SUPPLEMENTARY MATERIAL:

EFFECTS OF COCONUT OIL ON THE CARDIOMETABOLIC PROFILE:

SYSTEMATIC REVIEW AND META-ANALYSIS OF RANDOMIZED CLINICAL

TRIALS

Summary

Appendix I - Search strategy and search terms	4
Full search strategy and search terms in Pubmed:	4
Full search strategy and search terms in Embase:	4
Full search strategy and search terms in LILACS:	4
Supplementary Tables	4
Table S1. Detailed reasons for the exclusion of studies in the full text assessment of eligibility	/
stage	4
Table S2. Summary of randomized clinical trials investigating the effect of coconut oil intake	on
anthropometric profile	5
Table S3. Summary of randomized clinical trials investigating the effect of coconut oil intake of	on
glycemic profile	10
Table S4. Summary of randomized clinical trials investigating the effect of coconut oil on arte	rial
blood pressure	14
Table S5. Summary of randomized clinical trials investigating the effect of coconut oil on the	
inflammatory profile	15
Table S6. Summary of randomized clinical trials investigating the effect of coconut oil on char	nges
in the lipid profile	17
Table S7. Grading of Recommendations Assessment, Development and Evaluations (GRAD	E) -
Coconut oil compared to other oils, fat or placebo for health outcomes	27
Appendix II - Additional results	28
Lipid Profile	28
LDL-C to HDL-C ratio and TC: HDL-C ratio	28
Appendix II - Figure 1. Forest plots of randomized controlled clinical trials investigating the ef	
of coconut oil intake on TC:HDL-C ratios	28
Appendix II - Figure 2. Forest plots of randomized controlled clinical trials investigating the ef	
of coconut oil intake vs MUFA and PUFA rich oils on TC:HDL-C ratios	29
Glycemic profile	29
Fasting blood glucose HbA1c	29 29
Effects of coconut oil on insulin levels, β -cell function and indices of insulin sensitivity	29 30
Appendix II - Figure 3. Forest plots of randomized controlled clinical trials investigating the ef	
of coconut oil intake on fasting blood glucose (mg/dL)	30
Appendix II - Figure 4. Forest plots of randomized controlled clinical trials investigating the ef	
of coconut oil intake vs PUFA and MUFA rich oils on fasting blood glucose (mg/dL).	31
Blood pressure	31
Systolic Blood Pressure	31
Diastolic Blood Pressure	31
Inflammatory profile	31
Appendix II - Figure 5. Forest plots of randomized controlled clinical trials investigating the ef	fects
of coconut oil intake on US-CRP (mg/dL)	32
Supplementary figures	33
Figure S1. Forest plot of randomized controlled clinical trials investigating the effects in body	
weight (kg) of coconut oil intake versus PUFA and MUFA rich oils	33

Figure S2. Forest plot of randomized controlled clinical trials investigating the effect in body	
weight (kg) of coconut oil versus olive oil	33
Figure S3. Forest plot of randomized controlled clinical trials investigating investigating the e	
in body weight (kg) of coconut oil versus soybean oil	34
Figure S4. Forest plot of randomized controlled clinical trials investigating the effect in body	
weight (kg) of coconut oil versus other oils in studies carried out in women	34
Figure S5. Forest plot of the randomized controlled clinical trials investigating the effect of	
coconut oil versus other oils in body weight (kg) of studies conducted in Brazil	34
Figure S6. Forest plot of randomized controlled clinical trials investigating the effect of cocord	nut oil
versus other oils/fats in body weight (kg) of studies carried out in patients with overweight/ol	oesity
	35
Figure S7. Forest plot of randomized controlled clinical trials investigating the effect on body	,
weight (kg) of coconut oil versus other oils/fats without the long term study of Vijayakumar e	t al.
	35
Figure S8. Forest plot of randomized controlled clinical trials investigating the effect in body	
weight (kg) of coconut oil versus other oils/fats in studies including co-intervention	36
Figure S9. Forest plot of randomized controlled clinical trials investigating the effects in wais	st
circumference (cm) of coconut oil intake versus PUFA and MUFA rich oils	36
Figure S10. Forest plot of randomized controlled clinical trials investigating the effect in wais	st
circumference (cm) of coconut oil versus olive oil	37
Figure S11. Forest plot of randomized controlled clinical trials investigating the effect in wais	
circumference (cm) of coconut oil versus soybean oil	37
Figure S12. Forest plot of randomized controlled clinical trials investigating the effect in wais	
circumference (cm) of coconut oil versus other oils when analyzing studies carried out in wo	
······································	37
Figure S13. Forest plot of randomized controlled clinical trials investigating the effect in wais	
circumference (cm) of coconut oil versus other oils when analyzing studies conducted in Bra	
Figure S14. Forest plot of randomized controlled clinical trials investigating the effect in wais	
circumference (cm) of coconut oil versus other oils or/fat in patients with overweight/obesity	38
Figure S15 - Forest plot of randomized controlled clinical trials investigating the effect in wai	
circumference (cm) of coconut oil versus other oils/fats in studies including co-intervention	39
Figure S16. Forest plot of the randomized controlled clinical trials investigating the effects in	
body fat of coconut oil intake in comparison to other oils/fat	39
Figure S17. Forest plot of randomized controlled clinical trials investigating the effect in % b	
fat of coconut oil intake vs PUFA and MUFA rich oils	40
Figure S18. Forest plot of randomized controlled clinical trials investigating the effects in LD	
(mg/dL) of coconut oil intake vs PUFA and MUFA rich oils	40
Figure S19. Forest plot of randomized controlled clinical trials investigating the effect in LDL	
(mg/dL) of coconut oil versus olive oil	40
Figure S20. Forest plot of randomized controlled clinical trials investigating the effect in LDL	
(mg/dL) of coconut oil versus soybean oil	41
Figure S21. Forest plot of randomized controlled clinical trials investigating the effect in LDL	
(mg/dL) of coconut oil versus other oils when analyzing studies carried out in women	41
Figure S22. Forest plot of randomized controlled clinical trials investigating the effect in LDL	
(mg/dL) of coconut oil versus other oils when analyzing studies conducted in Brazil in LDL-0	
Figure S23. Forest plot of randomized controlled clinical trials investigating the effect in LDL	
(mg/dL). of coconut oil versus other oils or/fat in patients with overweight/obesity	42
Figure S24. Forest plot of randomized controlled clinical trials investigating the effect in LDL	
(mg/dL) of coconut oil versus other oils or fat without a long term study (Vijayakumar et al)	42
Figure S25. Forest plot of randomized controlled clinical trials investigating the effect in LDL	
(mg/dL) of coconut oil versus other oils or fat with co-intervention	-0 43
Figure S26. Forest plot of randomized controlled clinical trials investigating the effects in HD	
(mg/dL) of coconut oil intake vs PUFA and MUFA rich oils	43
Figure S27. Forest plot of randomized controlled clinical trials investigating the effect in HDL	
(mg/dL) of coconut oil versus olive oil	43

	_
Figure S28. Forest plot of randomized controlled clinical trials investigating the effect in HDL-	
(mg/dL) of coconut oil versus soybean oil	44
Figure S29. Forest plot of randomized controlled clinical trials investigating the effect in HDL-	
(mg/dL) of coconut oil versus other oils when analyzing studies carried out in women	44
Figure S30. Forest plot of randomized controlled clinical trials investigating the effect in HDL-	
(mg/dL) of coconut oil versus other oils when analyzing studies conducted in Brazil	44
Figure S31. Forest plot of randomized controlled clinical trials investigating the effect in HDL-	
(mg/dL) of coconut oil versus other oils or fat in patients with overweight/obesity	45
Figure S32. Forest plot of randomized controlled clinical trials investigating the effect in HDL-	
(mg/dL) of coconut oil versus other oils or fat without a long term study (Vijayakumar et al)	45
Figure S33. Forest plot of randomized controlled clinical trials investigating the effect in HDL-	С
(mg/dL) of coconut oil versus other oils or fat with co-intervention	46
Figure S34. Forest plot of randomized controlled clinical trials investigating the effects in TG	
(mg/dL) of coconut oil intake vs PUFA and MUFA rich oils	46
Figure S35. Forest plot of randomized controlled clinical trials investigating the effect in TG	
(mg/dL) of coconut oil versus olive oil	47
Figure S36. Forest plot of randomized controlled clinical trials investigating the effect in TG	
(mg/dL) of coconut oil versus soybean oil	47
Figure S37. Forest plot of randomized controlled clinical trials investigating the effect in TG	
(mg/dL) of coconut oil versus other oils when analyzing studies carried out in women	47
Figure S38. Forest plot of randomized controlled clinical trials investigating the effect in TG	
(mg/dL) of coconut oil versus other oils when analyzing studies conducted in Brazil	48
Figure S39. Forest plot of randomized controlled clinical trials investigating the effect in TG	
(mg/dL) of coconut oil versus other oils or fat in patients with overweight/obesity	48
Figure S40. Forest plot of randomized controlled clinical trials investigating the effect in TG	
(mg/dL) of coconut oil versus other oils or fat without a long term study (Vijayakumar et al)	48
Figure S41. Forest plot of randomized controlled clinical trials investigating the effect in TG	
(mg/dL) of coconut oil versus other oils or fat with co-intervention	49
Figure S42: RoB 2.0 risk of bias in RCTs assessing the effects of coconut oil in the lipid profil	e 50
Figure S43: RoB 2.0 risk of bias in RCTs assessing the effects of coconut oil in the	
anthropometric profile	51
Figure S44: RoB 2.0 risk of bias in RCTs assessing the effects of coconut oil in the glycemic	
profile	52
Figure S45: RoB 2.0 risk of bias in RCTs assessing the effects of coconut oil in blood pressu	
Figure S46: RoB 2.0 risk of bias in RCTs assessing the effects of coconut oil in the inflammat	-
profile	53
PRISMA 2020 Checklist	54
References	57

Appendix I - Search strategy and search terms

Full search strategy and search terms in Pubmed:

(((("coconut oil" [Supplementary Concept]) OR "coconut oil") OR coconut)) AND ((randomized controlled trial[pt] OR controlled clinical trial[pt] OR randomized controlled trials[mh] OR random allocation[mh] OR double-blind method[mh] OR single-blind method[mh] OR clinical trial[pt] OR clinical trials[mh] OR ("clinical trial"[tw]) OR ((singl*[tw] OR doubl*[tw] OR trebl*[tw] OR tripl*[tw]) AND (mask*[tw] OR blind*[tw])) OR ("latin square"[tw]) OR placebos[mh] OR placebo*[tw] OR random*[tw] OR research design[mh:noexp] OR follow-up studies[mh] OR prospective studies[mh] OR cross-over studies[mh] OR control*[tw] OR prospective*[tw] OR volunteer*[tw] NOT (animal[mh] NOT human[mh]))

Full search strategy and search terms in Embase:

('adult'/exp OR 'adult' OR 'adults' OR 'grown-ups' OR 'grownup' OR 'grownups') AND ('coconut oil'/exp OR 'coconut butter' OR 'coconut fat' OR 'coconut oil' OR 'coconut oil emulsion' OR 'copra oil' OR 'oil, coconut') AND ('randomized controlled trial'/exp OR 'controlled trial, randomized' OR 'pragmatic clinical trial' OR 'pragmatic clinical trials' OR 'randomised controlled study' OR 'randomised controlled trial' OR 'randomized controlled study' OR 'randomized controlled trial, randomized controlled trial' OR 'randomized controlled study' OR 'randomized

Full search strategy and search terms in LILACS:

(tw:(óleo de coco)) AND (tw:(ensaio clínico))

Supplementary Tables

 Table S1. Detailed reasons for the exclusion of studies in the full text assessment of eligibility stage

Record	Reason for exclusion
Francisco A O Júnior, et al., Coconut Oil Supplementation Does Not	Combination of interventions in groups
Affect Blood Pressure Variability and Oxidative Stress: A Placebo-	
Controlled Clinical Study in Stage-1 Hypertensive Patients. Nutrients,	
2021; 28;13(3):798. doi: 10.3390/nu13030798.	
Mendis, S., et al. The effect of daily consumption of coconut fat and	Non-randomized clinical trial
soya-bean fat on plasma lipids and lipoproteins of young	
normolipidemic men. Br J Nutr, 1990;63(3):547-52. doi:	
10.1079/bjn19900141	
Muller, H, et al. The serum LDL/HDL cholesterol ratio is influenced	Mixing more than one oil in the same food (eg margarine, coconut oil,
more favorably by exchanging saturated with unsaturated fat than by	soy oil), which does not allow us to know the real effects of coconut
reducing saturated fat in the diet of women. J Nutr, 2003;133(1):78-	oil on the outcomes studied.
83. doi: 10.1093/jn/133.1.78.	
Ng, T K. et al. Nonhypercholesterolaemic effects of a palm-oil diet in	Inadequate intervention
Malaysian volunteers. Am J Clin Nutr, 1991; 53(4 Suppl):1015S-	
1020S. doi: 10.1093/ajcn/53.4.1015S.	

Panth, N., et al. Medium-chain fatty acids lower postprandial lipemia:	Insufficient follow-up (<7 days)
A randomized crossover trial. Clin Nutr, 2020; 39(1):90-96. doi:	
10.1016/j.clnu.2019.02.008.	
Sciarrilo, C M., et al. Postprandial Lipemic Responses to Various	Insufficient follow-up (<7 days)
Sources of Saturated and Monounsaturated Fat in Adults.	
Nutrients, 2019; May; 11(5): 1089. doi: <u>10.3390/nu11051089</u> .	
Trepanowski J F., et al. A 21-day Daniel fast with or without krill oil	Data from the placebo and intervention groups were pooled, not
supplementation improves anthropometric parameters and the	being able to analyze the real effects of coconut oil on the outcomes
cardiometabolic profile in men and women. Nutr Metab (Lond), 2012;	of interest.
13;9(1):82. doi: 10.1186/1743-7075-9-82.	
Valente FX., et al. Effects of coconut oil consumption on energy	Insufficient follow-up (<7 days)
metabolism, cardiometabolic risk markers, and appetitive responses	
in women with excess body fat. Eur J Nutr. 2018; 57(4):1627-1637.	
doi: 10.1007/s00394-017-1448-5.	

