Supplementary information

The physics of respiratory particle generation, fate in the air, and inhalation

In the format provided by the authors and unedited

Supplementary information for: The physics of respiratory particle generation, fate in the air, and inhalation

Lidia Morawska ^{a,b*}, Giorgio Buonanno^{c, a}, Alex Mikszewski ^{a,d}, Luca Stabile ^c

^a Queensland University of Technology, International Laboratory for Air Quality & Health (ILAQH), Brisbane, QLD, Australia

^b Global Centre for Clean Air Research, Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom

^c Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy ^d CIUS Building Performance Lab, The City University of New York, New York, NY, USA, 10001

	Methodology and	Main findings						
	instrumentation							
Savory et al.	Particle image velocimetry, an	The spatially averaged maximum						
(2014)	experimental cough chamber	velocity was determined and the average						
· · · ·	facility has been developed to	value was 0.41 m s ⁻¹ across 27 coughs of						
	study the far-field aerodynamics	good data quality.						
	and aerosol transport of particles							
	produced by the coughs from 12							
	humans naturally-infected with							
	influenza							
Kwon et al.	To analyze the initial velocity	The average initial coughing velocity was						
(2012)	and the angle of the exhaled	15.3 (10.6) m s ⁻¹ for the males (females),						
	airflow from coughing and	while for speaking it was 4.07 (2.31) m/s,						
	speaking of 17 males and 9	respectively. The angle of the exhaled air						
	females using Particle Image	from coughing was around 38° (32°) for						
	Velocimetry (PIV) and acrylic	the males (females), while from speaking						
	indoor chamber.	it was around 49° and 78° respectively.						
VanSciver et	The velocity field of human	Maximum cough velocities ranged from						
al. (2011)	cough was measured using	1.5 m s^{-1} to 28.8 m s ⁻¹ . The average width						
	particle image velocimetry	of all coughs ranged between 35 to 45 mm.						
	(PIV). 29 subjects coughed into							
	an enclosure seeded with stage							

Table S1. The methodology and instrumentation adopted to investigate airflow from human respiratory activities and the main findings from the studies.

Cortellessa et al. (2021)	fog. Cough flow velocity profiles, average widths of the cough jet, and maximum cough velocities were measured. Particle image velocimetry (PIV) technique was employed for the determination of speak velocity for a "face-to-face" interaction. Speaking activity was recorded for the duration of 50 s (500 images).	Peak velocities ranged from 1.5 m s ⁻¹ to 5 m s ⁻¹ .
Zhu et al. (2006)	The transport characteristics of saliva droplets produced by 3 subjects coughing are examined through PIV in a calm indoor environment	More than 6.7 mg of saliva is expelled and travel further than 2 m at speeds of up to 22 m s ⁻¹ during each individual cough
Bourouiba et al. (2014)	A visualization of the real human coughs and sneezes is presented through an experimental set-up using high-speed cameras.	The turbulent multiphase cloud plays a critical role in extending the range of the majority respiratory particles that can remain suspended long enough to reach heights where ventilation systems can be contaminated (4-6 m).
Gupta et al. (2009) Gupta et al. (2010)	A spirometer based on Fleish type pneumotachograph was used to measure the flow rates generated over time with a frequency of 330 Hz. The flow directions were visualized through moderate-speed photography (120 Hz) with 1 Mega Pixel resolution.	The flow rate, flow direction, and mouth opening area were measured for 25 human subjects during breathing, coughing and speaking.
Xu et al. (2017)	Airflow dynamics of human exhalation were obtained through nonhazardous schlieren photography technique. The visualization and quantification of turbulent exhaled airflow was estimated from 18 healthy human subjects whilst standing and lying.	The mean peak centerline velocity was found to decay with increasing horizontal distance and the mean propagation velocity was found to correlate with physiological parameters of human subjects.
Tang et al. (2009)	Video records are obtained of human volunteers coughing with and without wearing standard surgical and N95 masks through the schlieren optical method	Wearing a surgical or N95 mask blocks the formation of the jet (N95 mask) or redirect it in a less harmful direction (surgical mask) during human coughing.

Table S2. Summary of the studies reporting experimental data of total deposition fraction graphed in Figure 4: information on particle range, number of volunteers, breathing pattern, and type of aerosol are reported. All the study under investigation refer to healthy adult subjects.

Study	Particle range	volunteers	breathing pattern	Type of aerosol
Lin et al. (2019)	20 nm – 1 μm,	15 volunteers (males and females)	tidal volume of 500 mL and breathing frequency of 15 breaths min ⁻¹	di-2-ethylhexyle sebacate
Heyder et al. (1986)	5 nm – 15 μm	3 volunteers	tidal volume of 500 mL and breathing frequency of 15 breaths min ⁻¹	di-2-ethylhexyl sebacateaerosols & iron oxide aerosols & silver aerosol
Morawska et al. (2005)	16 -626 nm	14 volunteers (males and females)	their own tidal volume and breathing frequency	Petrol-generated aerosols; Diesel-generated aerosols; Environmental tobacco smoke aerosols
Rissler et al. (2017)	15 nm – 5 μm	60 volunteers (males and females)	their own tidal volume and breathing frequency	carnauba wax (in the size range of 15–500 nm), and manufactured spherical glass particles (in the range 500–5000 nm)
Kim et al. (2004)	40 – 100 nm	22 volunteers (males and females)	tidal volume of 500 mL and breathing frequency of 15 breaths min ⁻¹	di-2-ethylhexyle sebacate
Guo et al. (2020b)	10 – 400 nm	1 volunteer	his own tidal volume and breathing frequency	ambient aerosol

Emmett et al. (1982)	3.5-10 μm	12 volunteers (males)	their own tidal volume and breathing frequency	polystyrene particles radioactively labelled with 99 mTc
Foord et al. (1978)	2.5 - 7.5 μm.	16 volunteers (males)	tidal volume of 1 L and breathing frequency of 10 breaths min ⁻¹	polystyrene particles radioactively labelled with 99 mTc
Giacomelli-Maltoni et al. (1972)	2.5 - 2.0 μm	25 volunteers (males and females)	tidal volume of 1 L and breathing frequency of 12 breaths min ⁻¹	carnauba wax
Altshuler et al. (1957)	$0.14 - 3.2 \ \mu m$	3 volunteers	tidal volume of 500 mL and breathing frequency of 15 breaths min ⁻¹	Triphenyl phosphate
Stahlhofen et al. (1980)	2 - 10 μm	3 volunteers (males)	tidal volume of 1 L and breathing frequency of 7.5 breaths min ⁻¹	Fe ₂ O ₃ particles radioactively labelled with ¹⁹⁸ Au