Supplementary materials

1. Supplementary Figures

		L	.B 16	°C			L	B 37	°C			Ļ	B 42	°C		L	.B + (5% e	than	ol	L	.B + 7	'50 m	M Na	aCI		LB +	2%	SDS		L	B + 5 vanc	12 μ omy	g/ml cin	
MG1655	•	•	•	٢	3	•	•	0	0	\$	•	•	•	0	49	•	•	•	0	9	•	0	0			۲		0	9						
∆yfeW	•	•	۲	0		•	•	•	0	3	•	•	•	0	0	•	•	•	ė	*	•	•	0	٢		•	•	0	-	1					
<u>∆dac</u> A	•	•	۲	٩	2	•	•	0	0	Ċ	•	•	•	0	19	•	0	0	3	es?	0					0	•	۲	瘤	30	•	•	0	4	-
∆dacC	•	•	•	٢	dis-	•	•	0	•	٢	•	•	•	۲	۲	•	•	•	•	14	•	•	0			•	•	•	0	1					
∆dacD	•	•	•	Ø		•	•	•	0	0	•	•	•	۲	•	•	•	•	e	57	•	•	0			•	•	•		12.50 12.50 10.50					
∆pbpG	•	•	۲	69	(1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	•	•	•	0	0	•	•	•	0	ď	•	•	•	٢	3 5	•	•	•	۲	4	•	•	0	¢.	w.,					
∆dacB	•	•	•	۲	3	•	•	•	۲	0	•	•	•	•		•	•	•	0	6,5	•	•	•	0		•	•	۲	۲	翁					
∆ampH	•	•	0	59	14	•	•	•	0	ŵ	•	•	•	0	12	•	•	•	۲	03	•	•	•	0	330		•		0	-					

FIG S1 Envelope stress-related phenotypes of PG carboxypeptidase-defective mutants. The wild-type and indicated mutant cells were serially diluted from 10^8 to 10^4 cells/ml in 10-fold steps and spotted onto LB plates or LB plates containing indicated compounds.

FIG S2 The effect of vancomycin and ampicillin on the growth of the *dacA* mutant. The MG1655 or *dacA* mutant cells grown in LB overnight were inoculated in LB medium or LB medium with indicated concentrations of antibiotics. Cell growth was recorded by measuring the optical density at 600 nm: closed circles, MG1655; open circles, MG1655 $\Delta dacA$.

FIG S3 Intracellular protein levels of DacA and DacA(Δ C). Western blot analysis with anti-Flag and anti-FtsZ antibodies was performed using 5 x 10⁷ cells of indicated strains grown in the LB to the early exponential phase (OD_{600nm} = 0.4). FtsZ was used as the loading control.

Fig S4 SDS-PAGE gels of pull-down experiments using His-DacA. The supernatant of MG1655 cells or MG1655 cells with three Flag-tags fused to the C-terminus of the indicated chromosomal PBP was mixed with the supernatant of ER2566 cells harboring pET-based plasmid expressing His-tagged DacA or non-tagged DacA. After pull-down experiments, input (Supernatant) and output (Elution) samples were separated in 4–20% gradient Tris-glycine polyacrylamide gels (KOMA biotech, Korea) and stained with Coomassie brilliant blue. Lane M indicates EzWayTM Protein Blue MW Marker (KOMA Biotech., Korea).

Fig S5 SDS-PAGE gels of pull-down experiments using His-DacA(Δ C). The supernatant of MG1655 cells or MG1655 cells with three Flag-tags fused to the C-terminus of the indicated chromosomal PBP was mixed with the supernatant of ER2566 cells harboring pET-based plasmid expressing His-tagged DacA(Δ C) or non-tagged DacA(Δ C). After pull-down experiments, input (Supernatant) and output (Elution) samples were separated in 4–20% gradient Tris-glycine polyacrylamide gels (KOMA biotech, Korea) and stained with Coomassie brilliant blue. Lane M indicates EzWayTM Protein Blue MW Marker (KOMA Biotech., Korea).

Fig S6 The importance of the C-terminal domain of DacA for its interaction with PBP1a. (A) The supernatant of MG1655 cells or MG1655 cells with three Flag-tags fused to the C-terminus of the indicated chromosomal PBP1a was mixed with the supernatant of ER2566 cells harboring pET-based plasmid expressing His-tagged DacA(Δ C) or non-tagged DacA(Δ C). After pull-down experiments, the amount of input (Supernatant) and output (Elution) PBP1a was measured by western blot using monoclonal antibody against Flag-tag. (B) After pull-down experiments, input (Supernatant) and output (Elution) samples were separated in 4–20% gradient Tris-glycine polyacrylamide gels (KOMA biotech, Korea) and stained with Coomassie brilliant blue. Lane M indicates EzWayTM Protein Blue MW Marker (KOMA Biotech., Korea).

2. Supplementary Tables

Supplementary Table S1. *Escherichia coli* and *Bacillus subtilis* strains and plasmids used in this study.

Strain or plasmid	Genotype or phenotype	Source or Reference
Strains		
MG1655	$F^{-}\lambda^{-}ilvG^{-}rfb$ -50 rph-1. Wild type E. coli K-12	(Blattner et al., 1997)
Bacillus subtilis		(Ji et al., 2018)
MG1655 ∆dacA	MG1655 dacA:: frt	This study
MG1655 $\Delta dacB$	MG1655 dacB:: frt	(Park et al., 2020)
MG1655 ∆dacC	MG1655 dacC:: frt	This study
MG1655 ∆dacD	MG1655 dacD:: frt	This study
MG1655 ∆pbpG	MG1655 <i>pbpG</i> :: <i>frt</i>	(Park et al., 2020)
MG1655 ∆ampH	MG1655 ampH:: frt	(Park et al., 2020)
MG1655 ΔyfeW	MG1655 yfeW:: frt	This study
MG1655 $\Delta dacA \Delta dacD$	MG1655 dacA::frt dacD::Km ^r	This study
MG1655 ΔdacA ΔdacD ΔampH	MG1655 dacA::frt dacD:: frt ampH::Km ^r	This study
MG1655 ΔdacA ΔdacD ΔampH ΔdacB	MG1655 dacA::frt dacD:: frt ampH:: frt dacB::Km ^r	This study
MG1655 Δ <i>ldtABC</i>	MG1655 ldtA::frt ldtB:: frt ldtC:: frt	This study
MG1655 Δ <i>ldtDE</i>	MG1655 ldtD::frt ldtE:: frt	This study
MG1655 Δ <i>lpp</i>	MG1655 lpp::frt	This study
MG1655 $\Delta ldtDE \Delta lpp$	MG1655 ldtD::frt ldtE:: frt lpp::frt	This study

MG1655 $\Delta dacA \Delta lpp$	MG1655 dacA:: frt lpp::frt	This study
MG1655 $\Delta ompA \ \Delta ompC$ $\Delta ompF$	MG1655 ompF::frt ompC::frt ompA:: frt	(Choi and Lee, 2019)
MG1655 ΔompA ΔompC ΔompF ΔdacA	MG1655 ompF::frt ompC::frt ompA:: frt dacA:: frt	This study
MG1655 DacA(ΔC)-Flag	MG1655 DacA(1-385)-3xFLAG	This study
MG1655 PBP1a-Flag	MG1655 mrcA-3xFLAG, Cm ^R	This study
MG1655 PBP1b-Flag	MG1655 mrcB-3xFLAG, Cm ^R	This study
MG1655 PBP2-Flag	MG1655 mrdA-3xFLAG, Cm ^R	This study
MG1655 PBP3-Flag	MG1655 <i>ftsI</i> -3xFLAG, Cm ^R	This study
MG1655 DacA-Flag	MG1655 <i>dacA</i> -3xFLAG, Cm ^R	This study
B. subtilis ∆dacA	B. subtilis $\Delta dacA$	This study
B. subtilis ∆dacB	B. subtilis $\Delta dacB$	This study
B. subtilis ∆dacF	B. subtilis $\Delta dacF$	This study
ER2566	F- λ -fhuA2 [lon] ompT lacZ::T7 gene 1 gal sulA11 Δ (mcrC-mrr)114::IS10 R(mcr-73::miniTn10-TetS)2 R(zgb-210::Tn10)(TetS) endA1 [dcm]	New England Biolabs
Plasmids		
pBAD24	Expression vector under control of arabinose-inducible promoter, Amp ^r	Addgene
pBAD24(cm)	pBAD24-based expression vector, Cm ^r	(Park et al., 2020)
pBAD-Flag	pBAD24(cm)-based expression vector for the 3xFlag tag, Cm ^r	(Park <i>et al.</i> , 2020)

pBAD-DacA	pBAD24(cm)-based expression vector for DacA, Cm ^r	This study
pBAD-DacB	pBAD24(cm)-based expression vector for DacB, Cm ^r	(Park <i>et al.</i> , 2020)
pBAD-DacC	pBAD24(cm)-based expression vector for DacC, Cm ^r	This study
pBAD-DacD	pBAD24(cm)-based expression vector for DacD, Cm ^r	This study
pBAD-YfeW	pBAD24(cm)-based expression vector for YfeW, Cm ^r	This study
pBAD-PbpG	pBAD24(cm)-based expression vector for PbpG, Cm ^r	(Park <i>et al.</i> , 2020)
pBAD-AmpH	pBAD24(cm)-based expression vector for AmpH, Cm ^r	(Park <i>et al.</i> , 2020)
pBAD-PBP1a-Flag	pBAD24(cm)-based expression vector for PBP1a fused with the 3xFlag tag at the C-terminus, Cm ^r	This study
pBAD-PBP1b-Flag	pBAD24(cm)-based expression vector for PBP1b fused with the 3xFlag tag at the C-terminus, Cm ^r	This study
pBAD-PBP2-Flag	pBAD24(cm)-based expression vector for PBP2 fused with the 3xFlag tag at the C-terminus, Cm ^r	This study
pBAD-PBP3-Flag	pBAD24(cm)-based expression vector for PBP3 fused with the 3xFlag tag at the C-terminus, Cm ^r	This study
pBAD-Flag-FRT-Kan	pBAD24(cm)-based expression vector containing the 3xFlag tag, FRT-Km ^r , Cm ^r	This study
pBAD-DacA(∆C)-Flag- FRT-Kan	pBAD24(cm)-based expression vector for DacA(1-385) fused with the 3xFlag tag C-terminus, FRT-Km ^r , Cm ^r	This study
pKD13	Template plasmid for the amplification of the kanamycin-resistance gene bordered by FRT sites, Km ^r	(Datsenko and Wanner, 2000)
pKD46	λ Red recombinase expression plasmid Ts replicon, Amp^r	(Datsenko and Wanner, 2000)
pCP20	FLP helper plasmid Ts replicon, Amp ^r , Cm ^r	(Datsenko and Wanner, 2000)

pET28a	Expression vector under control of T7 promoter, Km ^r	Novagen
pET24a	Expression vector under control of T7 promoter, Km ^r	Novagen
pET24a-DacA	pET24a-based expression vector for DacA(30-403), Km ^r	This study
pET24a-DacA(ΔC)	pET24a-based expression vector for DacA(30-385), Km ^r	This study
pET24a-PBP1a	pET24a-based expression vector for PBP1a, Km ^r	This study
pET24a-PBP1b	pET24a-based expression vector for PBP1b, Km ^r	This study
pET28a-DacA	pET28a-based expression vector for DacA(30-403) with N-terminal 6 histidines, Km ^r	This study
pET28a-DacA(ΔC)	pET28a-based expression vector for DacA(30-385) with N-terminal 6 histidines, Km ^r	This study
pET28a-NDM-1	pET28a-based expression vector for NDM-1 with N-terminal 6 histidines, Km ^r	This study
pRE1	Expression vector under control of promoter, Amp ^r	(Reddy et al., 1989)
pRE1(kan)	Expression vector under control of promoter, Km ^r	This study
pRE1-DacA	pRE1-based expression vector for DacA, Km ^r	This study
pRE1-DacA(ΔC)	pRE1-based expression vector for DacA(1-385), Km ^r	This study
pRE1-DacA(S73G)	pRE1-based expression vector for DacA(S73G), Km ^r	This study
pRE1-DacA(K242R)	pRE1-based expression vector for DacA(K242R), Km ^r	This study

Supplementary Table S2. Oligonucleotides used in this study

Name	Oligonucleotide sequence (5'-3')	Use(s)
DacA-FRT-F	CTATAGTAGGGCACTTTTTTAATTCCATCACG GATGTCGTAGTTCAGACCGTGTAGGCTGGAG CTGCTTC	
DacA-FRT-R	GGGTTAACGGTTTCAAAGAAACGGAAGCCCC AGGTTAGCAGTTTTTACTATTCCGGGGGATCC GTCGACC	
DacC-FRT-F	CATACGGCGATATAACGTATTTTTTTTGAATG GATACTCGGGTGGCATTTGTGTAGGCTGGAG CTGCTTC	
DacC-FRT-R	AAGGTGGCATCAGGTTTAATTGGCGTCACGG TTTCAAAGAAGCGGAAACCATTCCGGGGGATC CGTCGACC	
DacD-FRT-F	AAGTATTTCCGTAAAAAGAACAGCTATTTGA AACTCCTGAGGGTTTGCTGGTGTAGGCTGGA GCTGCTTC	
DacD-FRT-R	TCCGTTCCGACCTTTTTCCCACGGTGCAAAAT TTGCACCGTAGTAAAGTTATTCCGGGGGATCCG TCGACC	Deletion
YfeW-FRT-F	AACCAGATGGATCGCTGGATTAGCCAGCAAG TTGATGTCGGTTATCCCAGGTGTAGGCTGGAG CTGCTTC	
YfeW-FRT-R	CATTACCATTCACGCGCCAGCCGAGGCCAAA AGTGGCATCTTCCTTAGAGATTCCGGGGGATCC GTCGACC	
LdtA-FRT-F	ATAAAAGCTATACTTAACGGATAGCTTTCGCG ACATAGGAAAGGGACATGGTGTAGGCTGGAG CTGCTTC	
LdtA-FRT-R	TTAAAACATCTGTCTTGAACCAGAACTAATTT GCACAGGCATTCCCGATCATTCCGGGGGATCC GTCGACC	
LdtB-FRT-F	CTCTAATATTCTCAACCCAATGGCCTGCCAGG CACAAAATCTCGCTTAACGTGTAGGCTGGAG CTGCTTC	

LdtB-FRT-R	CAAACTGGGCTTCGGTGGTAGACAGCGGGTT ATGGACTTCAATATAACGGATTCCGGGGGATC CGTCGACC	
LdtC-FRT-F	TCAGGCTTATCTGTTTATTACAATAACCTTAT ATTTATTATGGATTTTTGGTGTAGGCTGGAGC TGCTTC	
LdtC-FRT-R	TGCATCACTTCAGCGTCAGTTTGTGCTGCATC TTTAAATGATTGCATTGC	
LdtD-FRT-F	TAAAATAACAGCCTGGCTATTCAGAGTATGA TAAAAACAGGGGGGCAAGGGGGTGTAGGCTGGA GCTGCTTC	
LdtD-FRT-R	CCCCAATCATGCTAATTATTACGACAACTGAT TTCCCCGAACTACTTCATATTCCGGGGGATCCG TCGACC	
LdtE-FRT-F	CGCCATCCGACGTTTCAGCGTGAGTCTCCGGC AAATACAGGAGGTTTACAGTGTAGGCTGGAG CTGCTTC	
LdtE-FRT-R	CCTGCCCGACGATACAACGCTTTATCGACTAA CTTCTGATCTACAGCCTTATTCCGGGGGATCCG TCGACC	
Lpp-FRT-F	AATACTTGTAACGCTACATGGAGATTAACTCA ATCTAGAGGGTATTAATAGTGTAGGCTGGAG CTGCTTC	
Lpp-FRT-R	ACAAAAAAAATGGCGCACAATGTGCGCCATT TTTCACTTCAC	
DacA-cfm-F	AAAGTCAGATGCCTGCCGGTAGTGCATTTG	
DacA-cfm-R	TCAGAGGCGAACTCTTTACCTACTTTCAGT	
DacC-cfm-F	TGTGTGTGCGTTATTAATCACCAAACTTAT	Deletion
DacC-cfm-R	CGCTCTTATCACCAAACCAGACGCGCTGAG	confirm
DacD-cfm-F	TTTTCTTGCACTTTATTCCAGCCAGTTCAT	
DacD-cfm-R	ATATTTTCTTTATCGCCATACCAGATGCGT	

YfeW-cfm-F	GAGAAAGCAGGGTTTAACGTCGAACGGCTT		
YfeW-cfm-R	CCAGCGTGCCAAACGTCGGCGTCATGGTGG		
LdtA-cfm-F	TGATTTGAACAGTTAAAAACGAAAAGTCTG		
LdtA-cfm-R	AGGCTTTTTGCTTTCTAATTACCAACGCTC		
LdtB-cfm-F	CTGGAATGAACTTATAATGCGCTTCCAATA		
LdtB-cfm-R	TCAGGGTAATTGGCACAATTTCCTGACCTT		
LdtC-cfm-F	GCACTATCCGACACTGTCACCATCCATAAT		
LdtC-cfm-R	GGCATCCCGGAACGGACATCCATCACATGT		
LdtD-cfm-F	CGTGAGTATTGGCGTTGTACAGGCAAGTCG		
LdtD-cfm-R	CCAGCAGTGACGGGGGGCTGCAGAGAATCGC		
LdtE-cfm-F	AGGAGTGTTTTGGTTTCAGGTGAACATAAG		
LdtE-cfm-R	GTTGCTCCACTGCTCACCGAAACCGGATAC		
Lpp-cfm-F	GAGCGAACGATCAAAAATAAGTGCCTTCCC		
Lpp-cfm-R	CAAGGGAATATGTTACGCGTGACGCAGTAG		
PBP1a-3×Flag-F	ACGAGGTGGGAACGACCATTATCGATAATGG CGAGGCACAGGAATTGTTCGTCGACCTGCAG GATTATAA		
PBP1a-3×Flag-R	ACAAGTGCACTTTGTCAGCAAACTGAAAAGG CGCCGAAGCGCCTTTTTAATTACGCCCCGCCC	Chromosomal	
PBP1b-3×Flag-F	AAGACAGCGACGGTGTAGCCGGTTGGATCAA GGATATGTTTGGTAGTAATGTCGACCTGCAGG ATTATAA	3×Flag tag	
PBP1b-3×Flag-R	TGTTATTTTACCGGATGGCAACTCGCCATCCG GTATTTCACGCTTAGATGTTACGCCCCGCCC		

pBAD-DacA-F	CTAGCAGGAGGAATTCATGAATACCATTTT TCCGC	pBAD24 cloning
$DacA(\Delta)$ -3×Flag-cfm-R	TGATCAACCAGCTCAGGTAA	
$DacA(\Delta)$ -3×Flag-cfm-F	GAAAGCCAGCTATGTGCTGA	
PBP3-3×Flag-cfm-R	TACAAAGAGATCGCCCGCCGCAGCCACACG	
PBP3-3×Flag-cfm-F	TGGGCGGCGTATTGCGTACCATGAACATCG	
PBP2-3×Flag-cfm-R	ATCCTGACCGCTGGCGCTCCAGATAACCAG	3×Flag tag confirm
PBP2-3×Flag-cfm-F	TGCGCCAGATCCTCGACCACATTATGCTGG	Chromosomal
PBP1b-cfm-R	GAAAAGAAAGGGTTAATATCTTAGATGGGA	
PBP1b-cfm-F	TTTGAGAGATATCTTCTTCTGTCTTGTAAC	
PBP1a-cfm-R	TAACGCGTTCACGCCGTATCCGGCATAAAC	
PBP1a-cfm-F	GCCTATACCGCTACATCGAGCCACAACTGC	
DacA(Δ C)-FLAG-R	CTGATGCTTAGTATATGGGGGACGGAAATTAC ACTTTCAAGTGTTTAATTTATTCCGGGGATCC GTCGACC	
DacA(ΔC)-FLAG-F	GCAATCGGGTAACGATGCTTGTGTCGCCAT	
PBP3-3×Flag-R	GTGCTCGCGAAGGTGCGTCTGGCACCCACGG AGCAAGAAGGTCGCGCAAATTACGCCCCGCC CTGCCACT	
PBP3-3×Flag-F	ATAAAAATGAATTTGTGATTAATCAAGGCGA GGGGACAGGTGGCAGATCGGTCGACCTGCAG GATTATAA	
PBP2-3×Flag-R	GAGATGGACTTTATCCCAGAATGTTTTTTAT TCGGATTATCCGTCATGATTACGCCCCGCCC	
PBP2-3×Flag-F	ACACCGATCTGCCTGCGGAAAATCCAGCGGT TGCCGCAGCGGAGGACCATGTCGACCTGCAG GATTATAA	

pBAD-DacA-R	GCAGGTCGACTCTAGATTTAACCAAACCAGT GATGG	
pBAD-DacC-F	CTAGCAGGAGGAATTCATGACGCAATACTCC TCTC	
pBAD-DacC-R	GCAGGTCGACTCTAGATTAAGAGAACCAGCT GCCG	
pBAD-DacD-F	CTAGCAGGAGGAATTCATGAAACGCCGTCTT ATTATTGC	
pBAD-DacD-R	GCAGGTCGACTCTAGAAGAAAGGTCAGGCCT TATGGTGG	
pBAD-YfeW-F	CTAGCAGGAGGAATTCATGAAACGGACAATG CTCTA	
pBAD-YfeW-R	GCAGGTCGACTCTAGATTACTTCTGCTTTAAC GCCG	
pBAD-insert-FRT-Km ^r -F	GATGATGACGACAAATAGAGATTGCAGCATT ACACGTC	
pBAD-insert-FRT-Km ^r -R	CAGCATCACCTCATCGCCATTAATTCACTG	
pBAD-Flag-FRT-Km ^r -vF	GTAATGCTGCAATCTCTATTTGTCGTCATCAT CTTTAT	
pBAD-frt-Km ^r -vR	ATGGCGATGAGGTGATGCTGCTGCAGGCATG CAAGCTTGG	pBAD- DacA(ΔC)-
pBAD-insert-DacA(ΔC)-FLAG-F	AGCAGGAGGAATTCCATATGAATACCATTTT TTCCGCTCG	Flag-FRT-Km ^r
pBAD-insert-DacA(ΔC)-FLAG-R	AGGTCGACTCTAGACTCGAGGTTACCTTCCG GGATTTCTT	
pBAD-vector-DacA(ΔC)-FLAG-F	CATATGGAATTCCTCCTGCT	
pBAD-vector-DacA(Δ C)-FLAG-R	CTCGAGTCTAGAGTCGACCT	
pET24-DacA-F	AAGGAGATATACATATGGATGACCTGAATAT CAAAAC	pET24- and
pET28-DacA-F	CGCGCGGCAGCCATATGGATGACCTGAATAT CAAAAC	pET28-

pET-DacA-R	GCTCGAATTCGGATCCTTAACCAAACCAGTG ATGGAAC	DacA or DacA(ΔC) cloning
pET-DacA(Δ C)-R	GCTCGAATTCGGATCCTTAGTTACCTTCCGGG ATTTC	
pRE1-DacA-F	GGAAATACTTACATATGAATACCATTTTTTCC GCTCG	
pRE1-DacA-R	GTCGACGATATCTAGATTAACCAAACCAGTG ATGGAAC	pRE1-DacA or DacA(ΔC) cloning
pRE1-DacA(Δ C)-R	GTCGACGATATCTAGATTAGTTACCTTCCGG GATTTC	
DacA(S73G)-F	CCGCCGCGATCCTGCCGGCCTGACCAAAAT	
DacA(S73G)-R	ATTTTGGTCAGGCCGGCAGGATCGCGGCGG	Point mutant
DacA(K242R)-F	TGTCGACGGCATCAGAACCGGACACACTGA	i onit mutunt
DacA(K242R)-R	TCAGTGTGTCCGGTTCTGATGCCGTCGACA	

References

- Blattner FR, Plunkett G, 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. 1997. The complete genome sequence of *Escherichia coli* K-12. *Science*. 277:1453-1462. doi: <u>https://doi.org/</u>
- Choi U, Lee CR. 2019. Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in *Escherichia coli*. *Frontiers in Microbiology*. **10**:953. doi: <u>https://doi.org/10.3389/fmicb.2019.00953</u>
- Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *PNAS*. **97**:6640-6645. doi: <u>https://doi.org/10.1073/pnas.120163297</u>
- Ji CJ, Yang YM, Kim JH, Ryu SH, Youn H, Lee JW. 2018. The roles of two O-donor ligands in the Fe²⁺-binding and H₂O₂-sensing by the Fe²⁺-dependent H₂O₂ sensor PerR. *Biochemical and Biophysical Research Communications*. **501**:458-464. doi: https://doi.org/10.1016/j.bbrc.2018.05.012
- Park SH, Kim YJ, Lee HB, Seok YJ, Lee CR. 2020. Genetic evidence for distinct functions of peptidoglycan endopeptidases in *Escherichia coli*. *Frontiers in Microbiology*. **11**:565767. doi: <u>https://doi.org/10.3389/fmicb.2020.565767</u>
- Reddy P, Peterkofsky A, McKenney K. 1989. Hyperexpression and purification of *Escherichia coli* adenylate cyclase using a vector designed for expression of lethal gene products. *Nucleic Acids Research.* 17:10473-10488. doi: <u>https://doi.org/10.1093/nar/17.24.10473</u>