Table S2. Summary of randomized clinical trials investigating the effect of coconut oil intake on anthropometric profile

Author and Year	Study design (Country)	Follow-up	Sample	Intervention	Comparator	Last measurements of anthropometric profile
Assunção (2009)	Randomized clinical trial (Brazil)	12 weeks	abdominal obesity		be added to the three main meals of the day, in the	Body weight (kg): soybean oil (75 \pm 9.1) > coconut oil (72.1 \pm 9.1)* BMI (kg/m ²): soybean oil (30.7 \pm 3.3) > coconut oil (30.5 \pm 3.6)*

			BMI = 31.1 ± 3.4 kg/m ²	common preparation of meals	common preparation of meals	Waist circumference (cm): coconut oil = soybean oil (97 ± 7)
Cândido (2021)	Randomized clinical trial (Brazil)	9 weeks	n = 52 women with BMI between 26 e 35 kg/m², %G > 30% Age = 26.81 ± 0.74	skimmed milk powder and	prepared with 25 ml of soybean oil, skimmed milk powder and some fruit flavoring, chocolate or cappuccino Vitamin breakfast prepared with 25 ml of olive oil, skimmed milk	Body weight (kg): soybean oil (77.24 \pm 2.08) > coconut oil (75.99 \pm 2.92) > olive oil (75.81 \pm 1.65) Waist circumference (cm): coconut oil (94.17 \pm 2.24) > olive oil (93.58 \pm 1.91) > soybean oil (92.93 \pm 1.87) Total fat (%): soybean oil (46.54 \pm 0.90) > coconut oil (45.67 \pm 1.29) > olive oil (45.27 \pm 1.07)
Chinwong (2017)	Randomized crossover trial, open- label (Thailand)	8 weeks	n = 32 healthy individuals Age = 21 \pm 0.7 years BMI = 20.8 \pm 3.4 kg/m ²	30 ml/day of coconut oil extra virgin	30 ml/day of 2% carboxymethylcellulose solution (CMC) solution	Body weight (kg): coconut oil (59.20 ± 12.57) > CMC solution (58.73 ± 12.02) BMI (kg/m ²): coconut oil (20.88 ± 3.55) > CMC solution (20.71 ± 3.33)
Harris (2017)	Randomized crossover trial	4 weeks	n = 12 postmenopausal women	oil per day in ready-made preparations (smoothies-like	safflower oil per day in	Body Weight (kg): coconut oil = safflower oil (68.9 ± 11.5)

	(EUA)		Age = 57.8 ± 3.7 years BMI = 26.4 ± 4.4 kg/m ²	preparation of salad dressings).	or in the preparation of salad dressings).	Waist circumference (cm): safflower oil $(87.1 \pm 11.9) >$ coconut oil (85.5 ± 11) Total fat (%): coconut oil = safflower oil (37.5 ± 6) Fat mass (kg): coconut oil = safflower oil (25.7 ± 8) Lean mass (kg): coconut oil = safflower oil (41.5 ± 4.5)
Khaw (2018)	Randomized clinical trial (UK)	4 weeks	n = 94 healthy individuals Age = 59.9 \pm 6.1 years BMI = 25.1 \pm 4.2 kg/m ²	oil incorporated in the usual daily diet in substitution of	incorporated in the usual daily diet in substitution of other fats or ingested as a supplement. Olive oil: 50 g of olive oil incorporated in the usual	BMI (kg/m ²): coconut oil (25.6 ± 4.6) > olive oil (24.9 ± 4.5) > butter (24.8 ± 3.6) Waist circumference (cm): coconut oil (86.6 ± 13.6) > olive oil (86.3 ± 12.1) > butter (84.0 ±
Lu (1997)	Randomized crossover trial	3 weeks	n = 15 healthy women Age = 20.0 ± 2.0 years	Coconut oil: 10% of daily VCT from coconut oil	-	Body Weight (kg): coconut oil = A16 oil = soybean oil (63.30 \pm 7.00) (N/S)

	(EUA)		BMI = 22.6 ± 2.4 kg/m ²		a lower ratio of 18: 3 without trans fats) Soybean oil: 10% of daily VCT from soybean oil	BMI (kg/m ²): coconut oil = A16 oil = soybean oil (22.80 ± 2.50)
Oliveira-de- Lira (2018)	Randomized Clinical Trial (Brazil)	8 weeks	n = 75 obese women Age = 34.07 ± 5.4 years	Coconut oil: 6 ml/day supplemented in capsules 30 min before main meals.	supplemented in capsules 30 min before main meals. Chia oil: 6 ml/day supplemented in capsules 30 min before main meals Soybean oil: 6 ml/day	Body Weight (kg): soybean oil (82.98 ± 8.09) > safflower oil (82.72 ± 7.67) > chia oil (80.6 ± 6.79) > coconut oil (79.57 ± 8.12)* BMI (kg/m ²): soybean oil (32.66 ± 2.86) > safflower oil (32.33 ± 2.44) > chia oil (31.26 ± 1.96) > coconut oil (30.76 ± 2.33)* Waist circumference (cm): soybean oil (94.79 ± 2.66) > chia
					30 min before main meals.	oil (94.68 \pm 4.93) > safflower(94.32 \pm 6.25) > coconut oil(91.89 \pm 6.05)*Body fat (%): chia oil (40.84 \pm 3.33) > soybean oil (39.73 \pm 3.37) > sunflower oil (39.62 \pm 4.53) > coconut oil (37.57 >4.03)*Lean mass (kg): coconut oil(62.32 \pm 4.49) > safflower oil(60.38 \pm 4.53) > soybean oil

						(60.27 ± 3.37) > chia oil (59.16 ± 3.33)*
Schwab (1994)	Randomized clinical trial (Finland)	4 weeks	n = 15 healthy women Age = 23.9 ± 4.6 years BMI = 21.4 ± 1.9 kg/m ²	Refined coconut oil (16 to 26 g/day of coconut oil = 4% of the daily VCT). This diet also contained oils from other sources: rapeseed oil (5 to 8g / day), olive oil (3 to 4.5g / day) and sunflower oil (2 to 3.5 g/day).	and deodorized (22 to 33 g/day of palm oil = 4% of daily VCT). This diet also contained soybean oil (2 to	Body Weight (kg): coconut oil = palm oil (58.9 ± 7.35)
Vijayakumar (2015)	Randomized clinical trial (India)	2 years	n = 198 individuals with CVD Age = 59.0 \pm 8.7 years BMI = 24.7 \pm 4.7 kg/m ²	-	-	Body weight (kg): sunflower oil (64.8 \pm 9.0) > coconut oil (64.23 \pm 8.78) BMI (kg/m ²): coconut oil (24.72 \pm 3.07) > sunflower oil (24.54 \pm 3.07) Body Fat (%): coconut oil (17.48 \pm 2.91) > sunflower oil (17.39 \pm 3.62) Waist hip ratio: coconut oil (0.97 \pm 0.05) > sunflower oil (0.96 \pm 0.05)
Vogel (2020)	Randomized clinical trial (Brazil)	45 days	n = 29 men with obesity I Age = between 20–59 years	Addition of 1 tablespoon (12ml) of coconut oil to dinner	Addition of 1 tablespoon (12ml) of soybean oil to dinner	BMI (kg/m ²): coconut oil (32.28 ± 1.83) > soybean oil (31.17 ± 1.65)

			Waist circumference (cm): coconut oil (107.13 ± 4.38) > soybean oil (106.17 ± 4.60)
			Body fat (%): coconut oil (25.94 ± 3.64) > soybean oil (24.06 ± 5.01)
			Lean mass (kg): soybean oil (74.06 \pm 3.64) > coconut oil (72.58 \pm 3.46)
			Waist hip ratio: soybean oil (0.96 ± 0.05) > coconut oil (0.94 ± 0.05)

* Significantly different (P<0.05). BMI: body mass index; VCT: total caloric value; CVD: cardiovascular disease.

Table S3. Summary of randomized clinical trials investigating the effect of	of coconut oil intake on glycemic profile
---	---

Author and Year	Study design (Country)	Follow-up	Sample	Intervention	Comparator	Last measurements of glycemic profile (mg/dL), except where specified)
Assunção (2009)	Randomized clinical trial (Brazil)	12 weeks	n = 40 women with abdominal obesity Age = 29.8 ± 6.6 years BMI = 31.1 ± 3.4 kg/m ²	30 ml of coconut oil should be added to the three main meals of the day, in the common preparation of meals	be added to the three main	Insulin (mlu/DL): coconut oil

						HOMA-S: coconut oil (2 ± 0.9) > soybean oil $(1.48 \pm 0.45)^*$
Cândido (2021)	Randomized clinical trial (Brazil)	9 weeks			with 25 ml of soybean oil, skimmed milk powder and	Glucose: coconut oil (85.69 ± 2.11) > olive oil (84.28 ± 1.19) > soybean oil (82.65 ± 0.01)* Insulin (mlu/DL): soybean oil (9.19 ± 1.12) > coconut oil (8.03 ± 0.95) > olive oil (7.99 ± 0.76)
Heber (1992)	Randomized crossover trial (USA)	3 weeks	n = 9 healthy men	these, 50% were from coconut oil, which was incorporated into muffins or biscuits. Each	day were derived from LIP and of these, 50% were from palm oil or hydrogenated	soybean oil $(81.0 \pm 6.0) >$ coconut oil $(78.0 \pm 2.0) >$ palm
Khaw (2018)	Randomized clinical trial (UK)	4 weeks	n = 94 healthy individuals Age = 59.9 \pm 6.1 years BMI = 25.1 \pm 4.2 kg/m ²	0	incorporated in the usual	Glucose: butter (97.2 ± 10.8) > olive oil (95.4 ± 10.8) > coconut oil (95.4 ± 9)

				other fats or ingested as a supplement. Olive oil: 50 g of olive oil incorporated in the usual daily diet in substitution of other fats or ingested as a supplement.	
Oliveira-de- Lira (2018)	Randomized Clinical Trial (Brazil)	8 weeks	n = 75 obese women Age = 34.07 ± 5.4 years		A1c (%): chia oil (4.95 ± 0.24) > safflower oil (4.91 ± 0.30) > soybean oil (4.89 ± 0.29) > coconut oil (4.58 ± 0.21)*
Vijayakumar (2015)	Randomized clinical trial (India)	2 years	n = 198 individuals with CVD Age = 59.0 \pm 8.7 years BMI = 24.7 \pm 4.7 kg/m ²		A1c (%): sunflower oil (6.77 \pm 1.28) > coconut oil (6.54 \pm 1.32)

	(2020)	Randomized clinical trial (Brazil)	45 days	n = 29 men with obesity I Age = between 20–59 years	(12ml) of coconut oil to dinn	on Addition of 1 tablespoon er (12ml) of soybean oil to dinner	5.93) > coconut oil (78.73 10.97) Insulin (mlu/Dl): soybean (9.85 ± 9.93) > coconut (5.13 ± 3.79) HOMA-IR: soybean oil (2.1 2.17) > coconut oil (0.92
--	--------	--	---------	---	-------------------------------	--	---

* Significantly different (P<0.05). BMI: body mass index; LIP: lipids; CVD: cardiovascular disease; VCT: total caloric value

Author and Year	Study design (Country)	Follow-up	Sample	Intervention	Comparator	Last measurements of blood pressure () or changes [] (mm Hg)
Chinwong (2017)	Randomized crossover trial, open-label (Thailand)	8 weeks	n = 32 healthy individuals Age = 21 \pm 0.7 years BMI = 20.8 \pm 3.4 kg/m ²	30 ml/day of extra virgin coconut oil	30 ml/day of 2% carboxymethylcellulose solution (CMC) solution	SBP: CMC solution (117.63 \pm 13.49) > coconut oil (114.84 \pm 11.29) DBP: coconut oil (70.41 \pm 6.42) > CMC solution (69.50 \pm 13.28)
Khaw (2018)	Randomized clinical trial (UK)	4 weeks	n = 94 healthy individuals Age = 59.9 \pm 6.1 years BMI = 25.1 \pm 4.2 kg/m ²	coconut oil incorporated in the usual daily diet in substitution of other fats	-	DBP: coconut oil [-2.02 ± 5.71] > butter [-1.33 ± 6.24] > olive oil [-0.45 ± 8.48]

Table S4. Summary of randomized clinical trials investigating the effect of coconut oil on arterial blood pressure

* Significantly different (P<0.05). BMI: body mass index; SBP: systolic blood pressure; DPB: diastolic blood pressure

Author and Year	Study design (Country)	Follow-up	Sample	Intervention	Comparator	Last measurements of inflammatory profile
Assunção (2009)	Randomized clinical trial (Brazil)	12 weeks	n = 40 women with abdominal obesity Age = 29.8 ± 6.6 years BMI = 31.1 ± 3.4 kg/m ²	30 ml of coconut oil should be added to the three main meals of the day, in the common preparation of meals	be added to the three main	$(4.2 \pm 3.2) > $ coconut oil $(3.7 \pm$
Khaw (2018)	Randomized clinical trial (UK)	4 weeks	n = 94 healthy individuals Age = 59.9 ± 6.1 years BMI = 25.1 ± 4.2 kg/m ²	Coconut oil: 50 g of coconut oil incorporated in the usual daily diet in substitution of other fats or ingested as a supplement.	incorporated in the usual	$(0.19 \pm 0.2) >$ butter (0.16 ± 0.11) > coconut oil (0.14 ±

Table S5. Summary of randomized clinical trials investigating the effect of coconut oil on the inflammatory profile

Vijayakumar (2015)	Randomized crossover trial (India)	2 years	n = 198 individuals with CVD Age = 59.0 \pm 8.7 years BMI = 24.7 \pm 4.7 kg/m ²	15% of the daily VCT of a trademark coconut oil to be used as cooking oil.	-	. ,
Voon (2011)	Randomized crossover trial (Malaysia)	5 weeks		Meals with 30% energy from fat, two-thirds of which was from coconut oil (20% total energy)	from fat, two-thirds of	(9.13 ± 3.17) > palm oil (8.88 ± 3.05) > olive oil (8.76 ± 2.96)

			108.46) > coconut oil (47.35 ± 85.3)

* Significantly different (P<0.05). BMI: body mass index; LIP: lipids; CVD: cardiovascular disease; VCT: total caloric value

Table S6. Summary of randomized clinical trials investigating the effect of coconut oil on changes in the lipid profile

Author and Year	Study design (Country)	Follow-up	Sample	Intervention	Comparator	Last measurements of lipids () or changes in lipids [] (mg/dL, except where specified)
Assunção (2009)	Randomized clinical trial (Brazil)	12 weeks	n = 40 women with abdominal obesity Age = 29.8 ± 6.6 years BMI = 31.1 ± 3.4 kg/m ²	added to the three main meals of the day, in the common preparation of	•	

Cândido (2021)	Randomized clinical trial (Brazil)	9 weeks		skimmed milk powder and	prepared with 25 ml of soybean oil, skimmed milk powder and some fruit flavoring, chocolate or cappuccino	LDL-C: coconut oil $(106.69 \pm 4.79) >$ olive oil $(95.89 \pm 4.64) >$ soybean oil (85.82 ± 4.64) HDL-C: olive oil $(48.26 \pm 2.27) >$ coconut oil $(46.37 \pm 2.54) >$ soybean oil (42.27 ± 3.28)
Chinwong (2017)	Randomized crossover trial, open- label (Thailand)	8 weeks	n = 32 healthy individuals Age = 21 \pm 0.7 years BMI = 20.8 \pm 3.4 kg/m ²	30 ml/day of coconut oil extra virgin	30 ml/day of 2% carboxymethylcellulos e (CMC) solution	TC: coconut oil $(187.7 \pm 34.5) > CMC$ solution (183.7 ± 33.7) LDL-C: coconut oil $(110.5 \pm 30.5) >$ CMC solution (110.2 ± 32.0) HDL-C: coconut oil $(64.2 \pm 9.9) > CMC$ solution $(59.0 \pm 10.2)^*$ TG: CMC solution $(72.3 \pm 28.5) >$ coconut oil (64.7 ± 23.5)

Cox (1995)	Randomized crossover trial (New Zealand)	6 weeks	n = 28 individuals TC: 5.5– 7.9 mmol/L TG: <3 mmol/L Age: 29 – 67 years BMI = 25.1 ± 4.2 kg/m ²		butter supplies ~20% of total energy. Safflower diet: 10% of energy from safflower oil; SFA and PUFA	HDL-C: coconut oil (57.0 \pm 15.0) > butter (56.0 \pm 14.0) > safflower oil (54.0 \pm 13.0) TG: butter (177.0 \pm 115.0) > coconut oil (159.0 \pm 89.0) > safflower oil (151.0
Ganji (1996)	Randomized crossover trial (EUA)	7 days	n = 10 healthy individuals Age = 31.0 ± 5.0 years BMI = 22.3 ± 1.7 kg/m ²	Coconut oil was incorporated in the preparation of a loaf, with 42 g of coconut oil, making up 20% of the VCT. Participants should consume 1/3 of this bread in each of the three main meals. Coconut oil plus psyllium fiber was incorporated in the preparation of a loaf, with 42 g of coconut oil, making up 20% of the VCT. Participants should consume 1/3 of this bread in each of the three main meals + 20 g of psyllium	incorporated in the preparation of a loaf with 42 g of soybean oil, making up 20% of the VCT. Participants should consume 1/3 of this bread in each of the three main meals.	\pm 89.0) Coconut and soybean oil: TC: coconut oil (204.9 ± 32.5) > soybean oil (191.0 ± 24.0) * LDL-C: coconut oil (126.8 ± 30.2) > soybean oil (111.8 ± 23.2) HDL-C: coconut oil (53.3 ± 0.3) > soybean oil (52.2 ± 8.5) * TG: coconut oil (158.5 ± 53.1) > soybean oil (131.1 ± 39.0) * VLDL: coconut oil (25.1 ± 13.1) > soybean oil (25.1 ± 10.0) LDL-C/HDL-C ratio: coconut oil (2.40 ± 0.90) > soybean oil (2.20 ± 0.70)

				fiber per day divided into three equal doses.		Coconut and soybean oil + psyllium fiber:
				Soybean oil was incorporated in the preparation of a loaf with 42 g of soybean oil, making up 20% of the VCT. Participants should consume 1/3 of this bread in each of the three main meals. Soybean oil plus psyllium fiber was incorporated in the preparation of a loaf with 42 g of soybean oil, making up 20% of the VCT. Participants should consume 1/3 of this bread in each of the three main meals + 20 g of psyllium fiber per day divided into three equal doses.		TC: coconut oil $(192.6 \pm 28.2) >$ soybean oil $(177.1 \pm 32.1)^*$ LDL-C: coconut oil $(112.5 \pm 28.2) >$ soybean oil $(100.5 \pm 28.2)^*$ HDL-C: coconut oil $(53.2 \pm 9.7) >$ soybean oil (53.7 ± 8.9) TG: coconut oil $(141.7 \pm 47.9) >$ soybean oil (134.6 ± 54.0) VLDL: coconut oil $(26.2 \pm 12.0) >$ soybean oil (23.9 ± 8.1) LDL-C/HDL-C ratio: coconut oil $(2.2 \pm 0.6) >$ soybean oil $(1.8 \pm 0.5)^*$
Harris (2017)	Randomized crossover trial (EUA)	4 weeks	n = 12 postmenopausal women Age = 57.8 \pm 3.7 years BMI = 26.4 \pm 4.4 kg/m ²	oil per day in ready-made preparations (smoothies-like beverages or in the	safflower oil per day in ready-made	TC: coconut oil $(237.8 \pm 24.1) >$ safflower oil $(219.3 \pm 22.8)^*$ LDL-C: coconut oil $(137.5 \pm 27.2) >$ safflower oil $(126.8 \pm 25.7)^*$

					preparation of salad dressings).	HDL-C: coconut oil $(70.5 \pm 18.8) >$ safflower oil $(62.9 \pm 14.5)^*$ TG: safflower oil $(118.3 \pm 112.7) >$ coconut oil (107.5 ± 80.6) CT:HDL-C ratio: safflower oil $(3.8 \pm 1.2) >$ coconut oil (3.7 ± 1.3)
Heber (1992)	Randomized crossover trial (USA)	3 weeks	n = 9 healthy men	were derived from LIP and of these, 50% were from	the day were derived from LIP and of these, 50% were from palm oil or hydrogenated soybean oil which was incorporated into muffins or biscuits.	(11)(1)(1)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)
Khaw (2018)	Randomized clinical trial (UK)	4 weeks	n = 94 healthy individuals Age = 59.9 \pm 6.1 years BMI = 25.1 \pm 4.2 kg/m ²	oil incorporated in the usual daily diet in substitution of	incorporated in the usual daily diet in	TC: coconut oil $(239.7 \pm 34.8) >$ butter = olive oil $(232.0 \pm 38.7)^*$ LDL-C: butter $(146.9 \pm 35) >$ olive oil $(139.2 \pm 39.0) >$ coconut oil $(131.5 \pm 35.0)^*$

			-	HDL-C: coconut oil $(88.9 \pm 27.0) >$ olive oil = butter $(77.3 \pm 23.2)^*$ TG: coconut oil $(97.4 \pm 70.8) >$ olive oil $(97.4 \pm 53.1) >$ butter (88.6 ± 44.3) CT/HDL-C ratio: olive oil $(3.3 \pm 1.2) >$ butter $(3.3 \pm 0.9) >$ coconut oil $(2.9 \pm 0.9)^*$
Lu Randomize (1997) crossover (EUA)	n = 15 healthy women Age = 20.0 ± 2.0 years BMI = 22.6 ± 2.4 kg/m ²	Coconut oil: 10% of daily VCT from coconut oil	VCT from oil A16 (transgenic soybean oil, composed of a lower ratio of 18: 3 without trans fats) Soybean oil: 10% of	$[-13.5 \pm 20.1] > \text{coconut oil} [-9.2 \pm 14.7]$

McKenney (1995)	Randomized crossover trial (EUA)	6 weeks	n = 11 individuals with TC altered Age = 58.0 ± 8 years	Coconut oil was added as the main ingredient in oat biscuits with raisins.		
Maki (2018)	Randomized crossover trial (EUA)	4 weeks	n = 25 individuals Age = 45.2 ± 2.3 years BMI = 27.7 ± 0.8	products made with coconut oil per day, which could be three types of muffins and three types of rolls. Each product was made with one tablespoon of coconut oil (13.6 g), consisting on	products made with corn oil per day, which could be three types of muffins and three types of rolls. Each product was made with one tablespoon of corn oil	LDL-C: coconut oil [4.6, IC95%: -2,5; 17.5] > corn oil [-2.7, IC95%: -8.9; 11.5] HDL: coconut oil [6.5, IC95%: 2.7; 17.8] > corn oil [5.4, IC95%: 1.4;

Oliveira-de- Lira (2018)	Randomized Clinical Trial (Brazil)	8 weeks	n = 75 obese women Age = 34.07 ± 5.4 years	Coconut oil: 6 ml/day supplemented in capsules 30 min before main meals.	supplemented in	TC: coconut oil (198.0 \pm 17.6) > soybean oil (195.7 \pm 26.2) > chia oil (187.1 \pm 17.0) > safflower oil (182.9 \pm 19.1)*
					Chia oil: 6 ml/day supplemented in capsules 30 min before main meals Soybean oil: 6 ml/day supplemented in capsules 30 min before main meals.	LDL-C: safflower oil $(130.6 \pm 24.3) >$ coconut oil $(128.3 \pm 17.7) >$ soybean oil $(127.5 \pm 23.2) >$ chia oil $(123.6 \pm$ $18.2)^*$ HDL-C: coconut oil $(55.6 \pm 6.4) >$ soybean oil $(49.9 \pm 7.1) >$ chia oil $(49.0 \pm 5.9) >$ safflower oil $(47.1 \pm 10.0)^*$ TG: soybean oil $(107.5 \pm 39.2) >$ coconut oil $(98.3 \pm 29.1) >$ safflower oil $(93.9 \pm 36.5) >$ chia oil $(88.0 \pm 24.4)^*$ VLDL: soybean oil $(20.0 \pm 8.0) >$ chia oil $(18.0 \pm 5.1) >$ coconut oil $(17.8 \pm$ $3.2) >$ safflower oil (15.7 ± 4.5)
Reiser (1985)	Randomized crossover trial (USA)	5 weeks	n = 19 normolipidemic male medical students (12 completed all three diets)	35% of total energy from fat, being 60% fat from coconut oil, lard, or safflower oil		TC: coconut oil $(168.0 \pm 3.0) > \text{lard}$ $(155.0 \pm 3.0) > \text{safflower oil} (141.0 \pm 3.1)^*$ LDL-C: coconut oil $(110.0 \pm 4.1) > \text{lard}$ $(98.0 \pm 4.5) > \text{safflower oil} (90.0 \pm 4.7)^*$ HDL-C: coconut oil $(46.0 \pm 1.1) > \text{lard}$ = safflower oil $(40.0 \pm 1.2)^*$

						TG: lard (88.0 \pm 3.5) > coconut oil (78 \pm 3.6) > safflower oil (72.0 \pm 3.7)*
Schwab (1994)	Randomized crossover clinical trial (Finland)	4 weeks	n = 15 healthy women Age = 23.9 \pm 4.6 years BMI = 21.4 \pm 1.9 kg/m ²	Refined coconut oil (16 to 26 g/day of coconut oil = 4% of the daily VCT). This diet still contained oils from other sources: rapeseed oil (5 to 8g/day), olive oil (3 to 4.5g/day) and sunflower oil (2 to 3.5g/day).	bleached and deodorized (22 to 33 g/day of palm oil = 4% of daily VCT). This diet still contained soybean	TC: palm oil (189.9 \pm 28.5) > coconut oil (187.5 \pm 24.1) LDL-C: palm oil (113.3 \pm 19.5) > coconut oil (110.2 \pm 18.0) HDL-C: palm oil (58.8 \pm 12.0) > coconut oil (57.6 \pm 10.5) TG: coconut oil (77.1 \pm 30.9) > palm oil (77.1 \pm 27.4) VLDL: coconut oil (19.7 \pm 7.5) > palm oil (17.8 \pm 7.5) *
Vijayakumar (2015)	Randomized clinical trial (India)	2 years	n = 198 individuals with CVD Age = 59.0 \pm 8.7 years BMI = 24.7 \pm 4.7 kg/m ²	15% of the daily VCT of a trademark coconut oil to be used as cooking oil.		TC: sunflower oil $(151.6 \pm 44.5) >$ coconut oil (149.3 ± 28.6) LDL-C: coconut oil $(91.0 \pm 21.9) >$ sunflower oil (89.6 ± 29.0) HDL-C: sunflower oil $(44.4 \pm 16.3) >$ coconut oil (43.2 ± 10.8) TG: sunflower oil $(112.2 \pm 45.1) >$ coconut oil (109.3 ± 47.1) VLDL: sunflower oil $(22.5 \pm 9.7) >$ coconut oil (21.8 ± 9.4)

Vogel (2020)	Randomized clinical trial (Brazil)	45 days	n = 29 mens with obesity I Age = between 20–59 years	Addition of 1 tablespoon (12 ml) of coconut oil to dinner		TC: soybean oil $(177.07 \pm 39.44) >$ coconut oil (171.47 ± 49.44) LDL-C: soybean oil $(116.29 \pm 26.55) >$ coconut oil (101 ± 37.17) HDL-C: coconut oil (43.07 ± 14.86) >soybean oil (35.93 ± 7.77) TG: coconut oil $(138.87 \pm 78.28) >$ soybean oil (119.50 ± 74.13) VLDL: coconut oil $(27.53 \pm 15.74) >$ soybean oil (24.85 ± 16.82) TC: HDL-C: soybean oil (5.07 ± 1.35) > coconut oil (4.30 ± 1.58)
Voon (2011)	Randomized crossover trial (Malaysia)	5 weeks	n = 45 normal and overweight healthy adults Age: 30.1 ± 8.3 years BMI = 23.1 ± 3.7 kg/m ²	•••	from fat, two-thirds of	TC: coconut oil $(191.4 \pm 26.7) > \text{palm}$ oil $(186.0 \pm 28.6) > \text{olive oil} (179.8 \pm 27.5)^*$ LDL-C: coconut oil $(127.6 \pm 29) > \text{palm}$ oil $(123.7 \pm 27.5) > \text{olive oil} (118.3 \pm 24.7)^*$ HDL-C: coconut oil $(53.0 \pm 11.6) > \text{palm oil} (50.6 \pm 10.0) > \text{olive oil} (49.5 \pm 8.9)^*$ TG: coconut oil $(79.7 \pm 34.5) > \text{palm oil} (75.3 \pm 27.5) > \text{olive oil} (74.4 \pm 32.8)$

		TC:HDL-C ratio: palm oil (3.69 ± 0.90) > coconut oil (3.65 ± 0.95) > olive oil (3.63 ± 0.93)

* Significantly different (P<0.05). BMI: body mass index; TC: total cholesterol; LDL-C: low density lipoprotein; HDL-C: high density lipoprotein; TG: triglycerides, SFA: saturated fatty acid; VCT: total caloric value; LIP: lipids; MUFA: monounsaturated fatty acid; PUFA: polyunsaturated fatty acid; CVD: cardiovascular disease

Table S7. Grading of Recommendations Assessment, Development and Evaluations (GRADE) - Coconut oil compared to other oils, fat or placebo for health outcomes

Certainty as:	sessment						Summary of findings					
		Inconsiste ncy		Imprecisio n	Other	Overall certainty of evidence	Study eve (%)	nt rates		Anticipated absolute effects		
Participant s (studies)	Risk of bias		Indirectnes s				With other oils, fat or placebo	With Coconu t oil	Relative effect (95% CI)	Risk with other oils, fat or placebo	Risk difference with Coconut oil	
LDL-C												
515 (7 RCTs)	very serious ^a	serious ^b	not serious	serious ^c	none	⊕○○○ Very low	304	211	-	The mean IDL-c was 0 mg/dL	MD 1.67 mg/dL lower (6.93 lower to 3.59 higher)	

HDL-C

515 (7 RCTs)	very serious ^d	serious ^e	not serious	not serious	none	⊕○○○ Very low	304	211	-	The mean hDL-c was 0 mg/dL	MD 3.28 mg/dL higher (0.66 higher to 5.9 higher)
-----------------	------------------------------	----------------------	-------------	-------------	------	------------------	-----	-----	---	---	---

Triglycerides

515	very	not serious	not serious	serious ^g	none	$\oplus O O O$	304	211	-	The	MD 0.24
(7 RCTs)	serious ^f					Very low				mean	mg/dL
										triglycerid	lower
										es were	(5.52 lower
										0 mg/dL	to 5.04
										-	higher)
											- .

Body weight

486	very	serious ⁱ	not serious	not serious	none	000	290	196	-	The	MD 0.24 kg
(6 RCTs)	serious ^h					Very low				mean	lower
										body	(0.83 lower
										weight	to 0.34
										was 0 kg	higher)
											• /

Waist circumference

287	very	serious ^k	not serious	not serious	none	$\oplus O O O$	190	97	-	The	MD 0.64
(4 RCTs)	serious ^j					Very low				mean	cm lower
										waist	(1.69 lower
										circumfer	to 0.41
										ence was	higher)
										0 cm	

Total body fat

445	very	serious ^m	not serious	not serious	none	000	269	176	-	The	MD 0.10 %
(5 RCTs)	serious ⁱ					Very low				mean	lower
										total	(0.56 lower
										body fat	to 0.36
										was 0 %	higher)

Fasting blood glucose

212	very	not serious	not serious	serious ^o	none	$\oplus O O O$	133	79	-	The	MD 0.82
(4 RCTs)	serious ⁿ					Very low				mean total fasting	mg/dl Iower (1.18 Iower
										blood glucose was 0 mg/dL	to 2.82 higher)

US-CRP

131	very	not serious	not serious	not serious	none	$\oplus O O O$	83	48	-	The	MD 0.04
(2 RCTs)	serious ^p					Very low				mean	mg/dl
										total	lower
										USC-RP	(0.91 lower
										was 0	to 0.82
										mg/dL	higher)

Cl: confidence interval; MD: mean difference

Explanations

a. RCTs are at risk of bias due to: blinding of participants and/or outcome (in Khaw et al. and Vogel et al.) and selective reporting (in Schwab et al.). RCTs present an unclear risk of bias in: randomization (in Oliveira-de-Lira et al., Schwab et al., Vijayakumar et al.), allocation (in Assunção et al., Oliveira-de-Lira et al., Vijayakumar et al., Vogel

et al.), participant blinding and/or outcome (in Candido et al., Khaw et al., Schwab et al., Vijayakumar et al., Vogel et al.) and selective reporting (in Assunção et al., Oliveira-de-Lira et al., Vijayakumar et al.).

b. Large amounts of statistical heterogeneity (I²:78%); point estimates and confidence intervals vary considerably.

c. Imprecision due to wide confidence interval: in the worst scenario, it may increase 3.59 mg/dL; in the best scenario, it may decrease 6.93 mg/dL.

d. RCTs are at risk of bias due to: blinding of participants and/or outcome (in Khaw et al. and Vogel et al.) and selective reporting (in Schwab et al.). RCTs present an unclear risk of bias in: randomization (in Oliveira-de-Lira et al., Schwab et al., Vijayakumar et al.), allocation (in Assunção et al., Oliveira-de-Lira et al., Schwab et al., Vijayakumar et al.), participant blinding and/or outcome (in Candido et al., Khaw et al., Schwab et al., Vijayakumar et al., Vogel et al.) and selective reporting (in Assunção et al., Oliveira-de-Lira et al., Vijayakumar et al., Vijayakumar

e. Large amounts of statistical heterogeneity (I²:74%); point estimates and confidence intervals vary considerably.

f. RCTs are at risk of bias due to: blinding of participants and/or outcome (in Khaw et al. and Vogel et al.) and selective reporting (in Schwab et al.). RCTs present an unclear risk of bias in: randomization (in Oliveira-de-Lira et al., Schwab et al., Vijayakumar et al.), allocation (in Assunção et al., Oliveira-de-Lira et al., Schwab et al., Vijayakumar et al.), participant blinding and/or outcome (in Candido et al., Khaw et al., Schwab et al., Vijayakumar et al., Vogel et al.) and selective reporting (in Assunção et al., Oliveira-de-Lira et al., Oliveira-de-Lira et al., Vijayakumar et al., Vogel et al.) and selective reporting (in Assunção et al., Oliveira-de-Lira et al., Oliveira-de-Lira et al., Vijayakumar et al., Vijayakumar et al., Vijayakumar et al., Vijayakumar et al.) and selective reporting (in Assunção et al., Oliveira-de-Lira et al., Vijayakumar et al.) and selective reporting (in Assunção et al., Oliveira-de-Lira et al., Vijayakumar et al.) and selective reporting (in Assunção et al., Oliveira-de-Lira et al., Vijayakumar et al.) and selective reporting (in Assunção et al., Oliveira-de-Lira et al., Vijayakumar et al.) and selective reporting (in Assunção et al., Oliveira-de-Lira et al., Vijayakumar et al.) and selective reporting (in Assunção et al., Oliveira-de-Lira et al.) and selective reporting (in Assunção et al., Oliveira-de-Lira et al.) and selective reporting (in Assunção et al.) and selective reporting (in Assunção et al., Oliveira-de-Lira et al.) and selective reporting (in Assunção et al.) and selectiv

g. Imprecision due to wide confidence interval: in the worst scenario, it may increase 5.04 mg/dL; in the best scenario, it may decrease 5.52 mg/dL.

h. RCTs are at risk of bias due to: blinding of participants and/or outcome (in Khaw et al. and Vogel et al.) and selective reporting (in Schwab et al.). RCTs present an unclear risk of bias in: randomization (in Oliveira-de-Lira et al., Schwab et al., Vijayakumar et al.), allocation (in Assunção et al., Oliveira-de-Lira et al., Vijayakumar et al.), participant blinding and/or outcome (in Candido et al., Khaw et al., Schwab et al., Vijayakumar et al.), vogel et al.) and selective reporting (in Assunção et al., Oliveira-de-Lira et al., Vijayakumar et al., Vijayakumar et al., Vijayakumar et al.), participant blinding and/or outcome (in Candido et al., Khaw et al., Schwab et al., Vijayakumar et al., Vogel et al.) and selective reporting (in Assunção et al., Oliveira-de-Lira et al., Vijayakumar et al.), vogel et al.) and selective reporting (in Assunção et al., Oliveira-de-Lira et al., Vijayakumar et al.).

i. Large amounts of statistical heterogeneity (I²:76%); point estimates and confidence intervals vary considerably.

j. RCTs are at risk of bias due to: blinding of participants and/or outcome (in Khaw et al. and Vogel et al.) and selective reporting (in Schwab et al.). RCTs present an unclear risk of bias in: randomization (in Oliveira-de-Lira et al., Schwab et al., Vijayakumar et al.), allocation (in Assunção et al., Oliveira-de-Lira et al., Vijayakumar et al., Vogel et al.), participant blinding and/or outcome (in Candido et al., Khaw et al., Schwab et al., Vijayakumar et al., Vogel et al.) and selective reporting (in Assunção et al., Oliveira-de-Lira et al., Vijayakumar et al., Vogel et al.) and selective reporting (in Assunção et al., Oliveira-de-Lira et al., Oliveira-de-Lira et al., Vijayakumar et al., Vijayakumar et al., Vijayakumar et al.), and selective reporting (in Assunção et al., Oliveira-de-Lira et al., Vijayakumar et al.), vijayakumar et al., Vijayakumar et al.), vijayakumar et al.)

k. Large amounts of statistical heterogeneity (I²:80%); point estimates and confidence intervals vary considerably.

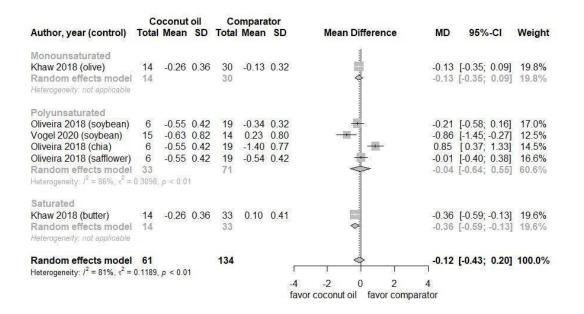
I. RCTs are at risk of bias due to: blinding of participants and/or outcome (in Khaw et al. and Vogel et al.). RCTs present an unclear risk of bias in: randomization (in Oliveira-de-Lira et al., Vijayakumar et al.), allocation (in Oliveira-de-Lira et al., Vijayakumar et al.), participant blinding and/or outcome (in Candido et al., Khaw et al., Vijayakumar et al., Vogel et al.) and selective reporting (in Oliveira-de-Lira et al. and Vijayakumar et al.).

m. Large amounts of statistical heterogeneity (I²:75%); point estimates and confidence intervals vary considerably.

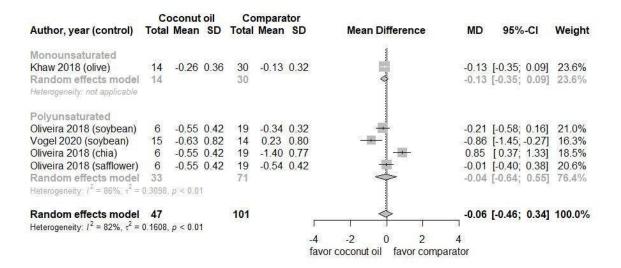
n. RCTs are at risk of bias due to: blinding of participants and/or outcome (in Khaw et al. and Vogel et al.). RCTs present an unclear risk of bias in: allocation (in Assunção et al., and Vogel et al.), participant blinding and/or outcome (in Candido et al., Khaw et al. and Vogel et al.) and selective reporting (in Assunção et al.).

o. Imprecision due to wide confidence interval: in the worst scenario, it may increase 2.62 mg/dL; in the best scenario, it may decrease 1.18 mg/dL.

p. RCTs are at risk of bias due to: blinding of participants and/or outcome (in Khaw et al.). RCTs present an unclear risk of bias in: allocation (in Assunção et al.), participant blinding and/or outcome (in Khaw et al.) and selective reporting (in Assunção et al.).


Appendix II - Additional results

Lipid Profile


LDL-C to HDL-C ratio and TC: HDL-C ratio

Three studies analyzed the effects of coconut oil on LDL-C to HDL-C ratio (n=65, 92% female, 18 to 36 years) [1-3]. The consumption of coconut oil reduced the LDL-C/HDL-C ratio in comparison to soybean and transgenic soybean oils [1,2]. Seven studies [4-10] analyzed the effects of coconut oil on TC: HDL-C ratio. These studies included 291 participants (70% females, 34 to 68 years).

Three studies [4,5,10] were included in the meta-analysis regarding TC:HDL-C ratio (-0.12; CI 95% -0.43 to 0.20; figure 1). We performed a subgroup analysis excluding a study that used a SAFs rich oil/fat as a comparator and the results did not change (vs butter; -0.06; CI 95% - 0.46 to 0.34; figure 2) [5].

Appendix II - Figure 1. Forest plots of randomized controlled clinical trials investigating the effects of coconut oil intake on TC:HDL-C ratios

Appendix II - Figure 2. Forest plots of randomized controlled clinical trials investigating the effects of coconut oil intake vs MUFA and PUFA rich oils on TC:HDL-C ratios

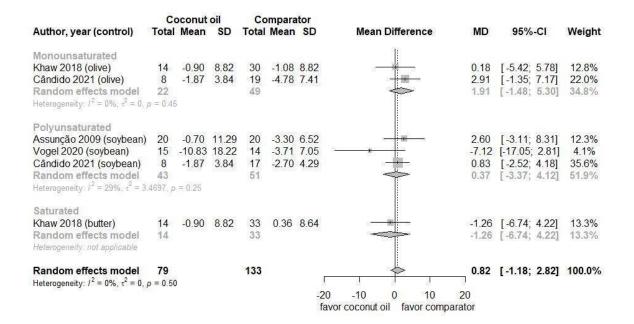
Glycemic profile

Fasting blood glucose

Seven studies analyzed the effects of coconut oil on fasting glucose levels [2, 5, 6, 10-13]. These studies included 297 participants (69.3% females, 23 to 66 years). Four studies [2,5,10,13] were included in the meta-analysis. Overall, the effect of coconut oil intake on fasting glucose levels in comparison to other oils/fats did not differ (0.82 mg/dL; 95% CI -1.18 to 2.82 mg/dL; figure 3). We performed a subgroup analysis excluding a study that used a SAFs rich oil/fat as a comparator and the results did not change (vs butter 1.14 mg/dL; 95% CI -1.01 to 3.29 mg/dL; figure 4) [1]. The effect of coconut oil on fasting plasma glucose did not differ in comparison to PUFAs (0.37 mg/dL; 95% CI -3.37 to 4.12 mg/dL) and MUFAs (1.91 mg/dL; 95% CI -1.48 to 5.30 mg/dL).

A crossover study (n=9) [11] demonstrated that consumption of coconut oil increases blood glucose levels more than palm oil, but less than hydrogenated soybean oil.

HbA1c


Two studies analyzed this outcome (n=273, 32% female, 29 to 68 years) [4,14]. An 8-week study found significantly lower values of HbA1c when comparing coconut oil to PUFAs [4]. A

2-year follow-up study compared the consumption of coconut oil with PUFAs and found no difference between groups [14]. Results are shown in table S2.

Effects of coconut oil on insulin levels, β-cell function and indices of insulin sensitivity

A study observed that coconut oil increased β -cell function and insulin sensitivity in comparison to the consumption of soybean oil (n=40, 100% female, 29.8 ± 6.6 years, follow-up: 12 weeks) [2]. Results are shown in table S2.

One study analyzed the insulin resistance index (HOMA-IR), comparing coconut oil with soy oil, but found no difference between groups (n=29, 100% man, 35.27 ± 11.12 coconut oil group and 39.28 ± 9.06 soybean oil group, follow-up: 45 days) [10].

Appendix II - Figure 3. Forest plots of randomized controlled clinical trials investigating the effects of coconut oil intake on fasting blood glucose (mg/dL)

	C	oconut	oil	Co	ompara	tor							
Author, year (control)	Total	Mean	SD	Total	Mean	SD		Mean Difference		MD	95%-CI	Weight	
Monounsaturated									1				
Khaw 2018 (olive)	14	-0.90	8.82	30	-1.08	8.82		27		0.18	[-5.42; 5.78]	14.7%	
Cândido 2021 (olive)	8	-1.87	3.84	19	-4.78	7.41				2.91	[-1.35; 7.17]	25.4%	
Random effects model	22			49					 	1.91	[-1.48; 5.30]	40.1%	
Heterogeneity: $t^2 = 0\%$, $\tau^2 = 0$,	p = 0.45	2											
Polyunsaturated													
Assunção 2009 (soybean)	20	-0.70	11.29	20	-3.30	6.52		(1)		2.60	[-3.11; 8.31]	14.1%	
Vogel 2020 (soybean)	15	-10.83	18.22	14	-3.71	7.05	14			-7.12	[-17.05; 2.81]	4.7%	
Cândido 2021 (soybean)	8	-1.87	3.84	17	-2.70	4.29		80		0.83	[-2.52; 4.18]	41.1%	
Random effects model	43			51				¥	÷	0.37	[-3.37; 4.12]	59.9%	
Heterogeneity: $l^2 = 29\%$, $\tau^2 = 3$	4697, p	= 0.25											
Random effects model	65	2		100					÷	1.14	[-1.01; 3.29]	100.0%	
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$,	p = 0.45	0					~	10	0 10	00			
						-2	The second second	-10	0 10	20			
						Ta	avor co	conut oi	favor com	Darator			

Appendix II - Figure 4. Forest plots of randomized controlled clinical trials investigating the effects of coconut oil intake vs PUFA and MUFA rich oils on fasting blood glucose (mg/dL).

Blood pressure

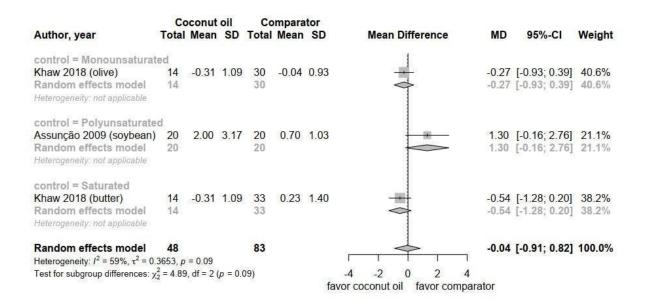
Systolic Blood Pressure

Two studies [5, 15] analyzed this outcome (n=126, 63% female, 20 to 66 years, follow-up of 4 to 8 weeks). When comparing the effect of coconut oil intake with placebo, higher levels of systolic blood pressure are observed [15]. However, when the effect of the intake of coconut oil is compared with olive oil or butter, lower levels of systolic blood pressure are observed [5]. We were not able to meta-analyze these data, since one study was a crossover trial and there was not enough data. Results are shown in table S3.

Diastolic Blood Pressure

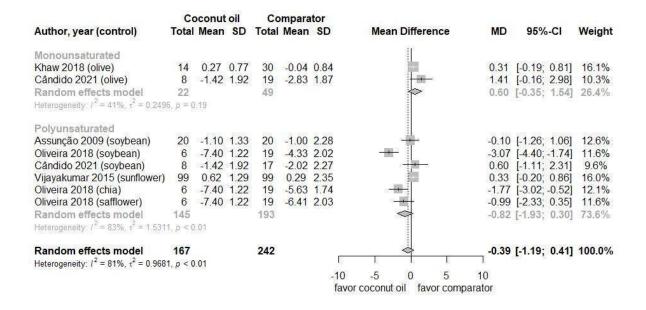
Two studies [5,15] analyzed this outcome (n=126, 63% female, 20 to 66 years, follow-up of 4 to 8 weeks). When the effect of the intake of coconut oil is compared with placebo, olive oil and butter, higher levels of diastolic blood pressure are observed [5,15]. We were not able to meta-analyze these data, since one study was a crossover trial and there was not enough data. Results are shown in table S3.

Inflammatory profile


Four studies (follow-up 4 weeks to 2 years, n=377, 40% females, 22 to 68 years) analyzed the effects of coconut oil on US-CRP [2,5,6,14].

Two studies [2,5] were included in the meta-analysis. Overall, the effect of coconut oil intake on US-CRP in comparison to other oils/fats did not differ (-0.04 mg/dL; 95% CI -0.91 to 0.82

mg/dL; figure 5). A crossover study observed lower levels of US-CRP with the intake of coconut oil when compared to olive and palm oils [6].


One RCT study (follow-up 12 weeks, n=40, 100% female, 23.9 ± 4.6 years) analyzed the effects of coconut oil in fibrinogen. Coconut oil increased fibrinogen when compared to consumption of soybean oil [2].

A crossover study (follow-up 5 weeks, n=45, 80% female, 30.1 \pm 8.3 years) observed that coconut oil consumption increased tcHcy, IL-1 β , IL-6, IL-8 and *IFN-* γ when compared to the use of palm and extra virgin olive oil [6]. Results are shown in table S4.

