	17	101	135	100	
G1		CN			103	84	100	109	101	122	-	-	
G2			CF ₃		61	46	110	93	86	68	81	-	
G3	CN				113	96	99	122	111	123	-	-	
G4			F		84	92	95	88	92	80	85	-	
D2	Br				101	96	-	-	-	-	-	-	
D5			N O		102	100	-	-	-	-	-	-	
D7	Me		Br		89	70	-	-	-	-	-	-	
D9			N		107	105	-	-	-	-	-	-	
D10	F		C	F	90	89	-	-	-	-	-	-	
D12	Br		CH₃		108	92	-	-	-	-	-	-	
D13		CN			100	90	-	-	-	-	-	-	
D14		NO_2			85	77	-	-	-	-	-	-	
D15			OMe		102	87	-	-	-	-	-	-	
D19			→ N O		109	100	-	-	-	-	-	-	
D21	Me		Me		113	87	-	-	-	-	-	-	
D22		CI			96	71	-	-	-	-	-	-	
D30	YO				91	94	-	-	-	-	-	-	
D31		CH₃	Br		69	47	-	-	-	-	-	-	
D32		OMe			92	94	-	-	-	-	-	-	

Supplementary Table 2. SAR studies of N-(4-cyanophenyl)-2-(phenylamino) acetamide as anti-MvfR agents via exploration of the aryl portion of the 2-phenylamino portion of the molecule.

	Con	npound					% Produ	uction			
	R ₁	R ₂	R ₃	Pyocyanin	pqsA- GFP	HHQ	PQS	HQNO	2-AA	DHQ	AA
G8		F		86	63	87	124	108	112	-	-
G9			Me	94	93	76	124	92	64	59	-
D3			Et	97	92	-	-	-	-	-	-
D6	F			91	68	-	-	-	-	-	-
D16		CI		43	18	-	-	-	-	-	-
D18	F		Me	69	28	-	-	-	-	-	-
D25			F	97	84	-	-	-	-	-	-
D28	F	CH₃		60	42	-	-	-	-	-	-
D33		CH(CH ₃) ₂		59	53	-	-	-	-	-	-

Supplementary Table 3. SAR studies retaining the 4-cyanophenyl and exploring the central linker and the effect of the substituent on the second Aryl group.

		Compo	ound				% Prod	uction		2-AA DHQ AA 63 83 54 152 - - 101 84 54 106 96 68 112 85 81								
	R_2	R ₄	R₅	Pyocyanin	<i>pqsA</i> - GFP	HHQ	PQS	HQNO	2-AA	DHQ	AA							
G5	F	Ме	O N O	98	98	114	114	111	63	83	54							
G6	F	Ме	∧ <mark>N ↓ N</mark> O	110	87	106	115	131	152	-	-							
D38	F	Me	N N O	108	90	98	96	100	101	84	54							
D39	F	Me	N N	110	91	96	93	102	106	96	68							
D40	F	Ме	N O	115	96	102	100	109	113	85	81							
D24	F		N N	59	26	-	-	-	-	-	-							
D34	F		∕N, ∕N, O	91	80	97	97	96	113	100	101							
D37	F		N N N	106	97	98	110	99	103	105	90							
D36	F			16	10	57	47	59	37	68	187							
D44	F			94	71	94	92	94	92	97	32							
D47	F		~N~~N~	99	78	95	94	93	100	100	42							
D83	CN		° N	114	-	-	-	-	-	-	-							

Supplementary Table 4. SAR studies exploring one side of the N'-(4-cyanophenyl)-N-aryl Malonamide

C	Compound					% Produ	ction			
Name	R ₁	R ₂	Pyocyanin	<i>pqsA</i> - GFP	HHQ	PQS	HQNO	2-AA	DHQ	AA
D41	CI		6	8	2	9	15	6	11	739
D42	Br		6	8	2	8	14	6	11	701
D43	CN		8	8	22	24	39	19	34	531
D48	F	Me	60	44	96	90	94	77	91	59
D49	COMe		66	28	120	119	101	90	106	131
D50	$COCF_3$		84	102	107	104	103	140	89	176
D51	NO ₂		3	10	3	6	18	7	12	263
D52	NH_2		87	90	92	86	92	101	103	115
D53	NHCOMe		103	85	75	88	85	93	98	56
D54	NHCOCF ₃		94	85	103	101	101	117	108	82
D55	NHSO ₂ Me		100	131	130	115	98	95	80	117
D56	I		13	6	63	62	69	72	136	180
D69	CF_3		4	2	6	16	40	15	13	920
D57	C_6H_5O		6	4	58	36	54	38	65	298

