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Supplementary Note 1 
 
Molecular mechanism of DMA-1 endocytosis in the AIS 

We hypothesized that elucidating DMA-1 endocytic mechanisms in the AIS would provide 

molecular access to preferentially perturbing endocytosis at the AIS. We first investigated the 

molecular mechanism of DMA-1 endocytosis through mutational analysis. Loss of function 

mutation in the clathrin-mediated endocytic adapter protein apa-2 resulted in a redistribution of 

DMA-1 from punctate structures to a diffuse localization pattern in the AIS (Extended Data Fig. 

5a-c). This is consistent with inhibited DMA-1 endocytosis and the loss of punctate structures 

that we observed with a dynamin-1 temperature sensitive mutation (Fig. 2g, h). We then used a 

structure-function approach to identify two interaction motifs within DMA-1 that enable its 

efficient clathrin-mediated endocytosis in the AIS. We started with deletion of DMA-1’s putative 

AP-2 binding motif in its cytoplasmic tail (residues YFGI)33. When this motif was endogenously 

deleted, DMA-1’s punctate localization in the AIS was reduced (Extended Data Fig. 5a-c), thus 

supporting an intracellular motif that promotes DMA-1 endocytosis through a canonical AP-2 

binding pathway. We then investigated if DMA-1’s extracellular domain contributes to its 

endocytosis. Indeed, deletion of DMA-1’s extracellular domain also caused a partial reduction in 

its punctate distribution in the AIS (Extended Data Fig. 5c-e), which suggests an extracellular 

interaction with DMA-1 that also facilitates its endocytosis.  

 

To identify proteins that promote DMA-1 endocytosis through its extracellular domain, we 

performed an extracellular interactome assay, a high-throughput pairwise ectodomain interaction 

screen65. This screen of 380 C. elegans proteins from common neuronal cell surface receptor 

families identified an uncharacterized secreted low-density lipoprotein (LDL) receptor-like 

protein as the strongest DMA-1 binding partner (Extended Data Fig. 5f, Supplementary Table 1). 

We named this protein LRPL-1 (LRP-1 like; Extended Data Fig. 5g-k) based on its homology to 

LDL receptor-related protein 1 (LRP-1). The LRP family is a conserved family of proteins that 

function as endocytic co-receptors through extracellular domain interactions67. The C. elegans 

genome contains two transmembrane LRPs, LRP-1 and LRP-2, in addition to LRPL-1. We 

focused on LRPL-1 and LRP-2, which are close homologs of C. elegans LRP-1 and human LRP-

2, respectively (Extended Data Fig. 5g).  
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Based on canonical LRP protein function as endocytic co-receptors, we tested if LRP proteins 

have a role in DMA-1 endocytosis. We examined both endogenous DMA-1 localization and GFP 

fluorescence in the DMA-1 cell surface reporter assay, which enables identification of puncta 

containing endocytosed DMA-1. Indeed, an lrp-2 loss of function mutation changed the 

localization pattern of endogenous DMA-1 in the AIS and caused a decrease in DMA-1 puncta 

there (Extended Data Fig. 5a, b). This data suggests a role for LRP-2 in promoting DMA-1 

endocytosis in the AIS. We further tested this idea using the DMA-1 cell surface reporter. This 

assay revealed a decrease in the GFP signal in the AIS, but not dendrite, in lrp-2 and lrpl-1 loss 

of function mutant animals (Extended Data Fig. 6a, b). Double mutation of lrp-2 and lrpl-1 did 

not enhance the defect, indicating that they function together in the same pathway (Extended 

Data Fig. 6a, b). Together, these results suggest that LRPL-1 and LRP-2 function to promote 

DMA-1 endocytosis preferentially in the AIS. 

 

To further investigate LRP protein function, we next determined their localization. Because 

LRPL-1 is a secreted protein, based on domain predictions and confirmed by its successful 

secretion in our in vitro purification, we used an endogenous SL2 transcriptional reporter that 

identified the PVD neuron as a site of its transcription (Extended Data Fig. 6c). We then 

examined LRPL-1-GFP protein localization and found that LRPL-1-GFP localized to punctate 

structures in the AIS that colocalized with DMA-1 puncta (Extended Data Fig. 6d-f). Because 

DMA-1 puncta rarely enter the AIS (Extended Data Fig. 1f, g) and predominantly contain DMA-

1 receptors that have been exposed to the cell surface (Fig. 2c, d), these puncta likely represent 

endocytic structures and not biosynthetic vesicles. Transmembrane LRP-2 was enriched in the 

AIS compared to the axon and dendrite (Extended Data Fig. 6g, h). LRP-2 also formed discrete 

puncta that were dependent upon the function of endocytic clathrin-coated pit associated proteins 

AP-2 and DAB-1 (the C. elegans homolog of DAB-2, LRP-2’s known endocytic adapter 

protein68,69; Extended Data Fig. 6i-l). These results indicate that LRP-2 is concentrated at 

endocytic structures, which is consistent with its canonical function as an endocytic co-receptor. 
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We then performed experiments to determine how LRPL-1 and LRP-2 are functioning in DMA-

1 endocytosis. LRP proteins promote the endocytosis of other transmembrane receptors when 

linked through binding a secreted protein70. Therefore, we considered the possibility of an 

endocytic complex of DMA-1, LRPL-1, and LRP-2 (Extended Data Fig. 6i) that functions in the 

AIS based on the following pieces of data: 1) DMA-1 interacts with secreted LRPL-1 through its 

extracellular domain (Extended Data Fig. 5f-k), 2) transmembrane LRP-2 and secreted LRPL-1 

function in the same pathway to promote DMA-1 endocytosis in the AIS (Extended Data Fig. 6a, 

b), 3) both LRPL-1 and LRP-2 form puncta in the AIS (Extended Data Fig. 6d, e, g, h), and 4) 

LRPL-1 and DMA-1 colocalize in the AIS (Extended Data Fig. 6f). A prediction of this model is 

that LRPL-1’s punctate localization to the AIS will require both AP-2 to be concentrated into 

endocytic clathrin-coated pits and internalized into the PVD neuron as well as its binding partner 

DMA-1 and LRP-2. Indeed, LRPL-1’s localization to the AIS is dependent upon AP-2, DMA-1, 

and LRP-2 (Extended Data Fig. 6m-o). The requirement of AP-2 for LRPL-1 localization to the 

AIS supports the idea that these LRPL-1 puncta represent endolysosomal structures. These 

results are consistent with secreted LRPL-1 being internalized via clathrin-mediated endocytosis 

through interaction with DMA-1 and LRP-2.  

 

Together, these findings support a working model in which DMA-1 is efficiently endocytosed in 

the AIS by engaging two pathways: 1) an intracellular interaction between DMA-1 and AP-2, 

and 2) an extracellular interaction between DMA-1 and LRP endocytic co-receptors (Extended 

Data Fig. 6i). Indeed, inhibition of both endocytic pathways through deletion of DMA-1’s 

putative AP-2 motif (ΔYFGI) in combination with the loss of lrp-2 phenocopied apa-2 loss of 

function (Extended Data Fig. 5a, b). Therefore, we propose that DMA-1 has an additional 

endocytic module at the AIS through forming an endocytic co-receptor complex with LRPL-1 

and LRP-2. The preferential function of this co-receptor complex at the AIS is supported by 

finding a specific effect of the LRP proteins at the AIS using the DMA-1 cell surface reporter 

assay and the subcellular enrichment of LRPL-1 and LRP-2 at the AIS. Together, these results 

suggest that LRP proteins preferentially promote DMA-1 endocytosis in the AIS, and thus 

provide molecular access to perturbing DMA-1 endocytosis at the AIS. 
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Preferential inhibition of DMA-1 endocytosis in the AIS through impairment of LRP 

proteins 

The analysis of DMA-1 endocytic mechanisms provided molecular access to perturb DMA-1 

endocytosis in the AIS through manipulation of the DMA-1 endocytic module that is preferential 

to the AIS. Indeed, disruption of this complex through deletion of DMA-1’s extracellular domain 

or introduction of an lrp-2 loss of function mutation resulted in DMA-1 mislocalization to the 

axon and a partial loss of DMA-1 dendritic polarity (Fig. 3f, g and Extended Data Fig. 6p, q). 

Combining these loss of function perturbations did not exacerbate the DMA-1 loss of polarity, 

suggesting that lrp-2 functions through DMA-1’s extracellular domain (Extended Data Fig. 6p, 

q). A loss of function mutation in dab-1, LRP-2’s endocytic adapter protein, also resulted in 

DMA-1 mislocalization to the axon and a partial loss of DMA-1 dendritic polarity (Fig. 3f, g and 

Extended Data Fig. 6p-s). However, loss of function mutation in lrp-2 did not affect the dendritic 

polarity of HPO-30, another dendritically polarized receptor, thus suggesting some specificity of 

LRP-2 function with DMA-1 (Extended Data Fig. 6t, u). These results suggest that DMA-1 

endocytosis at the AIS through LRP-2 function is important for maintaining its polarity. 

Consistent with this, both lrp-2 and lrpl-1 mutation caused the axon to gain aberrant axonal 

branches similar to endocytic inhibition through apa-2 mutation (Extended Data Fig. 6v, w & 

Fig. 3h, i), demonstrating a loss of morphological polarity. Additionally, mutation of lrp-2 and 

lrpl-1 caused behavioral deficits in a harsh touch escape behavioral assay, indicative of 

decreased neuronal function (Fig. 3j). Altogether, these results support the idea that endocytosis 

in the AIS contributes to DMA-1’s dendritic polarity. 
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Supplementary Figure 1. Uncropped Western blots with molecular weight markers and 

indication of cropped region. Uncropped western blot blotted with an anti-His Tag antibody 

(THE™ His Tag Antibody [iFluor 488], mAb, Mouse, GenScript Cat# A01800) with molecular 

weight markers. Cropped region is indicated by the black box outline.  
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Supplementary Table Descriptions 
 

Supplementary Table 1 

Results from extracellular interactome assay presented in Extended Data Fig. 5f. 

 

Supplementary Table 2 

Description of C. elegans strains used in this study. 

 

Supplementary Table 3 

Description of constructs generated for this study. 

 

Supplementary Table 4 

Description of sgRNAs used to generate new alleles using CRISPR genome editing. 
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Supplementary Video Descriptions 
 

Video S1. Dendritic protein vesicle dynamics in the dendrite. 

Endogenous DMA-1-GFP vesicles are robustly trafficked in the dendrite. Scale bar, 2 µm. 

 

Video S2. Dendritic protein vesicle dynamics in the AIS. 

Endogenous DMA-1-GFP vesicles in the AIS are largely immobile (cell body/dendrite on left). 

Scale bar, 2 µm. 

 

Video S3. Clathrin-labeled vesicle dynamics in the AIS. 

Cell-specific endogenous GFP-FLPon-CLIC-1 puncta dynamics in the AIS showing stable 

endocytic structures as well as a mobile transport vesicle (dendrite on top). Scale bar, 1 µm. 

 

Video S4. AP-2-labeled vesicle formation and disappearance in the AIS. 

Cell-specific endogenous AP-2-FLPon-GFP puncta formation and disappearance in the AIS. 

Scale bar, 1 µm. 

 

Video S5. Dendritic protein vesicle dynamics in the dendrite of apa-2 mutant animals. 

Cell-specific endogenous DMA-1-FLPon-GFP vesicles are robustly trafficked in the dendrite of 

apa-2 mutants. Scale bar, 1 µm. 

 

Video S6. Dendritic protein vesicle dynamics in the axon of apa-2 mutant animals. 

Cell-specific endogenous DMA-1-FLPon-GFP is diffuse and not punctate in the axon of apa-2 

mutants. Scale bar, 1 µm. 
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