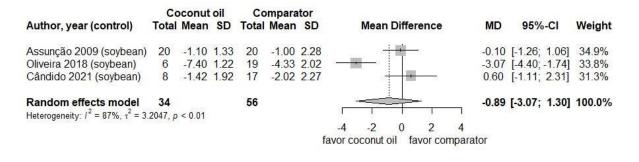
Appendix II - Figure 5. Forest plots of randomized controlled clinical trials investigating the effects of coconut oil intake on US-CRP (mg/dL)

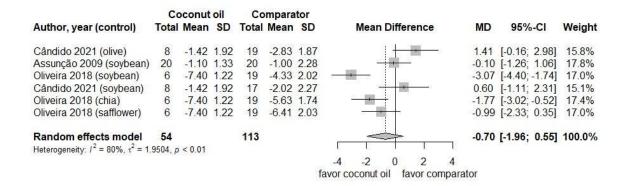
Figure S1. Forest plot of randomized controlled clinical trials investigating the effects in body weight (kg) of coconut oil intake versus PUFA and MUFA rich oils

Figure S2. Forest plot of randomized controlled clinical trials investigating the effect in body weight (kg) of coconut oil versus olive oil

Nuther year (control)	Co	oconut	oil	Co	mpara	tor								
Author, year (control)	Total	Mean	SD	Total	Mean	SD		Mear	Diffe	rence		MD	95%-CI	Weight
Khaw 2018 (olive)	14	0.27	0.77	30	-0.04	0.84			-			0.31	[-0.19; 0.81]	73.9%
Cândido 2021 (olive)	8	-1.42	1.92	19	-2.83	1.87						1.41	[-0.16; 2.98]	26.1%
Random effects model Heterogeneity: $l^2 = 41\%$, $\tau^2 =$		p = 0.1	9	49			<u> </u>	Ĩ	+	>	Ĩ	0.60	[-0.35; 1.54]	100.0%
						f	-4 avor co	-2 pconut	0 oil fa	2 avor co	4 mpara	ator		

Figure S3. Forest plot of randomized controlled clinical trials investigating investigating the effect in body weight (kg) of coconut oil versus soybean oil




Figure S4. Forest plot of randomized controlled clinical trials investigating the effect in body weight (kg) of coconut oil versus other oils in studies carried out in women

	Co	oconut	oil	Co	mpara	tor				
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mean Difference	MD	95%-CI	Weight
Cândido 2021 (olive)	8	-1.42	1.92	19	-2.83	1.87	 	1.41	[-0.16; 2.98]	13.2%
Assunção 2009 (soybean)	20	-1.10	1.33	20	-1.00	2.28		-0.10	[-1.26; 1.06]	15.2%
Oliveira 2018 (soybean)	6	-7.40	1.22	19	-4.33	2.02	2	-3.07	[-4.40; -1.74]	14.4%
Cândido 2021 (soybean)	8	-1.42	1.92	17	-2.02	2.27		0.60	[-1.11; 2.31]	12.5%
Oliveira 2018 (chia)	6	-7.40	1.22	19	-5.63	1.74	-	-1.77	[-3.02; -0.52]	14.8%
Oliveira 2018 (safflower)	6	-7.40	1.22	19	-6.41	2.03		-0.99	[-2.33; 0.35]	14.4%
Schwab 1994 (palm)	15	0.20	1.08	15	0.10	1.85		0.10	[-0.98; 1.18]	15.6%
Random effects model	69			128				-0.58	[-1.65; 0.48]	100.0%
Heterogeneity: $/^2 = 78\%$, $\tau^2 = 1$.	5987, p	< 0.01						1.		
							-4 -2 0 2	4		
						f	avor coconut oil favor cor	nparator		

Figure S5. Forest plot of the randomized controlled clinical trials investigating the effect of coconut oil versus other oils in body weight (kg) of studies conducted in Brazil

	Co	oconut	oil	Co	mpara	tor				
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mean Difference	MD	95%-CI	Weight
Cândido 2021 (olive)	8	-1.42	1.92	19	-2.83	1.87		1.41	[-0.16; 2.98]	15.8%
Assunção 2009 (soybean)	20	-1.10	1.33	20	-1.00	2.28		-0.10	[-1.26; 1.06]	17.8%
Oliveira 2018 (soybean)	6	-7.40	1.22	19	-4.33	2.02		-3.07	[-4.40; -1.74]	17.0%
Cândido 2021 (soybean)	8	-1.42	1.92	17	-2.02	2.27		0.60	[-1.11; 2.31]	15.1%
Oliveira 2018 (chia)	6	-7.40	1.22	19	-5.63	1.74		-1.77	[-3.02; -0.52]	17.4%
Oliveira 2018 (safflower)	6	-7.40	1.22	19	-6.41	2.03		-0.99	[-2.33; 0.35]	17.0%
Random effects model	54			113			_	-0.70	[-1.96; 0.55]	100.0%
Heterogeneity: $l^2 = 80\%$, $\tau^2 = 1$.9504, p	o < 0.01								
							-4 -2 0 2 4			
						fa	avor coconut oil favor compara	tor		

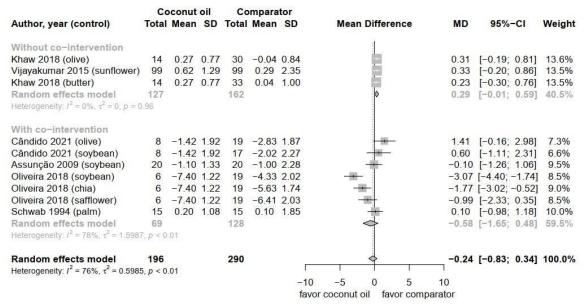
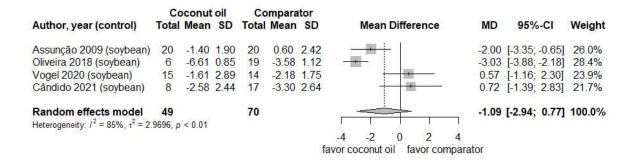

Figure S6. Forest plot of randomized controlled clinical trials investigating the effect of coconut oil versus other oils/fats in body weight (kg) of studies carried out in patients with overweight/obesity

Figure S7. Forest plot of randomized controlled clinical trials investigating the effect on body weight (kg) of coconut oil versus other oils/fats without the long term study of Vijayakumar et al.

	Co	oconut	oil	Co	mpara	tor				
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mean Difference	MD	95%-CI	Weight
Khaw 2018 (olive)	14	0.27	0.77	30	-0.04	0.84	-	0.31	[-0.19; 0.81]	14.7%
Cândido 2021 (olive)	8	-1.42	1.92	19	-2.83	1.87		1.41	[-0.16; 2.98]	8.9%
Assunção 2009 (soybean)	20	-1.10	1.33	20	-1.00	2.28		-0.10	[-1.26; 1.06]	11.1%
Oliveira 2018 (soybean)	6	-7.40	1.22	19	-4.33	2.02	2	-3.07	[-4.40; -1.74]	10.1%
Cândido 2021 (soybean)	8	-1.42	1.92	17	-2.02	2.27		0.60	[-1.11; 2.31]	8.2%
Oliveira 2018 (chia)	6	-7.40	1.22	19	-5.63	1.74		-1.77	[-3.02; -0.52]	10.6%
Oliveira 2018 (safflower)	6	-7.40	1.22	19	-6.41	2.03		-0.99	[-2.33; 0.35]	10.1%
Schwab 1994 (palm)	15	0.20	1.08	15	0.10	1.85		0.10	[-0.98; 1.18]	11.6%
Khaw 2018 (butter)	14	0.27	0.77	33	0.04	1.00		0.23	[-0.30; 0.76]	14.6%
Random effects model	97			<mark>191</mark>				-0.35	[-1.05; 0.36]	100.0%
Heterogeneity: $l^2 = 78\%$, $\tau^2 = 0$.	8083, p	< 0.01					4 2 0 2 4			
						f	avor coconut oil favor compar	ator		

Figure S8. Forest plot of randomized controlled clinical trials investigating the effect in body weight (kg) of coconut oil versus other oils/fats in studies including cointervention


Figure S9. Forest plot of randomized controlled clinical trials investigating the effects in waist circumference (cm) of coconut oil intake versus PUFA and MUFA rich oils

	Co	oconut	oil	Co	mpara	tor					
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mean Diffe	rence	MD	95%-CI	Weight
Monounsaturated											
Khaw 2018 (olive)	14	1.29	3.31	30	0.59	3.25			0.70	[-1.39; 2.79]	10.2%
Cândido (2021) olive	8	-2.58	2.44	19	-3.98	2.88		<u> </u>	1.40	[-0.73; 3.53]	10.1%
Random effects model	22			49				\geq	1.04	[-0.45; 2.53]	20.3%
Heterogeneity: $l^2 = 0\%$, $r^2 = 0$, l	p = 0.65	i.								85 - 16 - 5	
Polyunsaturated											
Assunção 2009 (soybean)	20	-1.40	1.90	20	0.60	2.42			-2.00	[-3.35; -0.65]	13.3%
Oliveira 2018 (soybean)	6	-6.61	0.85	19	-3.58	1.12			-3.03	[-3.88; -2.18]	15.2%
Vogel 2020 (soybean)	15	-1.61	2.89	14	-2.18	1.75	+ -		0.57	[-1.16; 2.30]	11.7%
Cândido 2021 (soybean)	8	-2.58	2.44	17	-3.30	2.64			0.72	[-1.39; 2.83]	10.1%
Oliveira 2018 (chia)	6	-6.61	0.85	19	-4.95	1.43			-1.66	[-2.60; -0.72]	14.9%
Oliveira 2018 (safflower)	6	-6.61	0.85	19	-5.21	1.75			-1.40	[-2.44; -0.36]	14.5%
Random effects model	61			108			\diamond		-1.35	[-2.38; -0.32]	79.7%
Heterogeneity: $l^2 = 77\%$, $\tau^2 = 1$.	2089, p	< 0.01									
Random effects model	83			157		A.2			-0.83	[-1.89; 0.24]	100.0%
Heterogeneity: $l^2 = 80\%$, $\tau^2 = 1$.	7425, p	< 0.01					1				
						-10	-5 0	5	10		
						favo	r coconut oil fa	avor compa	rator		

Figure S10. Forest plot of randomized controlled clinical trials investigating the effect in waist circumference (cm) of coconut oil versus olive oil

	Co	oconut	oil	Co	mpara	tor								
Author, year (control)	Total	Mean	SD	Total	Mean	SD		Mean	Diffe	rence		MD	95%-CI	Weight
Khaw 2018 (olive)	14	1.29	3.31	30	0.59	3.25		33 -		<u> </u>		0.70	[-1.39; 2.79]	51.0%
Cândido 2021 (olive)	8	-2.58	2.44	19	-3.98	2.88			s <u>- 10 s</u>	1	_	1.40	[-0.73; 3.53]	49.0%
Random effects model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	65		49			I—	L	+	<u> </u>	1	1.04	[-0.45; 2.53]	100.0%
notologonoky. 1 o za, 1 o	, p. 0.					fa	- <mark>4</mark> avor co	-2 oconut	0 oil fa	2 avor co	4 mpara	ator		

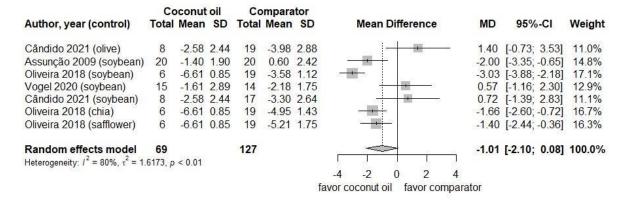

Figure S11. Forest plot of randomized controlled clinical trials investigating the effect in waist circumference (cm) of coconut oil versus soybean oil

Figure S12. Forest plot of randomized controlled clinical trials investigating the effect in waist circumference (cm) of coconut oil versus other oils when analyzing studies carried out in women

	Co	conut	oil	Co	mpara	tor					
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mean D	Difference	MD	95%-CI	Weight
Cândido 2021 (olive)	8	-2.58	2.44	19	-3.98	2.88	-	<u> </u>	1.40	[-0.73; 3.53]	11.0%
Assunção 2009 (soybean)	20	-1.40	1.90	20	0.60	2.42			-2.00	[-3.35; -0.65]	14.8%
Oliveira 2018 (soybean)	6	-6.61	0.85	19	-3.58	1.12		To	-3.03	[-3.88; -2.18]	17.1%
Vogel 2020 (soybean)	15	-1.61	2.89	14	-2.18	1.75			0.57	[-1.16; 2.30]	12.9%
Cândido 2021 (soybean)	8	-2.58	2.44	17	-3.30	2.64			0.72	[-1.39; 2.83]	11.1%
Oliveira 2018 (chia)	6	-6.61	0.85	19	-4.95	1.43			-1.66	[-2.60; -0.72]	16.7%
Oliveira 2018 (safflower)	6	-6.61	0.85	19	-5.21	1.75			-1.40	[-2.44; -0.36]	16.3%
Random effects model Heterogeneity: $l^2 = 80\%$, $\tau^2 = 1$.	69	. 0. 04		127				>	- <mark>1.</mark> 01	[-2.10; 0.08]	<mark>100.0%</mark>
Heterogeneity: $T = 80\%$, $\tau = 1$.	6173, p	< 0.01					-4 -2	0 0 4			
							and the second state of the second	0 2 4	10. 1 . 10. 10. 10. 10. 10. 10. 10. 10. 10. 10		
						Te	avor coconut oil	I favor compa	rator		

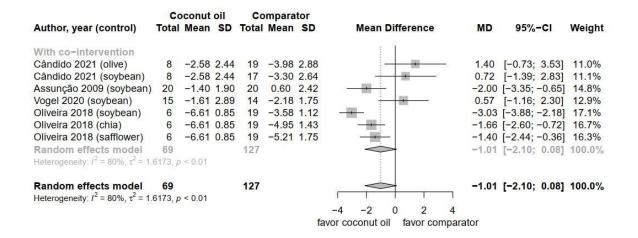

Figure S13. Forest plot of randomized controlled clinical trials investigating the effect in waist circumference (cm) of coconut oil versus other oils when analyzing studies conducted in Brazil

Figure S14. Forest plot of randomized controlled clinical trials investigating the effect in waist circumference (cm) of coconut oil versus other oils or/fat in patients with overweight/obesity

	Co	oconut	oil	Co	mpara	tor				
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mean Difference	MD	95%-CI	Weight
Cândido 2021 (olive)	8	-2.58	2.44	19	-3.98	2.88	1- 1	1.40	[-0.73; 3.53]	11.0%
Assunção 2009 (sovbean)	20	-1.40	1.90	20	0.60	2.42			[-3.35: -0.65]	
Oliveira 2018 (soybean)	6	-6.61	0.85	19	-3.58	1.12		-3.03	[-3.88; -2.18]	17.1%
Vogel 2020 (soybean)	15	-1.61	2.89	14	-2.18	1.75		0.57	[-1.16; 2.30]	12.9%
Cândido 2021 (soybean)	8	-2.58	2.44	17	-3.30	2.64		0.72	[-1.39; 2.83]	11.1%
Oliveira 2018 (chia)	6	-6.61	0.85	19	-4.95	1.43		-1.66	[-2.60; -0.72]	16.7%
Oliveira 2018 (safflower)	6	-6.61	0.85	19	-5.21	1.75		-1.40	[-2.44; -0.36]	16.3%
Random effects model Heterogeneity: $l^2 = 80\%$, $\tau^2 = 1$.	69	< 0.01		127				- <mark>1.0</mark> 1	[-2.10; 0.08]	<mark>100.0%</mark>
rictorogeneity: / 00/0, / 1.	on 0, p						-4 -2 0 2 4			
						fa	avor coconut oil favor compar	ator		

Figure S15 - Forest plot of randomized controlled clinical trials investigating the effect in waist circumference (cm) of coconut oil versus other oils/fats in studies including co-intervention

Figure S16. Forest plot of the randomized controlled clinical trials investigating the effects in % body fat of coconut oil intake in comparison to other oils/fat

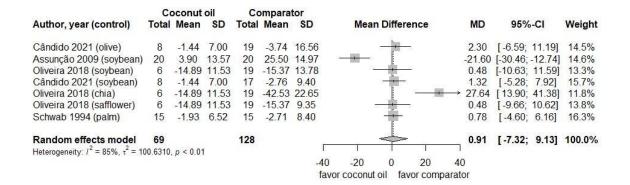
	Co	oconut	oil	Co	mpara	tor						
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mean Di	fference	MD	95%	-CI	Weight
Monounsaturated							1					
Khaw 2018 (olive)	14	0.24	1.03	30	0.13	1.30	10-	•	0.11	[-0.60;	0.82]	11.6%
Cândido 2021 (olive)	8	-0.66	1.28	19	-1.66	1.35			1.00	[-0.07;	2.07]	8.6%
Random effects model	22			49			A.	\sim	0.46	[-0.39;	1.31]	20.2%
Heterogeneity: $l^2 = 45\%$, $\tau^2 = 0.179$	6, p = 0	18										
Polyunsaturated												
Vijayakumar 2015 (sunflower)	99	-0.67	1.43	99	-1.20	1.35			0.53	[0.14;	0.92]	14.4%
Oliveira 2018 (chia)	6	-2.78	0.46	19	-2.00	0.75			-0.78	[-1.28;	-0.28]	13.5%
Oliveira 2018 (safflower)	6	-2.78	0.46	19	-2.53	1.09		-	-0.25	[-0.86;	0.36]	12.5%
Oliveira 2018 (soybean)	6	-2.78	0.46	19	-1.58	1.28	— , —		-1.20	[-1.88;	-0.52]	11.9%
Vogel 2020 (soybean)	15	-1.34	1.91	14	-1.52	1.10	1		0.18	[-0.95;	1.31]	8.2%
Cândido 2021 (soybean)	8	-0.66	1.28	17	-0.66	1.73	2		0.00	[-1.21;	1.21]	7.6%
Random effects model	140			187			<	>	-0.27	[-0.90;	0.35]	68.1%
Heterogeneity: $l^2 = 82\%$, $\tau^2 = 0.464$	0, p < 0	01										
Saturated								22				
Khaw 2018 (butter)	14	0.24	1.03	33	0.34	1.31		<u> </u>	-0.10	[-0.80;	0.60]	11.7%
Random effects model	14			33			4	>	-0.10	[-0.80;	0.60]	11.7%
Heterogeneity: not applicable												
Random effects model	176			269				>	-0.10	[-0.56;	0.36]	100.0%
Heterogeneity: $l^2 = 75\%$, $\tau^2 = 0.346$	9, $p < 0$.01							lê -			
						-4	-2 () 2	4			
						favo	r coconut oil	favor comp	parator			

Figure S17. Forest plot of randomized controlled clinical trials investigating the effect in % body fat of coconut oil intake vs PUFA and MUFA rich oils

	Co	oconut	oil	Co	mpara	tor								
Author, year (control)	Total	Mean	SD	Total	Mean	SD		Mean	Difference		MD	95%	6-CI	Weight
Monounsaturated														
Khaw 2018 (olive)	14	0.24	1.03	30	0.13	1.30			-		0.11	[-0.60;	0.82]	13.1%
Cândido 2021 (olive)	8	-0.66	1.28	19	-1.66	1.35					1.00	[-0.07;	2.07	10.0%
Random effects model	22			49					400		0.46	[-0.39;	1.31]	23.1%
Heterogeneity: $l^2 = 45\%$, $\tau^2 = 0.179$	6, p = 0	.18											0.0000004	
Polyunsaturated														
Vijayakumar 2015 (sunflower)	99	-0.67	1.43	99	-1.20	1.35					0.53	[0.14;	0.92]	15.8%
Oliveira 2018 (chia)	6	-2.78	0.46	19	-2.00	0.75					-0.78	[-1.28;	-0.28]	15.0%
Oliveira 2018 (safflower)	6	-2.78	0.46	19	-2.53	1.09		32			-0.25	[-0.86;	0.36]	14.0%
Oliveira 2018 (soybean)	6	-2.78	0.46	19	-1.58	1.28			÷		-1.20	[-1.88;	-0.52]	13.4%
Vogel 2020 (soybean)	15	-1.34	1.91	14	-1.52	1.10		10			0.18	[-0.95;	1.31]	9.6%
Cândido 2021 (soybean)	8	-0.66	1.28	17	-0.66	1.73		10			0.00	[-1.21;	1.21]	9.0%
Random effects model	140			187				*	-		-0.27	[-0.90]	0.35]	76.9%
Heterogeneity: $l^2 = 82\%$, $\tau^2 = 0.464$	0, p < 0	.01										-	03/222/224	
Random effects model	162			236				8	\downarrow		-0.10	[-0.62;	0.43]	100.0%
Heterogeneity: $l^2 = 78\%$, $\tau^2 = 0.411$	7, p < 0	.01					1	i.		1			_	
	10.23					-4	-	2	0 2	4				
						fa	vor coo	onut c	il favor co	mparat	or			

Figure S18. Forest plot of randomized controlled clinical trials investigating the effects in LDL-C (mg/dL) of coconut oil intake vs PUFA and MUFA rich oils

	C	oconut	oil	Co	ompara	tor					
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mear	Difference	MD	95%-CI	Weight
Monounsaturated								1			
Khaw 2018 (olive)	14	-3.48	18.95	30	-2.32	15.08	_		-1.16	[-12.46; 10.14]	10.4%
Cândido 2021 (olive)	8	-1.44	7.00	19	-3.74	16.56			2.30	[-6.59; 11.19]	11.9%
Random effects model	22			49				\Rightarrow	0.98	[-6.01; 7.96]	22.2%
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p =$	0.64										
Polyunsaturated											
Assunção 2009 (soybean)	20	3.90	13.57	20	25.50	14.97			-21.60	[-30.46; -12.74	11.9%
Oliveira 2018 (soybean)	6	-14.89	11.53	19	-15.37	13.78	8 <u>-</u>		0.48	[-10.63; 11.59]	10.5%
Vogel 2020 (soybean)	15	-11.47	22.21	14	-5.57	25.22	22		-5.90	[-23.25; 11.45]	7.1%
Cândido 2021 (soybean)	8	-1.44	7.00	17	-2.76	9.40			1.32	[-5.28; 7.92]	13.3%
Vijayakumar 2015 (sunflower)	99	0.75	8.75	99	3.52	12.69			-2.77	[-5.81; 0.27]	15.0%
Oliveira 2018 (chia)	6	-14.89	11.53	19	-42.53	22.65			→ 27.64	[13.90; 41.38]	8.9%
Oliveira 2018 (safflower)	6	-14.89	11.53	19	-15.37	9.35			0.48	[-9.66; 10.62]	11.1%
Random effects model	160			207				\Leftrightarrow	-0.70	[-8.64; 7.24]	77.8%
Heterogeneity: $l^2 = 84\%$, $\tau^2 = 87.46$	02, p <	0_01									
Random effects model	182			256				4	-0.51	[-6.79; 5.78]	100.0%
Heterogeneity: $l^2 = 80\%$, $\tau^2 = 66.13$.	23, p <	0.01				L		1 1	1	All the second second	
						-4(-20	0 20	40		
						fa	vor coconut	oil favor comp	arator		


Figure S19. Forest plot of randomized controlled clinical trials investigating the effect in LDL-C (mg/dL) of coconut oil versus olive oil

	C	oconut	oil	Co	mpara	tor								
Author, year (control)	Total	Mean	SD	Total	Mean	SD		Mean	n Differe	ence	MD	95%	-CI	Weight
Khaw 2018 (olive)	14	-3.48	18.95	30	-2.32	15.08					-1.16	6 [-12.46;	10.14]	38.2%
Cândido 2021 (olive)	8	-1.44	7.00	19	-3.74	16.56		<u>17.1</u>	1		2.30	[-6.59;	11.19]	61.8%
Random effects model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$		64		49		ſ		-	-	-	0.98	[-6.01;	7.96]	100.0%
	1					-2	0	-10	0	10	20			
	favor coconut oil favor comparator													

Figure S20. Forest plot of randomized controlled clinical trials investigating the effect in LDL-C (mg/dL) of coconut oil versus soybean oil

	C	oconut	oil	Co	ompara	tor				
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mean Difference	MD	95%-CI	Weight
Assunção 2009 (soybean)	20	3.90	13.57	20	25.50	14.97 ←	- H	-21.60	[-30.46; -12.74]	27.0%
Oliveira 2018 (soybean)	6	-14.89	11.53	19	-15.37	13.78		0.48	[-10.63; 11.59]	25.0%
Vogel 2020 (soybean)	15	-11.47	22.21	14	-5.57	25.22		-5.90	[-23.25; 11.45]	19.3%
Cândido 2021 (soybean)	8	-1.44	7.00	17	-2.76	9.40		1.32	[-5.28; 7.92]	28.8%
Random effects model Heterogeneity: $l^2 = 83\%$, $\tau^2 = 12$	49	0.01		70				-6.47	[-18.77; 5.84]	100.0%
Heterogeneity: $T = 63\%$, $\tau = 12$	25.7624	., p < 0.0	L			-30 fav	20 10 0 10	20 30 mparator		

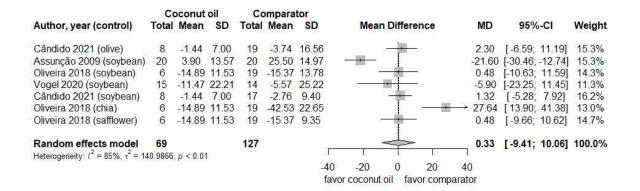

Figure S21. Forest plot of randomized controlled clinical trials investigating the effect in LDL-C (mg/dL) of coconut oil versus other oils when analyzing studies carried out in women

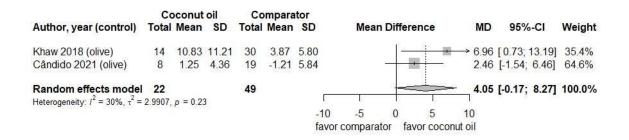
Figure S22. Forest plot of randomized controlled clinical trials investigating the effect in LDL-C (mg/dL) of coconut oil versus other oils when analyzing studies conducted in Brazil in LDL-C

	С	oconut	oil	Co	mpara	tor				
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mean Difference	MD	95%-CI	Weight
Cândido 2021 (olive)	8	-1.44	7.00	19	-3.74	16.56		2.30	[-6.59; 11.19]	15.3%
Assunção 2009 (soybean)	20	3.90	13.57	20	25.50	14.97		-21.60	[-30.46; -12.74]	15.3%
Oliveira 2018 (soybean)	6	-14.89	11.53	19	-15.37	13.78		0.48	[-10.63; 11.59]	14.3%
Vogel 2020 (soybean)	15	-11.47	22.21	14	-5.57	25.22		-5.90	[-23.25; 11.45]	11.3%
Cândido 2021 (soybean)	8	-1.44	7.00	17	-2.76	9.40		1.32	[-5.28; 7.92]	16.2%
Oliveira 2018 (chia)	6	-14.89	11.53	19	-42.53	22.65		→ 27.64	[13.90; 41.38]	13.0%
Oliveira 2018 (safflower)	6	-14.89	11.53	19	-15.37	9.35		0.48	[-9.66; 10.62]	14.7%
Random effects model Heterogeneity: $l^2 = 85\%$, $\tau^2 = 1$.	69	n < 0.01	1	127		_		0.33	[-9.41; 10.06]	100. <mark>0</mark> %
Therefore genericy. Therefore, the the	10.0000	, p < 0.0				-40	-20 0 20	40		
						fav	or coconut oil favor compar	ator		

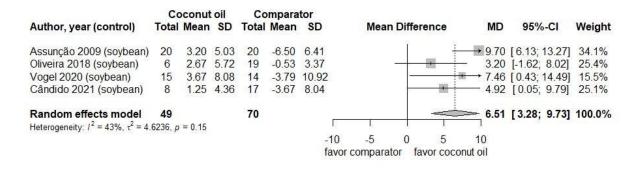
Figure S23. Forest plot of randomized controlled clinical trials investigating the effect in LDL-C (mg/dL). of coconut oil versus other oils or/fat in patients with overweight/obesity

Figure S24. Forest plot of randomized controlled clinical trials investigating the effect in LDL-C (mg/dL) of coconut oil versus other oils or fat without a long term study (Vijayakumar et al)

	Coconut oil			Comparator						
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mean Difference	MD	95%-CI	Weight
Khaw 2018 (olive)	14	-3 48	18 95	30	-2 32	15 08		-1.16	[-12.46; 10.14]	9.6%
Cândido 2021 (olive)	8	-1.44	7.00	19	-3.74	16.56			[-6.59; 11.19]	10.7%
Assunção 2009 (sovbean)	20	3.90	13.57	20	25.50	14.97	· · · · ·		[-30.46; -12.74]	10.8%
Oliveira 2018 (soybean)	6	-14.89	11.53	19	-15.37	13.78		0.48	[-10.63; 11.59]	9.7%
Vogel 2020 (soybean)	15	-11.47	22.21	14	-5.57	25.22		-5.90	[-23.25; 11.45]	7.1%
Cândido 2021 (soybean)	8	-1.44	7.00	17	-2.76	9.40		1.32	[-5.28; 7.92]	11.7%
Oliveira 2018 (chia)	6	-14.89	11.53	19	-42.53	22.65		+	[13.90; 41.38]	8.5%
Oliveira 2018 (safflower)	6	-14.89	11.53	19	-15.37	9.35		0.48	[-9.66; 10.62]	10.2%
Schwab 1994 (palm)	15	-1.93	6.52	15	-2.71	8.40		0.78	[-4.60; 6.16]	12.2%
Khaw 2018 (butter)	14	-3.48	18.95	33	12.76	18.56		-16.24	[-28.01; -4.47]	9.4%
Random effects model	112			205		Ē		-1.43	[-8.20; 5.34]	100.0%
Heterogeneity: $l^2 = 80\%$, $\tau^2 = 90$	0.5603,	p < 0.01				-4() -20 0 20	40		
								mparator		
								and a set of the Bold		


Figure S25. Forest plot of randomized controlled clinical trials investigating the effect in LDL-C (mg/dL) of coconut oil versus other oils or fat with co-intervention

	C	oconut	oil	C	omparat	tor				
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mean Difference	MD	95%-CI	Weight
Without co-intervention							1			
Khaw 2018 (olive)	14	-3.48	18.95	30	-2.32	15.08	<u> </u>	-1.16	[-12.46; 10.14]	8.2%
Vijayakumar 2015 (sunflower)	99	0.75	8.75	99	3.52	12.69		-2.77		12.6%
Khaw 2018 (butter)	14	-3.48	18.95	33	12.76	18.56		-16.24	[-28.01; -4.47]	7.9%
Random effects model	127	120219-00	12/10/2012 10:00	162	5772530760	10.000			[-13.24; 2.05]	28.8%
Heterogeneity: $l^2 = 59\%$, $\tau^2 = 27.450$	05, p =	0.09								
With co-intervention										
Cândido 2021 (olive)	8	-1.44	7.00	19	-3.74	16.56		2.30	[-6.59; 11.19]	9.6%
Cândido 2021 (soybean)	8	-1.44	7.00	17	-2.76	9.40		1.32	[-5.28; 7.92]	10.9%
Assunção 2009 (soybean)	20	3.90	13.57	20	25.50	14.97		-21.60	[-30.46; -12.74]	9.6%
Vogel 2020 (soybean)	15	-11.47	22.21	14	-5.57	25.22		-5.90	[-23.25; 11.45]	5.4%
Oliveira 2018 (soybean)	6	-14.89	11.53	19	-15.37	13.78		0.48	[-10.63; 11.59]	8.3%
Oliveira 2018 (chia)	6	-14.89	11.53	19	-42.53	22.65		→ 27.64	[13.90; 41.38]	6.9%
Oliveira 2018 (safflower)	6	-14.89	11.53	19	-15.37	9.35	<u> </u>	0.48	[-9.66; 10.62]	8.9%
Schwab 1994 (palm)	15	-1.93	6.52	15	-2.71	8.40		0.78	[-4.60; 6.16]	11.6%
Random effects model	84			142				0.28	[-7.38; 7.93]	71.2%
Heterogeneity: $I^2 = 82\%$, $\tau^2 = 94.45$	70, p <	0.01								
Random effects model	211			304			\diamond	-1.67	[-6.93; 3.59]	100.0%
Heterogeneity: $I^2 = 78\%$, $\tau^2 = 54.53$	58, p <	0.01				Г				
						-40	0 -20 0 20	40		
						fav	or coconut oil favor compa	arator		


Figure S26. Forest plot of randomized controlled clinical trials investigating the effects in HDL-C (mg/dL) of coconut oil intake vs PUFA and MUFA rich oils

	Co	conut	oil	Co	mpara	tor					
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mean [Difference	MD	95%-CI	Weight
Monounsaturated								1			
Khaw 2018 (olive)	14	10.83	11.21	30	3.87	5.80			6.96	[0.73; 13.19]	9.2%
Cândido 2021 (olive)	8	1.25	4.36	19	-1.21	5.84			2.46	[-1.54; 6.46]	12.1%
Random effects model	22			49				\rightarrow	4.05	[-0.17; 8.27]	21.3%
Heterogeneity: $l^2 = 30\%$, $\tau^2 = 2.990$	7, p = 0	.23									
Polyunsaturated											
Assunção 2009 (soybean)	20	3.20	5.03	20	-6.50	6.41			9.70	[6.13; 13.27]	12.6%
Oliveira 2018 (soybean)	6	2.67	5.72	19	-0.53	3.37		-	3.20	[-1.62; 8.02]	11.0%
Vogel 2020 (soybean)	15	3.67	8.08	14	-3.79	10.92			7.46	[0.43; 14.49]	8.3%
Cândido 2021 (soybean)	8	1.25	4.36	17	-3.67	8.04			4.92	[0.05; 9.79]	10.9%
Vijavakumar 2015 (sunflower)	99	2.42	4.62	99	3.62	10.21	12	<u>+</u>	-1.20	[-3.41; 1.01]	14.2%
Oliveira 2018 (chia)	6	2.67	5.72	19	3.74	3.27	10		-1.07	[-5.88; 3.74]	11.0%
Oliveira 2018 (safflower)	6	2.67	5.72	19	2.58	4.82	<u> 17</u>		0.09	[-4.97; 5.15]	10.7%
Random effects model	160			207				\Leftrightarrow	3.15	[-0.54; 6.83]	78.7%
Heterogeneity: $l^2 = 81\%$, $\tau^2 = 19.14$	97, <mark>p</mark> <	0.01									
Random effects model	182	(annanan		256		-		\diamond	3.39	[0.40; 6.38]	100.0%
Heterogeneity: $l^2 = 77\%$, $\tau^2 = 15.12$	08, p <	0.01				00	10	0 10	00		
						-20	-10	0 10	20		
						favor	comparato	or favor cocor	IUT OII		

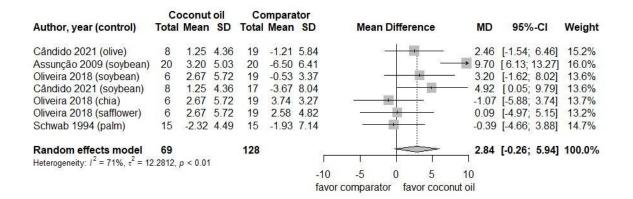

Figure S27. Forest plot of randomized controlled clinical trials investigating the effect in HDL-C (mg/dL) of coconut oil versus olive oil

Figure S28. Forest plot of randomized controlled clinical trials investigating the effect in HDL-C (mg/dL) of coconut oil versus soybean oil

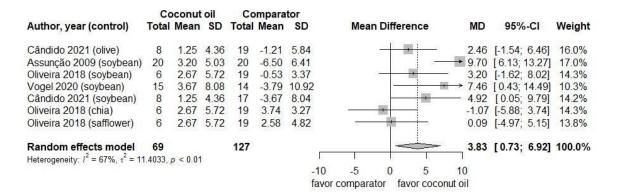

Figure S29. Forest plot of randomized controlled clinical trials investigating the effect in HDL-C (mg/dL) of coconut oil versus other oils when analyzing studies carried out in women

Figure S30. Forest plot of randomized controlled clinical trials investigating the effect in HDL-C (mg/dL) of coconut oil versus other oils when analyzing studies conducted in Brazil

	Co	conut	oil	Co	mpara	tor				
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mean Difference	MD	95%-CI	Weight
Cândido 2021 (olive)	8	1.25	4.36	19	-1.21	5.84		2.46	[-1.54; 6.46]	15.2%
Assunção 2009 (soybean)	20	3.20	5.03	20	-6.50	6.41	-	→ 9.70	[6.13; 13.27]	16.0%
Oliveira 2018 (soybean)	6	2.67	5.72	19	-0.53	3.37		- 3.20	[-1.62; 8.02]	13.6%
Cândido 2021 (soybean)	8	1.25	4.36	17	-3.67	8.04		4.92	[0.05; 9.79]	13.6%
Oliveira 2018 (chia)	6	2.67	5.72	19	3.74	3.27		-1.07	[-5.88; 3.74]	13.7%
Oliveira 2018 (safflower)	6	2.67	5.72	19	2.58	4.82		0.09	[-4.97; 5.15]	13.2%
Schwab 1994 (palm)	15	-2.32	4.49	15	-1.93	7.14		-0.39	[-4.66; 3.88]	14.7%
Random effects model	69			128		73 <u></u>		2.84	[-0.26; 5.94]	100.0%
Heterogeneity: $l^2 = 71\%$, $\tau^2 = 12$	2.2812,	p < 0.01				a.				
						-10	-5 0 5	10		
						favor	comparator favor coco	onut oil		

Figure S31. Forest plot of randomized controlled clinical trials investigating the effect in HDL-C (mg/dL) of coconut oil versus other oils or fat in patients with overweight/obesity

Figure S32. Forest plot of randomized controlled clinical trials investigating the effect in HDL-C (mg/dL) of coconut oil versus other oils or fat without a long term study (Vijayakumar et al)

	C	oconut	oil	Co	mpara	tor				
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mean Difference	MD	95%-CI	Weight
Khaw 2018 (olive)	14	10.83	11.21	30	3.87	5.80		→ 6.96	[0.73; 13.19]	8.3%
Cândido 2021 (olive)	8	1.25	4.36	19	-1.21	5.84		2.46	[-1.54; 6.46]	11.8%
Assunção 2009 (soybean)	20	3.20	5.03	20	-6.50	6.41		→ 9.70	[6.13; 13.27]	12.5%
Oliveira 2018 (soybean)	6	2.67	5.72	19	-0.53	3.37		3.20	[-1.62; 8.02]	10.4%
Vogel 2020 (soybean)	15	3.67	8.08	14	-3.79	10.92		→ 7.46	[0.43; 14.49]	7.3%
Cândido 2021 (soybean)	8	1.25	4.36	17	-3.67	8.04		- 4.92	[0.05; 9.79]	10.3%
Oliveira 2018 (chia)	6	2.67	5.72	19	3.74	3.27		-1.07	[-5.88; 3.74]	10.4%
Oliveira 2018 (safflower)	6	2.67	5.72	19	2.58	4.82		0.09	[-4.97; 5.15]	10.0%
Schwab 1994 (palm)	15	-2.32	4.49	15	-1.93	7.14		-0.39	[-4.66; 3.88]	11.3%
Khaw 2018 (butter)	14	10.83	11.21	33	3.48	10.44		→ 7.35	[0.48; 14.22]	7.5%
Random effects model	112			205				3.88	[1.33; 6.43]	100.0%
Heterogeneity: $l^2 = 62\%$, $\tau^2 = 10$	0.2188,	p < 0.01					1 1 1	1		
						-10	-5 0 5	10		
						favor	comparator favor coconu	toil		

Figure S33. Forest plot of randomized controlled clinical trials investigating the effect in HDL-C (mg/dL) of coconut oil versus other oils or fat with co-intervention

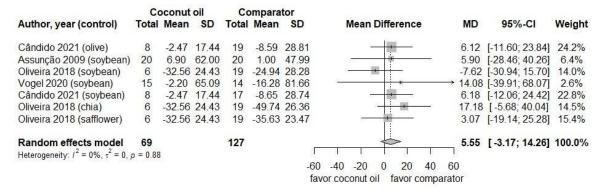
	Co	oconut	oil	Co	mpara	tor					
Author, year (control)	Total	Mean	SD		Mean		Mean	Difference	MD	95%-CI	Weight
Without co-intervention								81 B			
Khaw 2018 (olive)	14	10.83	11.21	30	3.87	5.80			6,96	[0.73; 13.19]	7.6%
Vijayakumar 2015 (sunflower)	99	2.42	4.62	99	3.62	10.21			-1.20	[-3.41; 1.01]	12.1%
Khaw 2018 (butter)	14	10.83	11 21	33	3 48	10.44			7.35	[0.48; 14.22]	6.9%
Random effects model	127		1.	162	0.10					[-2.79; 10.34]	
Heterogeneity: $I^2 = 80\%$, $\tau^2 = 26.45$		0.01								1	
With co-intervention											
Cândido 2021 (olive)	8	1.25	4.36	19	-1.21	5.84		- 	2.46	[-1.54; 6.46]	10.1%
Cândido 2021 (soybean)	8	1.25	4.36	17	-3.67	8.04			4.92	[0.05; 9.79]	9.1%
Assunção 2009 (soybean)	20	3.20	5.03	20	-6.50	6.41			9.70	[6.13; 13.27]	10.6%
Vogel 2020 (soybean)	15	3.67	8.08	14	-3.79	10.92			7.46	[0.43; 14.49]	6.8%
Oliveira 2018 (soybean)	6	2.67	5,72	19	-0.53			- i -	3.20	[-1.62; 8.02]	9.1%
Oliveira 2018 (chia)	6	2.67	5.72	19	3.74	3.27		-	-1.07	[-5.88; 3.74]	9.1%
Oliveira 2018 (safflower)	6	2.67	5.72	19	2.58	4.82			0.09	[-4.97; 5.15]	8.8%
Schwab 1994 (palm)	15	-2.32	4.49	15	-1.93	7.14	17	-	-0.39	[-4.66; 3.88]	9.8%
Random effects model	84			142				\diamond	3.26	[0.35; 6.17]	73.4%
Heterogeneity: $l^2 = 68\%$, $\tau^2 = 11.67$	99, p <	0.01									
Random effects model	211	0.04		304					3.28	[0.66; 5.90]	100.0%
Heterogeneity: $I^2 = 74\%$, $\tau^2 = 13.53$	91, p <	0.01				-20	-10	0 10	20		
							comparat	1000	CTTHE		
						lavoi	comparat				

Figure S34. Forest plot of randomized controlled clinical trials investigating the effects in TG (mg/dL) of coconut oil intake vs PUFA and MUFA rich oils

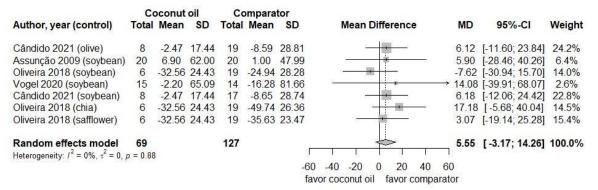
	C	Coconut oil			Comparator							
Author, year (control)	Total	Mean	SD	Total	Mean	SD	N	lean Di	ference	MD	95%-CI	Weight
Monounsaturated								Î				
Khaw 2018 (olive)	14	6.20	51.37	30	-2.66	23.92		- 15		8.86	[-19.38; 37.10]	4.3%
Cândido 2021 (olive)	8	-2.47	17.44	19	-8.59	28.81			<u>a</u>	6.12	[-11.60; 23.84]	10.8%
Random effects model	22			49				-	\sim	6.89	[-8.11; 21.90]	15.1%
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\rho =$	0.87											
Polyunsaturated												
Assunção 2009 (soybean)	20	6.90	62.00	20	1.00	47.99			•	- 5.90	[-28.46; 40.26]	2.9%
Oliveira 2018 (soybean)	6	-32.56	24.43	19	-24.94	28.28	2			-7.62	[-30.94; 15.70]	6.2%
Vogel 2020 (soybean)	15	-2.20	65.09	14	-16.28	81.66				→ 14.08	[-39.91; 68.07]	1.2%
Cândido 2021 (soybean)	8	-2.47	17.44	17	-8.65	28.74		3 <u>0</u>		6.18	[-12.06; 24.42]	10.2%
Vijayakumar 2015 (sunflower)	99	-5.64	35.07	99	1.03	22.06				-6.67	[-14.83; 1.49]	51.0%
Oliveira 2018 (chia)	6	-32.56	24.43	19	-49.74	26.36				17.18	[-5.68; 40.04]	6.5%
Oliveira 2018 (safflower)	6	-32.56	24.43	19	-35.63	23.47			•	3.07	[-19.14; 25.28]	6.9%
Random effects model	160			207				4	>	-1.87	[-8.19; 4.46]	84.9%
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p =$	0.46										•	
Random effects model	182			256					>	-0.55	[-6.37; 5.28]	100.0%
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p =$	0.55											
						-6	60 -40	-20 0	20 4	0 60		
						f	avor coc	onut oil	favor con	nparator		

Figure S35. Forest plot of randomized controlled clinical trials investigating the effect in TG (mg/dL) of coconut oil versus olive oil

	C	oconut	oil	Co	ompara	tor									
Author, year (control)	Total	Mean	SD	Total	Mean	SD		J	Mean	Diffe	erence	e	MD	95%-CI	Weight
Khaw 2018 (olive)	14	6.20	51.37	30	-2.66	23.92			-	-11			8.86	[-19.38; 37.10] 28.2%
Cândido 2021 (olive)	8	-2.47	17.44	19	-8.59	28.81			2	1			6.12	[-11.60; 23.84] 71.8%
Random effects model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$.87		49			F	1	,	+	>	1	6.89	[-8.11; 21.90]	100.0%
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	51.2						60 favo	-40 or coc	-20 conut c	0 oil f	20 avor d	40 compa	60 arator		


Figure S36. Forest plot of randomized controlled clinical trials investigating the effect in TG (mg/dL) of coconut oil versus soybean oil

	C	oconut	oil	Co	ompara	tor					
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mear	n Difference	MD	95%-CI	Weight
Assunção 2009 (soybean)	20	6.90	62.00	20	1.00	47.99	17 1.		5.90	[-28.46; 40.26]	14.0%
Oliveira 2018 (soybean)	6	-32.56	24.43	19	-24.94	28.28			-7.62	[-30.94; 15.70]	30.5%
Vogel 2020 (soybean)	15	-2.20	65.09	14	-16.28	81.66	32		→ 14.08	[-39.91; 68.07]	5.7%
Cândido 2021 (soybean)	8	-2.47	17.44	17	-8.65	28.74		-	6.18	[-12.06; 24.42]	49.8%
Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$,	49	2		70		1	- <u> </u>	+	2.38	[-10.49; 15.26]	100.0%
Therefogeneity. 7 – 0 %, 1 – 0, 1	0 - 0.70	,				-60 fav	-40 -20 or coconut	5257 5258	00		


Figure S37. Forest plot of randomized controlled clinical trials investigating the effect in TG (mg/dL) of coconut oil versus other oils when analyzing studies carried out in women

	С	oconut	oil	Co	ompara	tor				
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mean Difference	MD	95%-CI	Weight
Cândido 2021 (olive)	8	-2.47	17.44	19	-8.59	28.81		6.12	[-11.60; 23.84]	17.7%
Assunção 2009 (soybean)	20	6.90	62.00	20	1.00	47.99		5.90	[-28.46; 40.26]	4.7%
Oliveira 2018 (soybean)	6	-32.56	24.43	19	-24.94	28.28		-7.62	[-30.94; 15.70]	10.2%
Cândido 2021 (soybean)	8	-2.47	17.44	17	-8.65	28.74		6.18	[-12.06; 24.42]	16.7%
Oliveira 2018 (chia)	6	-32.56	24.43	19	-49.74	26.36		17.18	[-5.68; 40.04]	10.6%
Oliveira 2018 (safflower)	6	-32.56	24.43	19	-35.63	23.47		3.07	[-19.14; 25.28]	11.2%
Schwab 1994 (palm)	15	-3.54	24.19	15	-3.54	12.71	- H	0.00	[-13.83; 13.83]	29.0%
Random effects model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$,	69 p = 0.8	5		128		Ē		3.78	[-3.67; 11.22]	100.0%
250 250 NA 62						-60	-40 -20 0 20 40	60		
						favo	or coconut oil favor comp	arator		

Figure S38. Forest plot of randomized controlled clinical trials investigating the effect in TG (mg/dL) of coconut oil versus other oils when analyzing studies conducted in Brazil

Figure S39. Forest plot of randomized controlled clinical trials investigating the effect in TG (mg/dL) of coconut oil versus other oils or fat in patients with overweight/obesity

Figure S40. Forest plot of randomized controlled clinical trials investigating the effect in TG (mg/dL) of coconut oil versus other oils or fat without a long term study (Vijayakumar et al)

	С	oconut	oil	Co	ompara	tor				
Author, year (control)	Total	Mean	SD		Mean		Mean Difference	MD	95%-CI	Weight
Khaw 2018 (olive)	14	6.20	51.37	30	-2.66	23.92		8.86	[-19.38; 37.10]	6.0%
Cândido 2021 (olive)	8	-2.47	17.44	19	-8.59	28.81		6.12	[-11.60; 23.84]	15.3%
Assunção 2009 (soybean)	20	6.90	62.00	20	1.00	47.99		5.90	[-28.46; 40.26]	4.1%
Oliveira 2018 (soybean)	6	-32.56	24.43	19	-24.94	28.28		-7.62	[-30.94; 15.70]	8.8%
Vogel 2020 (soybean)	15	-2.20	65.09	14	-16.28	81.66		→ 14.08	[-39.91; 68.07]	1.6%
Cândido 2021 (soybean)	8	-2.47	17.44	17	-8.65	28.74		6.18	[-12.06; 24.42]	14.4%
Oliveira 2018 (chia)	6	-32.56	24.43	19	-49.74	26.36		17.18	[-5.68; 40.04]	9.2%
Oliveira (safflower)	6	-32.56	24.43	19	-35.63	23.47		3.07	[-19.14; 25.28]	9.7%
Schwab 1994 (palm)	15	-3.54	24.19	15	-3.54	12.71	<u></u>	0.00	[-13.83; 13.83]	25.1%
Khaw 2018 (butter)	14	6.20	51.37	33	-0.09	31.89		6.29	[-22.74; 35.32]	5.7%
Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$,	112	7		205				4.40	[-2.53; 11.32]	100.0%
		6				-60 favo	-40 -20 0 20 40 or coconut oil favor comp	60 barator		

Figure S41. Forest plot of randomized controlled clinical trials investigating the effect in TG (mg/dL) of coconut oil versus other oils or fat with co-intervention

	C	oconut	oil	C	ompara	tor				
Author, year (control)	Total	Mean	SD	Total	Mean	SD	Mean Difference	MD	95%-CI	Weight
Without co-intervention							1			
Khaw 2018 (olive)	14	6.20	51.37	30	-2.66	23.92		8.86	[-19.38; 37.10]	3.5%
Vijayakumar 2015 (sunflower)	99	-5.64	35.07	99	1.03	22.06			[-14.83; 1.49]	41.9%
Khaw 2018 (butter)	14	6.20	51.37	33	-0.09	31 89			[-22.74; 35.32]	3.3%
Random effects model Heterogeneity: $J^2 = 0\%$, $\tau^2 = 0$, $p = 0$	127	0.20		162	0.00	01.00	\diamond		[-12.24; 2.90]	48.7%
Tielerogeneity: 7 = 0 %, t = 0, p = t	1.444									
With co-intervention										
Cândido 2021 (olive)	8	-2.47	17.44	19	-8.59	28.81	· · · · ·	6.12	[-11.60; 23.84]	8.9%
Cândido 2021 (soybean)	8	-2.47	17.44	17	-8.65	28.74		6.18	[-12.06; 24.42]	8.4%
Assunção 2009 (soybean)	20	6.90	62.00	20	1.00	47.99		5.90	[-28.46; 40.26]	2.4%
Vogel 2020 (soybean)	15	-2.20	65.09	14	-16.28	81.66		→ 14.08	[-39.91; 68.07]	1.0%
Oliveira 2018 (soybean)	6	-32.56	24.43	19	-24.94	28.28		-7.62	[-30.94; 15.70]	5.1%
Oliveira 2018 (chia)	6	-32.56	24.43	19	-49.74	26.36		17.18	[-5.68; 40.04]	5.3%
Oliveira 2018 (safflower)	6	-32.56	24.43	19	-35.63	23.47		3.07	[-19.14; 25.28]	5.7%
Schwab 1994 (palm)	15	-3.54	24.19	15	-3.54	12.71	-+	0.00	[-13.83; 13.83]	14.6%
Random effects model	84			142				3.97	[-3.41; 11.34]	51.3%
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0$	0.90									
Random effects model Heterogeneity: $J^2 = 0\%$, $\tau^2 = 0$, $p = 0$	211			304				-0.24	[-5.52; 5.04]	100.0%
1000000000000000000000000000000000000	.12					_	-60 -40 -20 0 20 40	60		
							favor coconut oil favor com			
						14		pulator		

Figure S42: RoB 2.0 risk of bias in RCTs assessing the effects of coconut oil in the lipid profile

		Risk of bias						
		D1	D2	D3	D4	D5	D6	Overall
	Assunção 2009	-	+	+	+	+		-
	Cândido 2021	-	-	-	+	+		-
	Chinwong 2017	-	X	+	+	+	+	X
	Cox, 1995	-	X	+	+	X	X	X
	Ganji 1996	-	+	+	+	X	X	X
	Harris 2017	-	X	+	+	+	+	X
	Heber 1992	-	+	X	+	+	X	X
	Khaw 2018	+	X	+	+	+		-
Study	Lu 1997	-	X	+	+	+	X	X
	Maki 2018	-	X	+	+	+	+	X
	McKenney 1995	-	-	+	+	-	X	X
	Oliveira-de-Lira 2018	-	+	+	+	+		-
	Reiser 1985	-	X	-	+	+	-	X
	Schwab 1994	-	-	+	+	+	-	-
	Vijayakumar 2015	-	-	+	+	+		-
	Vogel 2020	-	+	+	-	+		-
	Voon 2011	-	-	+	+	+	X	X
		D1: Randon	nization proc	ess adad interver	tiono		Judger	nent

D1: Randomization process D2: Deviations from intended interventions D3: Mising outcome data D4: Measurement of the outcome D5: Selection of the reported result D6: Bias arising from period and carryover effects

Figure S43: RoB 2.0 risk of bias in RCTs assessing the effects of coconut oil in the anthropometric profile

		Risk of bias							
		D1	D2	D3	D4	D5	D6	Overall	
	Assunção 2009	-	+	+	+	+		-	
	Cândido 2021	-	-	-	+	+		X	
	Chinwong 2017	-	X	+	+	+	+	X	
	Harris, 2017	-	X	+	+	+	+	-	
	Khaw 2018	+	X	+	+	+		X	
Study	Lu 1997	-	X	+	+	+	X	X	
	Maki 2018	-	X	+	+	+	+	X	
	Oliveira-de-Lira 2018	-	+	+	+	+		-	
	Schwab 1994	-	-	+	+	+	-	-	
	Vijayakumar 2015	-	-	+	+	+		-	
	Vogel 2020	-	+	+	-	+		-	
	D1: Randomization process D2: Deviations from intended interventions D3: Missing outcome data							nent ligh	

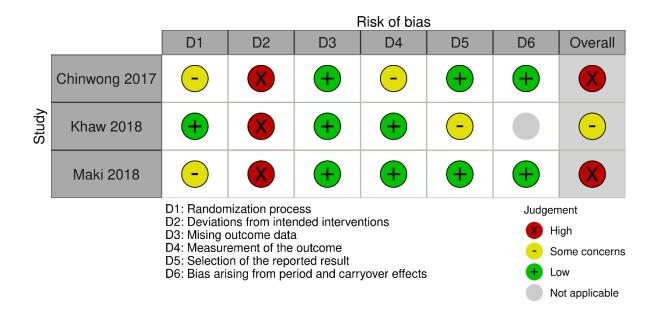
- D3: Missing outcome data D4: Measurement of the outcome D5: Selection of the reported result D6: Bias arising from period and carryover effects

51

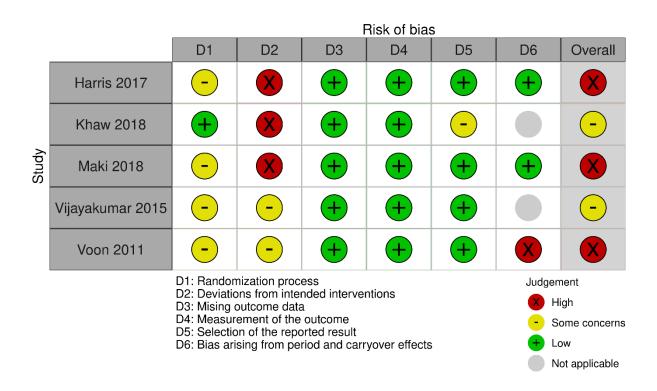
Some concerns

Not applicable

Low


Figure S44: RoB 2.0 risk of bias in RCTs assessing the effects of coconut oil in the glycemic profile

			Risk of bias							
		D1	D2	D3	D4	D5	D6	Overall		
	Assunção 2009	-	+	+	+	+		-		
	Cândido 2021	-	-	-	+	+		X		
	Heber 1992	-	+	X	+	+	X	X		
Study	Khaw 2018	+	X	+	+	+		-		
StL	Maki 2018	-	X	+	+	+	+	X		
	Oliveira-de-Lira 2018	-	+	+	+	+		-		
	Vijayakumar 2015	-	-	+	+	+		-		
	Vogel 2020	-	+	+	-	+		-		
	D1: Randomization process D2: Deviations from intended interventions D3: Missing outcome data D4: Measurement of the outcome D5: Selection of the reported result D6: Bias arising from period and carryover effects							nent igh ome concerns ow		


D6: Bias arising from period and carryover effects

Not applicable

Figure S45: RoB 2.0 risk of bias in RCTs assessing the effects of coconut oil in blood pressure

Figure S46: RoB 2.0 risk of bias in RCTs assessing the effects of coconut oil in the inflammatory profile

PRISMA 2020 Checklist

Section and Topic	ltem #	Checklist item	Location where item is reported
TITLE	<u> </u>		
Title	1	Identify the report as a systematic review.	Pg. 1
ABSTRACT	2		
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Pg. 2, 3
INTRODUCTION	-		
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Pg. 4, 5
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Pg. 5
METHODS	-		
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Pg. 7, 8
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Pg. 6
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Pg. 6
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Pg. 6
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Pg. 6
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Pg. 6, 7
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Pg. 6, 7
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Pg. 7
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Pg. 8
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Pg. 7
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Pg. 8
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Pg. 8

Section and Topic	ltem #	Checklist item	Location where item is reported
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Pg. 8
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	Pg. 9
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	Pg. 9
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	Pg. 7
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	Pg. 7, 8
RESULTS	-		
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Pg. 9 and fig. 1
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Figure 1 and Table S1
Study characteristics	17	Cite each included study and present its characteristics.	Pg. 9, 10 and table 1
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Pg. 15 and supplementary material
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Figures 2 and 3
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Pg. 10-15
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Figures 2 and 3
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	Pg. 9
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	Pg. 9-15
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	Pg. 15 and Figures S42- S46
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Pg. 15 and Table S7
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Pg. 15, 16
	23b	Discuss any limitations of the evidence included in the review.	Pg. 15-21

Section and Topic	ltem #	Checklist item	Location where item is reported
	23c	Discuss any limitations of the review processes used.	Pg. 20, 21
	23d	Discuss implications of the results for practice, policy, and future research.	Pg. 21
OTHER INFORMA	TION		
Registration and	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	Pg. 3
protocol	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Pg. 3
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	NA
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	Pg. 23
Competing interests	26	Declare any competing interests of review authors.	Pg. 23
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	NA

References

[1] Lu Z, Hendrich S, Shen N, White PJ, Cook LR. Low linolenate and commercial soybean oils diminish serum HDL cholesterol in young free-living adult females. J Am Coll Nutr.1997;16(6):562-9.

[2] Assunção ML, Ferreira HS, dos Santos AF, Cabral CR, Jr., Florêncio TM. Effects of dietary coconut oil on the biochemical and anthropometric profiles of women presenting abdominal obesity. Lipids. 2009;44:593-601. https://doi.org/10.1007/s11745-009-3306-6.

[3] Ganji V, Kies CV. Psyllium husk fiber supplementation to the diets rich in soybean or coconut oil: hypocholesterolemic effect in healthy humans. Int J Food Sci Nutr. 1996;47(2):103-10. https://doi.org/10.3109/09637489609012571.

[4] Oliveira-de-Lira L, Santos EMC, de Souza RF, Matos RJB, Silva MCD, Oliveira LDS, et al. Supplementation-Dependent Effects of Vegetable Oils with Varying Fatty Acid Compositions on Anthropometric and Biochemical Parameters in Obese Women. Nutrients. 2018;10. https://doi.org/10.3390/nu10070932.

[5] Khaw KT, Sharp SJ, Finikarides L, Afzal I, Lentjes M, Luben R, et al. Randomised trial of coconut oil, olive oil or butter on blood lipids and other cardiovascular risk factors in healthy men and women. BMJ Open. 2018;8:e020167. https://doi.org/10.1136/bmjopen-2017-020167.

[6] Voon PT, Ng TK, Lee VK, Nesaretnam K. Diets high in palmitic acid (16:0), lauric and myristic acids (12:0 + 14:0), or oleic acid (18:1) do not alter postprandial or fasting plasma homocysteine and inflammatory markers in healthy Malaysian adults. Am J Clin Nutr. 2011;94(6):1451-7. https://doi.org/10.3945/ajcn.111.020107.

[7] McKenney JM, Proctor JD, Wright Jr JT, Kolinski RJ, Elswick Jr RK, Coaker JS. The effect of supplemental dietary fat on plasma cholesterol levels in lovastatin-treated hypercholesterolemic patients. Pharmacotherapy. 1995; 15(5 I):565-72. https://doi.org/10.1002/j.1875-9114.1995.tb02864.x.

[8] Harris M, Hutchins A, Fryda L. The impact of virgin coconut oil and high-oleic safflower oil on body composition, lipids, and inflammatory markers in postmenopausal women. Journal of Medicinal Food. 2017;20(4):345-51. https://doi.org/10.1089/jmf.2016.0114.

[9] Maki KC, Hasse W, Dicklin MR, Bell M, Buggia MA, Cassens ME, et al. Corn Oil Lowers Plasma Cholesterol Compared with Coconut Oil in Adults with Above-Desirable Levels of Cholesterol in a Randomized Crossover Trial. J Nutr. 2018;148(10):1556-63. https://doi.org/ 10.1093/jn/nxy156.

[10] Vogel CE, Crovesy L, Rosado EL, Soares-Mota M. Effect of coconut oil on weight loss and metabolic parameters in men with obesity: a randomized controlled clinical trial. Food Funct. 2020;11(7): 6588-6594. https://doi.org/10.1039/d0fo00872a.

[11] Heber D, Ashley JM, Solares ME, Wang HJ. The effects of a palm-oil enriched diet on plasma lipids and lipoproteins in healthy young men. Nutrition Research. 1992;12(SUPPL):S53-S9. https://doi.org/10.1016/S0271-5317(05)80450-6.

[12] Cox C, Mann J, Sutherland W, Chi. Effects of coconut oil, butter, and safflower oil on lipids and lipoproteins in persons with moderately elevated cholesterol levels. Journal of Lipid Research [Internet]. 1995;36.

[13] Cândido TLN, da Silva LE, Cândido FG, Valente FJ, da Silva JS, Lopes DRG, et al. Effect of the ingestion of vegetable oils associated with energy-restricted normo fat diet on intestinal microbiota and permeability in overweight women. Food Res Int. 2021;139:109951. https://doi.org/10.1016/j.foodres.2020.109951.

[14] Vijayakumar M, Vasudevan DM, Sundaram KR, Krishnan S, Vaidyanathan K, Nandakumar S, et al. A randomized study of coconut oil versus sunflower oil on cardiovascular risk factors in patients with stable coronary heart disease. Indian Heart J. 2016;68(4): 498-506. https://doi.org/10.1016/j.ihj.2015.10.384.

[15] Chinwong S, Chinwong D, Mangklabruks. Daily consumption of virgin coconut oil increases high-density lipoprotein cholesterol levels in healthy volunteers: a randomized crossover trial. Evid Based Complement Alternat Med. 2017;2017;7251562. https://doi.org/10.1155/2017/7251562.