Supplementary Table 5. SAR studies retaining the 4-phenoxy phenyl motif of the NAMs and exploring the effect of the substituents on the second Aryl group

Cor	mpound		% Production									
Name	R ₁	R ₂	Pyocyanin	pqsA- GFP	HHQ	PQS	HQNO	2-AA	DHQ	AA		
D57	CN		6	4	58	36	54	38	65	298		
D58	NO2		6	9	20	19	23	22	45	101		
D59	Ι		72	81	99	93	97	92	93	131		
D60	NO2	NH2	6	-	-	-	-	-	-	-		
D61	NO2	ОН	6	7	1	6	8	12	8	112		
D62	CN	NH2	7	6	2	9	13	10	16	107		
D63	CN	OH	6	7	0	4	4	5	4	68		
D64	Br		48	61	88	100	88	78	85	50		
D67	CI		26	41	101	106	105	84	105	155		
D68	F		33	52	121	137	121	84	109	127		

	d					% I	Producti	on			DHQ AA							
Name	R1	R ₂	R ₃	R ₄	R ₅	Pyocyanin	<i>pqsA</i> - GFP	HHQ	PQS	HQNO	2- AA	DHQ	AA					
D92	C_6H_6O	NH_2	CN			4	1	-	-	-	-	-	-					
D98	C ₆ H ₆ O		CF_3			42	29	-	-	-	-	-	-					
D70	CN		Me			50	-	-	-	-	-	-	-					
D71	CN			CI		13	10	106	105	127	57	92	207					
D72	CN			F		30	-	-	-	-	-	-	-					
D75	CN			CN		49	-	-	-	-	-	-	-					
D95	CN		CN	CI		4	6	5	10	30	11	13	774					
D80	CN		CN		Ме	7	10	8	20	64	16	20	832					
D88	C ₆ H ₆ O		CN		F	6	2	1	4	14	7	7	832					
D96	CN		CN		F	34	42	-	-	-	-	-	-					
D100	C_6H_6O		CF_3		F	7	2	-	-	-	-	-	-					
D94	CN		CN		Me, F	52	85	-	-	-	-	-	-					
D97	CN		CN		F, F	94	95	-	-	-	-	-	-					

Supplementary Table 7. NAMs analogs bearing Pyridine motif replacing one or two Aryl groups

Supplementary Table 8. **Solubility assessment of NAMs in PBS.** Solubility of the 10mM compounds dissolved in DMSO was tested in the isotonic phosphate buffer (iPBS) at pH 7.4 using High-Performance Liquid Chromatography (HPLC). The solubility of each compound is expressed by the ratio of compound amount in the sample test solution to the amount of compound in the standard solution.

Compound	Solubility (μM) in PBS
D41	13
D42	15
D43	11
D57	7
D69	21
D77	39
D80	29
D88	490
D95	17
D100	5

	Antibiotic Resistance Profile							
Strain No.	Amik.	Gent.	Mero.	Pip.	Tobra.	Cefe.	Aze.	Cip.
LGR-4325	R	R	R	R	S	R	R	R
LGR-4326	R	R	R	S	S	S	S	R
LGR-4327	R	R	R	R	L.	R	R	R
LGR-4328	S	S	S	S	S	S	S	S
LGR-4330	S	S	R	S	S	S	S	R
LGR-4331	S	S	S	S	S	S	S	S
LGR-4333	R	R	R	R	R	R	R	R
LGR-4334	R	R	S	R	R	S	S	S
LGR-4340	S	S	S	S	S	S	S	S
LGR-4343	R	R	R	R	R	R	S	S
LGR-4344	R	R	I.	R	R	R	R	S
LGR-4348	S	R	R	R	R	T	S	R
LGR-4356	R	R	R	R	R	R	R	R
LGR-4362	R	R	R	R	R	R	R	S
LGR-4363	R	R	I.	R	R	R	I.	S
LGR-4364	R	R	R	R	R	R	L.	S
LGR-4366	S	R	R	R	R	R	R	R
LGR-4368	S	S	S	S	S	S	S	S

Amik. = Amikacin, Gent. = Gentamycin, Mero. = Meropenem, Pip. = Piperacin, Tobra. = Tobramycin, Cefe. = Cefepime, Aze. = Azetromycin, Cip. = Ciprofloxacin.

R = Resistant; I = intermediate; S = sensitive.

Supplementary Figure 1. Chemical structure of (a) M64 and (b) M17

Supplementary Figure 2: NAMs do not affect the growth of the *P. aeruginosa* PA14. The growth curve of PA14 was determined with or without a compound. Cells were grown in 96-well microtiter plates in Tecan F200 microplate reader at 37°C for 24h in the presence of 50 μ M of the compounds (red) or vehicle (black), and optical density (OD) was measured at 600_{nm} every 15minute up to 24hr. Data represent n=2-3, The error bars denote ± SEM. Source data having exact replicate are provided in a Source Data file.

Supplementary Figure 3. NAMs are highly efficacious against pyocyanin production in multidrug resistant clinical strains of *P. aeruginosa*. a. Pyocyanin production was measured in 16 *P. aeruginosa* clinical isolates 18hr post-growth in the presence or absence of 10 μ M of each NAM compound. The percent of pyocyanin production was calculated by comparing the same strain grown in the presence of the vehicle control. b. Representative growth curves in the presence or absence of 50 μ M of NAM compounds. Cells were grown in 96-well microtiter plates in Tecan F200 microplate reader at 37°C for 24h in the presence of 50 μ M of the compounds (red) or vehicle (black), and optical density (OD) was measured at 600_{nm} every 15minute up to 24hr. **a-b** Data represent n=2-3, the error bars denote ± SEM. Source data having exact replicate are provided in a Source Data file.

Supplementary Figure 4. Binding kinetics profile of NAMs to the MvfR protein. The binding of the compounds was assessed using Surface Plasmon Resonance (SPR).

MvfR-D88 docking result						
Form#	Score (Binding energy) [kcal/mol]					
1	-10.857					
2	-9.605					
3	-9.494					
4	-9.239					

Supplementary Figure 5. Results of MvfR-D88 docking analysis using AutoDock Vina. Docking forms of D88 were superimposed with the crystal structure of MvfR-LBD in a complex with M64 (PDB ID: 6B8A). D88 and M64 were indicated with magenta and green sticks, respectively.

Supplementary Figure 6. Results of cross-docking analysis using M64. M64 was used for cross-docking validation. Docking forms of M64 were superimposed with the crystal structure of MvfR-LBD in a complex with M64 (PDB ID: 6B8A). Docked M64 and M64 observed in the crystal structure were indicated with orange and green sticks, respectively. In the docking form 1 with the highest score, M64 was docked at approximately the same position as M64 in the crystal structure.

Supplementary Figure 7. Cytotoxicity assessments of the compound D88. Cell viability was assessed in four different cell types, RAW 264.7 (macrophage), Caco-2 (colon epithelial cells), Hep G2 (liver cells), and A549 (lung epithelial cells), the presence and absence of D88 at different compound concentrations (10, 20, 30, 40, and 50μ M). None of the used compound concentrations exerted any cytotoxic effect in the tested cell lines. The cells' percent survival was calculated compared to the same cell type grown in the presence of vehicle control. Data represent at least n=4, each dot on the graph represents one biological replicate. The number of biological replicates used for each cell line and D88 concentration is depicted on the bar. The error bars denote \pm SEM. Source data having exact n replicate is provided in a Source Data file.

Supplementary Figure 8. Pharmacokinetics of D88 *in vivo*. D88 was administered via intratracheal instillation 10.2 mg/Kg) in homogeneous suspension (0.5 % HPMC in water and assessed at different time points up to 6h. Data represent mean value of n=4 biological replicates, and the error bars denote \pm SEM. Source data having exact replicate are provided in a Source Data file.

Supplementary Figure 9. Quantification of the respective confocal images. The signal intensity of claudin 1 in the PA14 infected + vehicle control group was compared to the groups of infected and D88-treated, $\Delta mvfR$ -infected, and sham (vehicle-treated only). Each dot represents signal intensity at different area of the image 7a obtained from n=1 for each group. Images obtained from the additional biological replicates n=2 had similar results. The error bars denote ± SEM. One-way ANOVA followed by Tukey post-test was applied. *** indicate significant differences compared to the no treatment control at P < 0.001.

Supplementary Figure 10. Route of synthesis for compound D88.

Supplementary Figure 11. Analytical data of non-commercially available compounds. a-h ¹H NMR and Mass spectrometry spectra shown for compounds, **a.** D47, **b.** D56, **c.** D59, **d.** D61, **e.** D62, **f.** D63, **g.** D64, **h.** D88. DMSO was used as a solvent. All compounds were synthesized by Enamine Ltd., Kyiv, Ukraine. Certificate of analysis reports compounds' purity ~ 95%.

.

h1

¹H NMR spectrum of **D88**:

