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Detailed Proofs

In this web-appendix, we provide detailed proofs of the main results (Theorems 6 and 7)

and the required Lemmas 1–3, given in the appendix of the paper, along with some necessary

preliminary lemmas. For a preliminary version of the proofs see Chapter 3 in Kornely (2021).

The proofs that follow rely on Kolmogorov’s version of the strong law of large numbers

(SLLN) for non-identically distributed random variables (cf. Serfling, 1980), which, for

completeness, is given below.

Theorem W.1. (Kolmogorov’s strong law of large numbers) Let {Xi}i∈N be a sequence of

independent random variables with E(Xi) = µi ∈ R and 0 < Var(Xi) = σ2 <∞. If

∞∑
i=1

σ2
i

i2
<∞,

then

1

d

d∑
i=1

Xi −
1

d

d∑
i=1

µi → 0, P - almost surely

for d→∞.

A preliminary result, needed for the proof of Lemma 1, is the equicontinuity of the item

response functions on every compact subset of Θ, which is shown next.

Lemma W.1. Let a sequence of mappings {Pi}i∈N be given so that the condition (CS2′) is

satisfied. Additionally, let K be an arbitrary compact set for which a convex and compact set

K+ exists such that K ⊆ K+ ⊆ Θ. Then the family of mappings {Pi|K}i∈N is equicontinuous,

where Pi|K denotes the restriction of Pi on K for i ∈ N.
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Proof. The proof is based on arguments of Chang and Stout (1991, Lemma 3.1).

Denote by ∇Pi the gradient of Pi. Then, for a point η̃ ∈ {(1− c)η + cη′, c ∈ [0, 1]} on the

line between η and η′, we get from the multivariate mean value theorem and the

Cauchy–Schwarz inequality that

|Pi(η)− Pi(η′)| = |∇Pi(η̃)ᵀ(η − η′)| ≤ ‖∇Pi(η̃)‖ · ‖η − η′‖.

Due to (CS2′), if restricted to K+, all
∣∣∣ ∂Pi∂ηk

∣∣∣ are uniformly bounded for all i ∈ N, 1 ≤ k ≤ q.

Then there is a finite number ζ(K+) such that

sup
(i,η)∈N×K+

‖∇Pi(η)‖ = ζ(K+)

and hence for all η,η′ ∈ K+

|Pi(η)− Pi(η′)| ≤ ζ(K+)‖η − η′‖ for all i ∈ N. (W1)

Especially

|Pi(η)− Pi(η′)| < ε (W2)

holds for all η,η′ ∈ K+ with ‖η − η′‖ < δ = ε
ζ(K+)

, for ε > 0 and all i ∈ N. Notice, (W1) and

(W2) are still true, if we take η,η′ ∈ K, where K ⊂ K+. Hence, the family of maps {Pi|K}i∈N
is equicontinuous for any compact set K, for which a convex and compact set K+ ⊂ Θ exists

such that K ⊂ K+.

Notice that sets K, as considered in Lemma W.1, are in fact all compact subsets of Θ due to

the requird convexity of Θ.

Kolmogorov’s SLLN can be used to show that that 1
d

(
`(d)(η |Y(d))− `(d)(η0 |Y(d))

)
is

asymptotically negative, as shown in the next lemma. Using the equicontinuity of the item

response functions, i.e. Lemma W.1, this can then extended to the supremum of η ∈ Θ to

obtain Lemma 1.

Lemma W.2. Let a sequence {Yi}i∈N ∼ P(η0), for a sequence {Pi}i∈N and a fixed η0 ∈ Θ,

be given so that the conditions (CS1′[i]), (CS2′) and (CS3′) are satisfied. Then

lim sup
d→∞

1

d

(
`(d)(η |Y(d))− `(d)(η0 |Y(d))

)
≤ c(η) < 0, Pη0–almost surely, (W3)

holds for every η ∈ Θ \ {η0}, where c(η) is the constant of condition (CS3′).
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Proof. The proof is based on arguments of Chang and Stout (1991, Lemma 3.1).

Notice that for each i ∈ N,

Varη0(logZi(η,η0)) = Varη0(Yi)(λi(η)− λi(η0))2

= Pi(η0)(1− Pi(η0)(λi(η)− λi(η0))2

holds. Due to (CS2′), for each η ∈ Θ there is a constant 0 < M(η,η0) <∞ such that

sup
i∈N

Varη0(logZi(η,η0)) ≤ 2 sup
i∈N
|λi(η)|2 + 2 sup

i∈N
|λi(η0)|2 = M(η,η0) <∞.

Hence, we get

∞∑
i=1

Varη0(logZi(η,η0))

i2
≤M(η,η0)

∞∑
i=1

1

i2
<∞.

This enables the application of Theorem W.1 on the sequence {logZi(η,η0)}i∈N, to obtain

1

d

d∑
i=1

logZi(η,η0)− 1

d

d∑
i=1

Eη0(logZi(η,η0))
Pη0−a.s.
−→ 0, d→∞.

It follows from the last step and (CS3′) that there is a constant c(η) < 0 so that (W3) holds.

Now we can prove Lemma 1.

Proof of Lemma 1. This proof is based on arguments by Chang and Stout (1991, Lemma

3.1).

For each i ∈ N, we define the map Hi : Θ2 → R≥0 by

(η,η′) 7→
∣∣∣∣log

(
Pi(η)

Pi(η′)

)∣∣∣∣+

∣∣∣∣log

(
1− Pi(η)

1− Pi(η′)

)∣∣∣∣ =: Hi(η,η
′).

Since the image of Pi does not include {0, 1}, Hi is continuous. Moreover, for any η′ ∈ Θ and

any δ > 0 such that B̄δ(η
′) ⊂ Θ, the map

B̄δ(η
′)→ R≥0, η 7→ Hi(η,η

′)

is continuous on the compact set B̄δ(η
′) and thus has a maximum value, where B̄ denotes the

closure of the set B. We denote this maximum value by

Ĥi(δ,η
′) := max

η∈B̄δ(η′)
Hi(η,η

′).
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In the following we assume, that δ > 0 is sufficiently small so that B̄δ(η
′) ⊂ Θ for the selected

value η′ ∈ Θ. Letting δ → 0 yields B̄δ(η
′)→ {η′} and therefore, limδ→0 Ĥi(δ,η

′) = 0 for each

i ∈ N and η′ ∈ Θ. Since Yi ∈ {0, 1}, we get from the triangle inequality

| logZi(η,η
′)| =

∣∣log
(
Pi(η)Yi(1− Pi(η)1−Yi

)
− log

(
Pi(η

′)Yi(1− Pi(η′)1−Yi
)∣∣

=

∣∣∣∣Yi log

(
Pi(η)

Pi(η′)

)
+ (1− Yi) log

(
1− Pi(η)

1− Pi(η′)

)∣∣∣∣
≤
∣∣∣∣log

(
Pi(η)

Pi(η′)

)∣∣∣∣+

∣∣∣∣log

(
1− Pi(η)

1− Pi(η′)

)∣∣∣∣ = Hi(η,η
′) ≤ Ĥi(δ,η

′), (W4)

for δ ≥ ‖η − η′‖. For any fixed η′ ∈ Θ we get

Ĥi(δ,η
′) = max

η∈B̄δ(η′)

{∣∣∣∣log

(
Pi(η)

Pi(η′)

)∣∣∣∣+

∣∣∣∣log

(
1− Pi(η)

1− Pi(η′)

)∣∣∣∣}
≤ max

η∈B̄δ(η′)

{∣∣∣∣log

(
Pi(η)

Pi(η′)

)∣∣∣∣}+ max
η∈B̄δ(η′)

{∣∣∣∣log

(
1− Pi(η)

1− Pi(η′)

)∣∣∣∣} .
Applying the multivariate mean value theorem to log( · ) we get

max
η∈B̄δ(η′)

{∣∣∣∣log

(
Pi(η)

Pi(η′)

)∣∣∣∣} = max
η∈B̄δ(η′)

{∣∣log (Pi(η))− log
(
Pi(η

′)
)∣∣}

= max
η∈B̄δ(η′)

{
1

ξ(Pi(η), Pi(η′))

∣∣Pi(η)− Pi(η′)
∣∣} , (W5)

where ξ(Pi(η), Pi(η
′)) is a point between Pi(η) and Pi(η

′). Let ζ0(K) and ζ1(K) be given for

each compact K ⊂ Θ as in (CS2′). Additionally, due to Lemma W.1, for each compact and

convex set K ⊆ Θ there is a ζ3(K) > 0 such that

∣∣Pi(η)− Pi(η′)
∣∣ ≤ ζ3(K)‖η − η′‖, (W6)

for all i ∈ N. Combining (W5), the analogously derived version for 1− Pi(η) instead of Pi(η),

(W6) and equation (20) in condition (CS2’), we obtain

max
η∈B̄δ(η′)

{∣∣∣∣log

(
Pi(η)

Pi(η′)

)∣∣∣∣}+ max
η∈B̄δ(η′)

{∣∣∣∣log

(
1− Pi(η)

1− Pi(η′)

)∣∣∣∣}
≤
(
ζ3(K)

ζ0(K)
+

ζ3(K)

1− ζ1(K)

)
δ =: C(K)δ,

for all compact and convex K ⊇ B̄δ(η′). Therefore, for each ε > 0 there is a δ > 0 so that

1
d

∑d
i=1 Ĥi(δ,η

′) < ε, for all d ∈ N. This implies

lim
δ→0

lim
d→∞

1

d

d∑
i=1

Ĥi(δ,η
′) = 0. (W7)
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Next, we will show that for any ηi 6= η0 there is a sufficiently small δi > 0 and a sufficiently

large ci < 0 such that

lim
d→∞

Pη0

(
sup

η∈B̄δi (ηi)

1

d

(
`(d)(η |Y(d))− `(d)(η0 |Y(d))

)
< ci < 0

)
= 1. (W8)

First, for any η ∈ B̄δi(ηi) equation (W4) implies

1

d

(
`(d)(η |Y(d))− `(d)(η0 |Y(d))

)
≤ 1

d

(
`(d)(ηi |Y(d))− `(d)(η0 |Y(d))

)
+

1

d

(
`(d)(η |Y(d))− `(d)(ηi |Y(d))

)
≤ 1

d

(
`(d)(ηi |Y(d))− `(d)(η0 |Y(d))

)
+

1

d

d∑
i=1

Ĥi(δ,ηi).

Since ηi ∈ Θ \ {η0}, for η = ηi we get from Lemma W.2 that

lim sup
d→∞

1

d

(
`(d)(ηi |Y(d))− `(d)(η0 |Y(d))

)
≤ c(ηi) < 0 Pη0– almost surely.

Equation (W7) implies, for all η′ = ηi and for each ε > 0, that there is a sufficiently small

δ > 0 such that lim supd→∞
1
d

∑d
i=1 Ĥi(δ,ηi) < ε. Therefore, there is a δ > 0 sufficiently small

and a negative number ci, for example ci = c(ηi)
2 so that (W8) holds.

Equation (W8) still holds if we replace Bδ(ηi) by an arbitrary subset of Bδ(ηi).

Especially, for all ηi 6= η0, there exists a sufficiently small δi and a constant ci < 0 such that

for all compact sets Ki ⊂ Bδi(ηi)

lim
d→∞

Pη0

(
sup
η∈Ki

1

d

(
`(d)(η |Y(d))− `(d)(η0 |Y(d))

)
< ci

)
= 1 (W9)

holds.

Next, we carry out a case-by-case analysis. First, we assume that Θ is compact. Then for

each δ > 0 such that Θ\Bδ(η0) 6= ∅, we define Θ0 := Θ\Bδ(η0), which is compact, too. For

each δ′ > 0,
⋃

η∈Θ0
Bδ′(η) is a covering of Θ0 and since Θ0 is compact, there are

η1, . . . ,ηN ∈ Θ0 for an N ∈ N such that Θ0 ⊂
⋃N
j=1Bδ′(ηj). Notice that also Θ0 =

⋃N
j=1Ki

holds, where Ki := B̄δ′(ηj) ∩Θ0, i = 1, . . . , N . Particularly, for every Ki there is a compact

and convex superset K̃i ⊃ Ki with K̃i ⊂ Θ due to (CS1′[i]). Then, we can define the events

A
(d)
i :=

{
ω ∈ Ω: sup

η∈Ki

1

d

(
`(d)(η |Y(d)(ω))− `(d)(η0 |Y(d)(ω))

)
< ci

}
, (W10)
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for some c1, . . . , cN < 0. Equation (W9) implies that P(A
(d)
i )→ 1 for d→∞ and

lim
d→∞

Pη0

(
N⋂
i=1

A
(d)
i

)
= 1. (W11)

Equation (W11) is still true, if we replace in (W10) the constant ci by

k = max{c1, . . . , cN} < 0. We hence get

lim
d→∞

Pη0

(
sup

η∈Θ\Bδ(η0)

1

d

(
`(d)(η |Y(d))− `(d)(η0 |Y(d))

)
< k

)
= 1. (W12)

Now, we assume that Θ is unbounded. Then we can define the sequence {Θj}j∈N0 with⋃
j∈N0

Θj = Θ \Bδ(η0) by setting

Θj =
{
η ∈ Θ: δ + j ≤ ‖η − η0‖ ≤ δ + j + 1

}
, j ∈ N0.

On each Θj , j ∈ N0, we can apply the analysis of the first case with Θj instead of Θ \Bδ(η0)

and kj := supη∈Θj c(η)/2 < 0 instead of k < 0. Letting d→∞ we get with probability

tending to one

sup
η∈Θ\Bδ(η0)

1

d

(
`(d)(η |Y(d))− `(d)(η0 |Y(d))

)
= sup

j∈N0

(
sup
η∈Θj

1

d

(
`(d)(η |Y(d))− `(d)(η0 |Y(d))

))
≤ sup

j∈N0

kj ≤ sup
η∈Θ\Bδ(η0)

c(η)/2 =: 2 · k(δ).

Since condition (CS3′) implies supη∈Θ\Bδ(η0) c(η)/2 < 0, the proof is completed by setting

k(δ) := supη∈Θ\Bδ(η0) c(η)/3 < 0.

The following lemma can be found in Witting and Müller-Funk (1995, ”Hilfssatz” 6.7 part

b), p. 173).1 This lemma is needed to show that there exist measurable solutions of the

likelihood equations and, in particular, the MLE is actually a random vector. Thus, equations

that contain the MLE can be manipulated as for any random vector.

Lemma W.3. Consider a function g(· , ·) so that for each fixed η ∈ Θ ⊂ Rq the mapping

g(·,η) : (Rd,Bd)→ (Rd,Bd) is measurable and for each fixed xxx ∈ Rd the mapping

1The lemma is translated to English and adapted to our notation.
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g(xxx, ·) : Θ→ Rd is continuous. Assume that Θ is compact or that there is a sequence of

compact sets {Ui}i∈N with Θ =
⋃
i∈N Ui. Further, assume that there is a mapping ϑ : Rd → Θ

such that xxx 7→ g(xxx, ϑ(xxx)) =: h(xxx) is measurable. Then there is a measurable mapping

ϑ̃ : (Rd,Bd)→ (Θ,B(Θ)) such that h(xxx) = g(xxx, ϑ̃(xxx)) for all xxx ∈ Rd.

Next, we prove the consistency of the MLE and the MAP (Theorem 5 (i) and (ii)), which

is required to prove Lemmas 2 and 3 and, consequently, Thereom 5 (iii) and Theorem 6.

Proof of Theorem 5 (i) and (ii). We start with part (i). The proof of the consistency of

the MLE is based on the proof of Corollary 3.1 of Chang and Stout (1991). Similar to showing

the existence of the MLE in classic maximum likelihood theory (cf. Lehmann and Casella,

1998), we define the set

Cd,δ :={y ∈ {0, 1}d | `(d)(ccc | y) < `(d)(η0 | y) for all ccc ∈ ∂Bδ(η0)}

=

{
y ∈ {0, 1}d

∣∣∣∣ 1

d
`(d)(ccc | y) <

1

d
`(d)(η0 | y) for all ccc ∈ ∂Bδ(η0)

}
,

for d ∈ N and δ > 0 such that Bδ(η0) ⊂ Θ, where ∂B denotes the boundary of the set B. By

the definition of Cd,δ, at least at the point η0 ∈ Bδ(η0), the mapping `(d)(· | y) takes a larger

value in the interior of the open ball Bδ(η0) than on the boundary ∂Bδ(η0) for all y ∈ Cd,δ.

So, for all y ∈ Cd,δ, `(d)(· | y) has at least one local maximum in Bδ(η0). For all y ∈ Cd,δ, we

denote by My ⊂ Bδ(η0) the set of all local maximum points of `(d)(· | y)
∣∣
Bδ(η0)

. Since

`(d)(· | y)
∣∣
Bδ(η0)

∈ C2(Bδ(η0),R) due to (CS2′), `(d)(· | y)
∣∣
Bδ(η0)

is continuously differentiable

and so for all y ∈ Cd,δ each point η∗ ∈My satisfies the likelihood equations, i.e.

∇`(d)(η∗ | y) = 000. Notice that ∂Bδ(η0) ⊂ Θ \Bδ(η0) for all δ > 0 with Bδ(η0) ⊂ Θ. Lemma 1

now implies Pη0(Y(d) ∈ Cd,δ)
d→∞−→ 1 and thus

lim
d→∞

Pη0

(
1

d
`(d)(η |Y(d)) <

1

d
`(d)(η0 |Y(d))

)
= 1, for all η ∈ Θ \Bδ(η0).

Therefore, with probability tending to one for d→∞, at least one of the local maxima of

`(d)(· | y) in the interior of Bδ(η0) has to be a global maximum of `(d)(· | y).

Next, we have to select a specific maximum point in a way that it is a measurable

mapping ({0, 1}d,Pow({0, 1}d))→ (Θ,B(Θ)), where Pow denotes the power set, to define a

sequence of random variables, which are statistics of the response variables.
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We write Θδ := Bδ(η0) ∩Θ ⊂ Θ for a restricted compact parameter space.2 Notice that

`(d)(· | y)
∣∣
Bδ(η0)

: (Θδ,B(Θδ))→ (R,B1)

is continuous for each fixed y ∈ {0, 1}d and

`(d)(η | ·) : ({0, 1}d,Pow({0, 1}d))→ (R,B1)

is measurable for each fixed η ∈ Θδ. Then by the remark of Witting and Müller-Funk (1995,

page 173)

({0, 1}d,Pow({0, 1}d))→ (R,B1), y 7→ sup
η∈Θδ

`(d)(η | y)

is a measurable mapping. Further, since Θδ is compact, for each y ∈ {0, 1}d the mapping

`(d)(· | y) takes the maximum over Θδ and we can select an η∗ ∈ Θδ such that

sup
η∈Θδ

`(d)(η | y) = `(d)(η∗ | y).

We may now apply Lemma W.3 to ensure the existence of a measurable mapping

η̃d : ({0, 1}d,Pow({0, 1}d))→ (Θ,B(Θ))

such that supη∈Θδ
`(d)(η | y) = `(d)(η̃d(y) | y) for all y ∈ {0, 1}d. This enables us to well define

the sequence {η̂d}d∈N of MLEs by setting

η̂d := η̃d(Y
(d)) (W13)

for each d ∈ N. By the previous part,

lim
d→∞

Pη0

({
∇`(d)(η̂d | Y(d)) = 000

}
∩
{
`(d)(η̂d | y) = sup

η∈Θ
`(d)(η | y)

})
= 1,

i.e., for d→∞, this probability is tending to one so that η̂d is a local maximum in Θδ and a

global maximum of `(d)( · | Y(d)) (and thus the maximum likelihood estimator (MLE)).

2If Θ is compact, we do not have to restrict Θ. Nevertheless, we do it for the simplicity of the formulation.

In fact, by Witting and Müller-Funk (1995, page 173), the following argument is in principle true even if Θ is

unbounded. But then the corresponding random variables can become infinte, which we want to avoid.
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It remains to prove the consistency. We assume that η̂d is the (restricted) MLE for

Y1, . . . , Yd, d ∈ N, given in (W13). Since it is the maximum of `(d)(· |Y(d))
∣∣
Bδ(η0)

we have

`(d)(η̂d |Y(d))− `(d)(η0 |Y(d)) = log

(
P (d)(Y(d) | η̂d)
P (d)(Y(d) |η0)

)
≥ 0. (W14)

Therefore, it is sufficient to proof for all ε > 0 and δ > 0 that there is an N(ε, δ) ∈ N such that

Pη0(‖η̂d − η0‖ < δ) > 1− ε, for all d > N(ε, δ). Suppose η̂d is not consistent, then there exists

ε0 > 0 and δ0 > 0 such that for any N ∈ N there exists some d > N satisfying

Pη0(‖η̂d − η0‖ > δ0) > ε0. Therefore, we can obtain a subsequence {η̂di}i∈N so that

Pη0(‖η̂di − η0‖ > δ0) > ε0, for all i ∈ N. This especially implies

ε0 ≤ lim sup
d→∞

Pη0(‖η̂d − η0‖ > δ0) ≤ Pη0(A0), (W15)

with

A0 :=
⋂
d∈N

⋃
m≥d

{
ω ∈ Ω

∣∣∣∣ ‖η̂m(ω)− η0‖ > δ0

}
,

since lim supd→∞ Pη0(Ed) ≤ Pη0(lim supd→∞Ed) for all sequences of events {Ed}d∈N. For all

ω ∈ A0 we get η̂d(ω) ∈ Θ\Bδ0(η0) for an infinite number of d ∈ N and this implies

sup
η∈Θ\Bδ0 (η0)

1

d

(
`(d)(η |Y(d))− `(d)(η̂d |Y(d))

)
≥ 0

for infinitely many d ∈ N. In particular, it holds

A0 ⊂
⋂
d∈N

⋃
m≥d

{
ω ∈ Ω

∣∣∣∣ sup
η∈Θ\Bδ0 (η0)

1

m

(
`(m)(η |Y(m)(ω))− `(m)(η̂m(ω) |Y(m)(ω))

)
≥ 0

}
.

Now, (W14) and (W15) imply

ε0 ≤ Pη0 (A1) (W16)

for the event

A1 :=
⋂
d∈N

⋃
m≥d

{
ω ∈ Ω

∣∣∣∣ sup
η∈Θ\Bδ0 (η0)

1

m

(
`(m)(η |Y(m)(ω))− `(m)(η0 |Y(m)(ω))

)
≥ 0

}
.

But, according to Lemma 1, there is a c = c(δ0) < 0 such that for the event

B :=
⋂
d∈N

⋃
m≥d

{
ω ∈ Ω

∣∣∣∣ sup
η∈Θ\Bδ0 (η0)

1

m

(
`(m)(η |Y(m)(ω))− `(m)(η0 |Y(m)(ω))

)
< c

}
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we get

1 = lim
d→∞

Pη0

(
sup

η∈Θ\Bδ0 (η0)

1

d

(
`(d)(η |Y(d))− `(d)(η0 |Y(d))

)
< c < 0

)

= lim sup
d→∞

Pη0

(
sup

η∈Θ\Bδ0 (η0)

1

d

(
`(d)(η |Y(d))− `(d)(η0 |Y(d))

)
< c < 0

)
(W17)

≤ Pη0 (B) ,

where we can replace ”≤” in the last step by ”=”. Notice that A1 ∩B = ∅, since

0 ≤ 1

d

(
`(d)(η |Y(d))− `(d)(η0 |Y(d))

)
≤ c < 0

is impossible. Combining (W16) and (W17) results in

1 ≥ Pη0(A1 ∪B) = Pη0(A1) + Pη0(B) ≥ ε0 + 1 > 1,

which is a contradiction and proves the consistency of the MLE.

For part (ii), we show that Lemma 1 is still valid if we replace ` with ˜̀. The remaining

steps are identical to the proof of part (i), simply replacing ` by ˜̀, its maximum η̂d by η̃d and

equation (W14) by

˜̀(d)(η̃d |Y(d))− ˜̀(d)(η0 |Y(d)) ≥ 0.

For any d ∈ N and δ > 0, we get

sup
η∈Θ\Bδ(η0)

1

d

(
˜̀(d)(η |Y(d))− ˜̀(d)(η0 |Y(d))

)
≤ sup

η∈Θ\Bδ(η0)

(
1

d

(
`(d)(η |Y(d))− `(d)(η0 |Y(d))

))
+ sup

η∈Θ\Bδ(η0)

(
1

d
(logW(η)− logW(η0))

)
≤ sup

η∈Θ\Bδ(η0)

(
1

d

(
`(d)(η |Y(d))− `(d)(η0 |Y(d))

))
+

1

d
(log(C1)− logW(η0)) .

(W18)

Clearly, for any C2 ∈ (0,∞) there is a D ∈ N such that

1

d
(log(C1)− logW(η0)) =

1

d
log

(
C1

W(η0)

)
< C2, (W19)
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for all d > D. Thus, we can apply Lemma 1 and conclude from (W18) and (W19) with

C2 := −k̃(δ) for k̃(δ) := k(δ)/2 with k(δ) from Lemma 1 for all δ > 0:

lim
d→∞

Pη0

(
sup

η∈Θ\Bδ(η0)

1

d

(
˜̀(d)(η |Y(d))− ˜̀(d)(η0 |Y(d))

)
< k̃(δ)

)
= 1.

Lemmas W.4 to W.6 that follow, are required for the proof of Lemma 2. We start with

the equicontinuity of the sequence of Hessians of λi, i ∈ N, and the sequence of item

information matrices Ii, i ∈ N.

Lemma W.4. Suppose that the conditions (CS2′) and (CS4′) hold. If restricted to any

convex and compact set K ⊆ Θ, the two families of mappings {∇∇ᵀλi}i∈N and {Ii}i∈N are

equicontinuous.

Proof. The proofs for {∇∇ᵀλi}i∈N and {Ii}i∈N can be formulated equivalently. Hence, let

F (i) either be Ii or ∇∇ᵀλi for all i ∈ N to simplify the notation. Further, we denote by F
(i)
jk

the (j, k)th component of F (i) for j, k = 1, . . . , q and all i ∈ N. Conditions (CS2′) and (CS4′)

imply that ∇F (i)
jk (η) exists for all j, k = 1, . . . , q, i ∈ N and η ∈ K, and that there is a C <∞

such that

sup


∣∣∣∣∣∣∂F

(i)
jk (η)

∂η`

∣∣∣∣∣∣ : j, k, ` = 1, . . . , q, i ∈ N, η ∈ K

 ≤ C. (W20)

Due to the multivariate mean value theorem and the convexity of K, for all η1,η2 ∈ K,

j, k = 1, . . . , q and i ∈ N, there is a c ∈ [0, 1] so that

F
(i)
jk (η1)− F (i)

jk (η2) = ∇F (i)
jk (η̃̃η̃η)ᵀ(η1 − η2),

where η̃̃η̃η = cη1 + (1− c)η2. Then, by the Cauchy–Schwarz–inequality and (W20), we get

|F (i)
jk (η1)− F (i)

jk (η2)| ≤ ‖∇F (i)
jk (η̃̃η̃η)‖ · ‖η1 − η2‖ ≤ C

√
q‖η1 − η2‖. (W21)

Notice that the right-hand side of (W21) is independent of i, j, k. We therefore obtain the

following estimate for the maximum-norm of F (i)(η1)− F (i)(η2)

‖F (i)(η1)− F (i)(η2)‖max := max
1≤j,k≤q

|F (i)
jk (η1)− F (i)

jk (η2)| ≤ C√q‖η1 − η2‖,
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for each i ∈ N. The equivalence of all norms on Rd×d implies that there is a C ′ > 0 so that

‖F (i)(η1)− F (i)(η2)‖ ≤ C ′‖F (i)(η1)− F (i)(η2)‖max ≤ C ′C
√
q‖η1 − η2‖

for all i ∈ N and all η1,η2 ∈ K. The final step is done analogously to (W2) in the proof of the

equicontinuity of the item response functions.

The next lemma is required for the approximation of the quadratic form of the Hessian of

the log-likelihood by the quadratic form of the test information matrix, Qd in Lemma 2. In

particular, this is used for the final step in the proof of Lemma 2 where the valid quadratic

approximation of the log-likelihood-ratio using the test information matrix is shown.

Lemma W.5. Let AAA ∈ Rq×q be symmetric and positive definite, xxx ∈ Rq and BBB ∈ Rq×q for

q ∈ N. Then

|xxxᵀAAABBBxxx| ≤

√
νmax(AAA)

νmin(AAA)
‖BBB‖xxxᵀAAAxxx,

where ‖BBB‖ denotes the spectral norm of the matrix BBB.

Proof. We first observe that

xxxᵀAAAxxx ≥ νmin(AAA)‖xxx‖2, (W22)

due to the Courant-Fischer theorem.

Since AAA is symmetric and positive definite, we can define a scalar product and a norm by

setting

〈vvv,www〉AAA := vvvᵀAAAwww, and ‖vvv‖AAA :=
√
〈vvv,vvv〉AAA, vvv,www ∈ Rq.

Additionally, we define the matrix norm

‖VVV ‖AAA := sup
vvv∈Rq\{000}

‖VVV vvv‖AAA
‖vvv‖AAA

, VVV ∈ Rq×q. (W23)

Since each symmetric and positive definite matrix has a unique symmetric and positive

definite square root matrix, we get ‖VVV vvv‖AAA = ‖AAA1/2VVV vvv‖. The induced matrix norm is always

compatible to the corresponding vector norm and hence we get from the sub-multiplicativity

‖VVV vvv‖AAA ≤ ‖AAA1/2‖ · ‖VVV vvv‖ = νmax(AAA1/2)‖VVV vvv‖ = ν1/2
max(AAA)‖VVV vvv‖. (W24)
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Applying (W22) and (W24) to (W23), we get an estimate for an upper bound

‖VVV ‖AAA ≤ sup
vvv∈Rq\{000}

ν
1/2
max(AAA)‖VVV vvv‖
ν

1/2
min(AAA)‖vvv‖

=

√
νmax(AAA)

νmin(AAA)
‖VVV ‖.

Finally, by the Cauchy-Schwarz’s inequality and the sub-multiplicativity of compatible matrix

norms we obtain

〈xxx,BBBxxx〉2AAA ≤ ‖xxx‖2AAA ‖BBBxxx‖2AAA ≤ ‖BBB‖2AAA‖xxx‖4AAA ≤
νmax(AAA)

νmin(AAA)
‖BBB‖2 〈xxx,xxx〉2AAA.

This is equivalent to

⇔ |〈xxx,BBBxxx〉AAA| ≤

√
νmax(AAA)

νmin(AAA)
‖BBB‖ 〈xxx,xxx〉AAA,

which completes the proof.

Next, we prove that conditions (CS2′) and (CS5′) ensure the asymptotic regularity of

d−1I(d)(η) at each η ∈ Θ, result that is later used to ensure the existence of dI(d)(η̂d)
−1,

where η̂d denotes the MLE of η based on Y(d).

Lemma W.6. Suppose that conditions (CS2′) and (CS5′) hold. Then

lim inf
d→∞

νmin

(
1

d
I(d)(η)

)
> 0

for all η ∈ Θ.

Proof. First, consider symmetric positive semi–definite matrices AAA1,AAA2, such that

AAA := AAA1 +AAA2 is positive definite. Assume that c1, c2 are positive constants and without loss of

generality consider that c2 ≥ c1. We set BBB := c1AAA1 + c2AAA2. Then the Courant-Fischer theorem

implies

νmin(BBB) = min
xxx : ‖xxx‖6=0

xxxᵀBBBxxx

xxxᵀxxx
= min

xxx : ‖xxx‖6=0

xxxᵀ
(
c1AAA+ (c2 − c1)AAA2

)
xxx

xxxᵀxxx

= min
xxx : ‖xxx‖6=0

c1xxx
ᵀAAAxxx+ (c2 − c1)xxxᵀAAA2xxx

xxxᵀxxx

≥ min
xxx : ‖xxx‖6=0

c1xxx
ᵀAAAxxx

xxxᵀxxx
= c1νmin(AAA) > 0.

This generalizes directly to finite sums. Now consider an arbitrary η ∈ Θ. Condition (CS5′)

implies that there is a c > 0 and D ∈ N such that

νmin

(
1

d

d∑
i=1

∇λi(η)∇ᵀλi(η)

)
> c
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for all d > D. Additionally, condition (CS2′) implies that there is a c′ > 0 so that

inf
i∈N

Pi(η)
(
1− Pi(η)

)
> c′.

Thus, we get νmin

(
1
dI

(d)(η)
)
> c · c′ for all d > D and consequently

lim inf
d→∞

νmin

(
1

d
I(d)(η)

)
≥ c · c′ > 0.

We are now able to prove Lemmas 2 and 3, provided in the appendix of the paper.

Proof of Lemma 2. This proof is based on arguments by Chang and Stout (1991, Lemma

3.2).

We get the first part directly by using a second order Taylor expansion of `(d)(· |Y(d)) at

η̂d, since ∇`(d)(η̂d |Y(d)) = 000. Theorem 5 (i) implies that for each ε > 0 and δ > 0 there is an

N(ε, δ) ∈ N such that Pη0(η̂d ∈ Bδ(η0)) > 1− ε for all d > N(ε, δ). Therefore, we assume

without loss of generality that ‖η̂d − η0‖ ≤ δ for the discussed d and δ. Further, due to

Lemma W.6, there is an N ∈ N so that

inf
η∈Bδ(η0)

νmin

(
1

d
Id(η)

)
> 0,

for all d > N . Notice that ‖A−1‖ = 1/νmin(A) holds for the selected matrix norm (i.e. the

spectral norm) for all A ∈ Rq×q with det(A) 6= 0. Therefore, we assume without restriction

that 1
dId(η̂d) is regular and that there is a constant C0 > 0 (which is independent of d) such

that ∥∥∥∥(1

d
Id(η̂d)

)−1∥∥∥∥ ≤ 1

C0
, (W25)

for d > N .

Using the sub-multiplicative property of matrix norms and (W25), we get

‖Rd(η)‖ =

∥∥∥∥(1

d
Id(η̂d)

)−1 1

d
(Id(η̂d) +∇∇ᵀ`(d)(η∗d |Y(d)))

∥∥∥∥
≤
∥∥∥∥(1

d
Id(η̂d)

)−1∥∥∥∥ · ∥∥∥∥1

d
(Id(η̂d) +∇∇ᵀ`(d)(η∗d |Y(d)))

∥∥∥∥
≤ 1

C0

∥∥∥∥1

d
(Id(η̂d) +∇∇ᵀ`(d)(η∗d |Y(d)))

∥∥∥∥.
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We now study a decomposition of ‖1
d(Id(η̂d) +Hd(η

∗
d))‖ in order to prove (A4). Notice first

that

∇∇ᵀ`(d)(η |Y(d)) =

d∑
i=1

∇∇ᵀλi(η)(Yi − Pi(η))− I(d)(η)

for all η ∈ Θ. The triangle inequality next implies

C0‖Rd(η)‖ ≤
∥∥∥∥1

d

(
Id(η̂d) +∇∇ᵀ`(d)(η∗d |Y(d))

)∥∥∥∥
=

∥∥∥∥1

d

d∑
i=1

∇∇ᵀλi(η
∗
d)(Yi − Pi(η∗d))−

1

d
I(d)(η∗d) +

1

d
I(d)(η̂d)

∥∥∥∥
=

∥∥∥∥1

d

d∑
i=1

(
∇∇ᵀλi(η

∗
d)−∇∇ᵀλi(η0) +∇∇ᵀλi(η0)

)
×
(
Yi − Pi(η∗d)− Pi(η0) + Pi(η0)

)
− 1

d
I(d)(η∗d) +

1

d
I(d)(η̂d)

∥∥∥∥
=

∥∥∥∥1

d

d∑
i=1

∇∇ᵀλi(η0)(Yi − Pi(η0)) +
1

d

d∑
i=1

∇∇ᵀλi(η0)(Pi(η0)− Pi(η∗d))

+
1

d

d∑
i=1

(
∇∇ᵀλi(η

∗
d)−∇∇ᵀλi(η0)

)
(Yi − Pi(η∗d)) +

1

d

(
− I(d)(η∗d) + I(d)(η̂d)

)∥∥∥∥
≤
∥∥∥∥1

d

d∑
i=1

∇∇ᵀλi(η0)(Yi − Pi(η0))

∥∥∥∥+
1

d

d∑
i=1

∥∥∥∥∇∇ᵀλi(η0)(Pi(η0)− Pi(η∗d))
∥∥∥∥

+
1

d

d∑
i=1

∥∥∥∥(∇∇ᵀλi(η
∗
d)−∇∇ᵀλi(η0)

)
(Yi − Pi(η∗d))

∥∥∥∥ (W26)

+
1

d

d∑
i=1

∥∥∥∥− Ii(η∗d) + Ii(η̂d)
∥∥∥∥.

Since Yi ∈ {0, 1}, Pi ∈ (0, 1), i ∈ N, and due to Lemma W.4, there are constants C1, C2 > 0

such that

‖ − Ii(η∗d) + Ii(η̂d)‖ ≤ C1‖η∗d − η̂d‖, (W27)

and

‖(∇∇ᵀλi(η
∗
d)−∇∇ᵀλi(η0))(Yi − Pi(η∗d))‖ ≤ ‖∇∇ᵀλi(η

∗
d)−∇∇ᵀλi(η0)‖

≤ C2‖η∗d − η0‖, (W28)

for i ∈ N. Further, due to (CS2′), the norm-equivalence and Lemma W.1, there are constants
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C4, C5 > 0 such that

‖∇∇ᵀλi(η0)(Pi(η0)− Pi(η∗d))‖ ≤ C4‖∇∇ᵀλi(η0)(Pi(η0)− Pi(η∗d))‖max

≤ C4‖C3111q×q(Pi(η0)− Pi(η∗d))‖max

≤ C3C4|Pi(η0)− Pi(η∗d)|

≤ C3C4C5‖η0 − η∗d‖ (W29)

for all i ∈ N with the maximum-norm ‖ · ‖max, the q × q matrix matrix of ones 111q×q and

C3 := sup
(i,j,k,η)∈N×{1,...,q}2×Bδ(η0)

∣∣∣∣∂2λi(η)

∂ηj∂ηk

∣∣∣∣.
Next, for each (j, k) ∈ {1, . . . , q}2 and i ∈ N we get

Eη0

(
∂2λi(η0)

∂ηj∂ηk
Yi

)
=
∂2λi(η0)

∂ηj∂ηk
Pi(η0)

and

Varη0

(
∂2λi(η0)

∂ηj∂ηk
Yi

)
≤ C2

3Varη0(Yi) = C2
3Pi(η0)(1− Pi(η0)) ≤ C2

3

4
.

Therefore,

∞∑
i=1

Var

(
∂2λi(η0)
∂ηj∂ηk

Yi

)
i2

≤ C2
3π

2

24
<∞.

By applying Theorem W.1, we obtain

1

d

d∑
i=1

(
∂2λi(η0)

∂ηj∂ηk
(Yi − Pi(η0))

)
Pη0 -a.s.
−→ 0.

Especially, each component of 1
d

∑d
i=1∇∇ᵀλi(η0)(Yi − Pi(η0)) is almost surely converging to

zero and hence ∥∥∥∥1

d

d∑
i=1

∇∇ᵀλi(η0)(Yi − Pi(η0))

∥∥∥∥ Pη0 -a.s.
−→ 0. (W30)

Combining (W26) to (W30), it follows that

‖Rd(η)‖ ≤
oPη0

(1) + 1
d

∑d
i=1(C2 + C3C4C5)‖η0 − η∗d‖+ 1

d

∑d
i=1C1‖η∗d − η̂d‖

C0

=
C2 + C3C4C5

C0
‖η0 − η∗d‖+

C1

C0
‖η∗d − η0 + η0 − η̂d‖+ oPη0

(1)

≤ C2 + C3C4C5

C0
‖η0 − η∗d‖+

C1

C0
(‖η∗d − η0‖+ ‖η0 − η̂d‖) + oPη0

(1),
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where

‖η∗d − η0‖ ≤ max(‖η̂d − η0‖, ‖η − η0‖) ≤ ‖η̂d − η0‖+ ‖η − η0‖,

since η∗d ∈ {aη̂d + (1− a)η : a ∈ [0, 1]}. For any ε > 0 and d sufficiently large, we can set

δ =
C0

2C1 + C2 + C3C4C5

ε

2

to obtain the second part of Lemma 2.

Finally, we shall prove its third part. By assumption, Id(η̂d) is always symmetric and for

d > N positive definite. Now, let d > N be fixed, then

− 1

2
(η − η̂d)

ᵀId(η̂d)(Iq −Rd(η))(η − η̂d) = Qd(η) +
1

2
(η − η̂d)

ᵀId(η̂d)Rd(η)(η − η̂d).

Therefore, it is sufficient to show that for each ε > 0, it exists a δ > 0 such that

lim
d→∞

Pη0

(∣∣(η − η̂d)
ᵀId(η̂d)Rd(η)(η − η̂d)

∣∣ ≤ −2εQd(η)

)
= 1,

for all η ∈ Bδ(η0). Using Lemma W.5 with AAA = Id(η̂d), BBB = Rd(η) and xxx = η − η̂d, we get∣∣∣∣∣12(η − η̂d)
ᵀId(η̂d)Rd(η)(η − η̂d)

∣∣∣∣∣ ≤ −
√
νmax(Id(η̂d))
νmin(Id(η̂d))

‖Rd(η)‖Qd(η).

By assumption (CS5’) and the consistency of the MLE η̂d, there is a constant C ′1 > 0 such that

Pη0

(
lim sup
d→∞

√
νmax(Id(η̂d))
νmin(Id(η̂d))

≤ C ′1
)

= Pη0

(
lim sup
d→∞

√
νmax(1/d · Id(η̂d))
νmin(1/d · Id(η̂d))

≤ C ′1
)

= 1.

We complete the proof by applying the second part with ε = ε1/C
′
1 for an arbitrary ε1 > 0.

Proof of Lemma 3. This proof is partially based on arguments by Chang and Stout (1991,

Theorem 3.1).

1. Note that ∫
Rq\Bδ(η0) f(η)P (d)(Y(d) | η)h(η) dη

P (d)(Y(d) | η̂d) det(Σ̂
1/2
d )

= exp

(
`(d)(η0 |Y(d))− `(d)(η̂d |Y(d))

)
Td

det
(
Σ̂

1/2
d

) , (W31)

where

Td :=

∫
Rq\Bδ(η0)

f(η) exp

(
`(d)(η |Y(d))− `(d)(η0 |Y(d))

)
h(η) dη. (W32)
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Since η̂d is a maximum of `(d)( · |Y(d)), it always holds

exp

(
`(d)(η0 |Y(d))− `(d)(η̂d |Y(d))

)
≤ 1

and therefore ∣∣∣∣∣∣
∫
Rq\Bδ(η0) f(η)P (d)(Y(d) | η)h(η) dη

P (d)(Y(d) | η̂d) det
(
Σ̂

1/2
d

)
∣∣∣∣∣∣ ≤

∣∣∣∣∣ Td

det
(
Σ̂

1/2
d

)
∣∣∣∣∣ .

Condition (CS2’) implies that all eigenvalues νi(d
−1I(d)(η)), i = 1, . . . , q, of d−1I(d)(η) are

bounded for all η in an arbitrary compact subset of Θ and all d ∈ N. Utilizing this fact and by

the consistency of η̂d for d→∞, we get

det

(
Σ̂

1/2
d

)−1

=

√
det

(
Σ̂−1
d

)
=

√√√√dq det

(
1

d
I(d)(η̂d)

)

= dq/2

√√√√ q∏
i=1

νi

(
1

d
I(d)(η̂d)

)
= OPη0

(
dq/2

)
. (W33)

First, suppose that H is improper in a way that the posterior is proper and that equation (28)

of the paper’s discussion is satisfied. Further suppose that there is a constant Cf > 0 in such a

way that |f(η)| < Cf for all η ∈ Θ, i.e. f is bounded by a constant in absolute value. Then we

get from the definition of Td in (W32) and from (28)

|Td| ≤ Cf

∫
Rq\Bδ(η0) P

(d)(Y(d) | η)h(η) dη

P (d)(Y(d) | η0)
= oPη0

(
d−q/2

)
. (W34)

Combining (W33) and (W34)

directly implies ∣∣∣∣∣ Td

det
(
Σ̂

1/2
d

)
∣∣∣∣∣ = oPη0

(1).

Otherwise, one of the following cases holds by the conditions of Lemma 3(1.):

(i) f is bounded by a constant in absolute value and H is proper,

(ii) f is H-integrable and H is proper,

(iii) f is H-integrable and H is improper.
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Each of these cases results in the fact that f is H-integrable and hence E(|f ◦ η|) <∞.

Lemma 1 implies that there is a c(δ) < 0 such that

lim
d→∞

Pη0

(
sup

η∈Θ\Bδ(η0)

1

d

(
`(d)(η |Y(d))− `(d)(η0 |Y(d))

)
< c(δ)

)
= 1. (W35)

Further, ∣∣∣∣ ∫
Rq\Bδ(η0)

f(η) exp(dc(δ))h(η) dη

∣∣∣∣ = exp(dc(δ))

∣∣∣∣ ∫
Rq\Bδ(η0)

f(η)h(η) dη

∣∣∣∣
≤ exp(dc(δ))

∫
Rq\Bδ(η0)

∣∣f(η)
∣∣h(η) dη

≤ exp(dc(δ))E(|f ◦ η|). (W36)

Combining (W35) and (W36) results in

lim
d→∞

Pη0

(
|Td| ≤ exp(dc(δ))E(|f ◦ η|)

)
= 1.

The facts that d 7→ exp(dc(δ)) is decreasing faster than any polynomial and that det
(
Σ̂

1/2
d

)−1

grows in polynomial order, due to (W33), imply

E(|f ◦ η|) exp(dc(δ))

det
(
Σ̂

1/2
d

) Pη0−→ 0,

which completes the proof of the first part.

2. Let B ∈ Bq be an arbitrary bounded Borel set and define for δ > 0 and d ∈ N the set

Mδ,d := Bδ(η0) ∩Gd(B)

and the integral

Vd :=

∫
Mδ,d

P (d)(Y(d) |η)h(η) dη.

By the definition of Rd(η) in Lemma 2, we get

Vd

P (d)(Y(d) | η̂d) det
(
Σ̂

1/2
d

)
=

h(η0)

det
(
Σ̂

1/2
d

) ∫
Mδ,d

h(η)

h(η0)
exp

(
− 1

2
(η − η̂d)

ᵀId(η̂d)(I−Rd(η))(η − η̂d)

)
dη.

(W37)

From (CS1′), i.e. the continuity of h and h(η0) > 0, follows that for every ε1 > 0, there is a

δ1 > 0 such that

1− ε1 ≤ inf
η∈Bδ1 (η0)

h(η)

h(η0)
≤ inf

η∈Mδ1,d

h(η)

h(η0)
≤ sup

η∈Mδ1,d

h(η)

h(η0)
≤ sup

η∈Bδ1 (η0)

h(η)

h(η0)
≤ 1 + ε1. (W38)
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Furthermore, for any ε2 > 0 and appropriate δ2 = δ2(ε2) > 0, we get from Lemma 2 that

(1− oPη0
(1))

∫
Mδ2,d

h(η)

h(η0)
exp

(
− 1 + ε2

2
(η − η̂d)

ᵀId(η̂d)(η − η̂d)

)
dη

≤
∫
Mδ2,d

h(η)

h(η0)
exp

(
− 1

2
(η − η̂d)

ᵀId(η̂d)(I−Rd(η∗d))(η − η̂d)

)
dη (W39)

≤ (1 + oPη0
(1))

∫
Mδ2,d

h(η)

h(η0)
exp

(
− 1− ε2

2
(η − η̂d)

ᵀId(η̂d)(η − η̂d)

)
dη.

Next, the transformation theorem, (W38) and (W39) imply

Φ̃q

(√
1 + ε2Id(η̂d)1/2

(
Mδ2,d − η̂d

))
h(η0)(2π)q/2

1− ε1

(1 + ε2)q/2
(
1− oPη0

(1)
)

≤ Vd

P (d)(Y(d) | η̂d) det
(
Σ̂

1/2
d

) (W40)

≤ Φ̃q

(√
1− ε2Id(η̂d)1/2

(
Mδ2,d − η̂d

))
h(η0)(2π)q/2

1 + ε1

(1− ε2)q/2
(
1 + oPη0

(1)
)
.

In the case of (A6), it holds that limd→∞ Pη0

(
Gd(B) = Mδ2,d

)
= 1. Selecting ε1 and ε2

arbitrarily small leads to∫
Gd(B) P

(d)(Y(d) | η)h(η) dη

P (d)(Y(d) | η̂d) det(Σ̂
1/2
d )

= Φ̃q(Id(η̂d)1/2(Gd(B)− η̂d))h(η0)(2π)q/2 + oPη0
(1).

In the case of (A7), we get for each δ2 < δ: limd→∞ Pη0

(
Bδ2(η0) = Mδ2,d

)
= 1. Condition

(CS5′) implies that3

√
1 + ε2Id(η̂d)1/2

(
Bδ2(η0)− η̂d

) Pη0−→ Rd,

which leads to

Φ̃q

(√
1 + ε2Id(η̂d)1/2

(
Bδ2(η0)− η̂d

)) Pη0−→ 1.

Finally, the further valid selection of arbitrarily small ε1, ε2 > 0 in (W40) and the application

of the Lemma 3 (1.) to f = 11Gd(B)\Bδ2 (η0) completes the proof.

Lemma 3 (2.) and a utilization of the continuous mapping theorem with R \ {0} → R,

x 7→ x−1 directly imply Corollary 1 by setting Gd(B) := Rq, d ∈ N. Now we have

accomplished all required preliminary steps in order to prove Theorem 5 (iii) and Theorem 7.

3This convergence is defined as follows: Let {Ad}d∈N be a sequence of random sets with Ad ⊂ Rq. Then we say

Ad
Pη0−→ Rq, if for every ε > 0 and every compact K ⊂ Rq, there exists an N ∈ N such that Pη0

(
K ⊂ Ad

)
> 1− ε,

for all d > N .
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Proof of Theorem 5 (iii). This proof is partially based on arguments by Chang and Stout

(1991, Theorems 3.1 and 3.3).

We start with the proof for the convergence in Pη0 with restriction to bounded B. In the

following step, this will then be extended to unbounded B and, finally, the convergence in P

will be proved. Analogously to the proof of Lemma 2, we can assume without loss of

generality that I(d)(η̂d)
−1/2 exists. Set

Gd(B) :=

{
Σ̂

1/2
d xxx+ η̂d : xxx ∈ B

}
≡ I(d)(η̂d)

−1/2B + η̂d, B ∈ Bq, d ∈ N. (W41)

To show Theorem 5 (iii) for bounded B we utilize the reformulation

P
(
I(d)(η̂d)

1/2 (η − η̂d) ∈ B
∣∣∣ Y(d)

)
=

∫
Gd(B) P

(d)(Y(d) |η)h(η) dη

P (d)(Y(d) | η̂d) det
(
Σ̂

1/2
d

) ( P (Y(d))

P (d)(Y(d) | η̂d) det
(
Σ̂

1/2
d

))−1 (W42)

for each d ∈ N. Since ‖η̂d − η0‖
Pη0−→ 0, from (CS5′) and the fact that ‖AAA−1‖ = 1/νmin(AAA) for

any regular symmetric matrix AAA, we get that

∥∥Σ̂d∥∥ =
∥∥I(d)(η̂d)

−1
∥∥ =

1

d

∥∥∥∥(1

d
I(d)(η̂d)

)−1∥∥∥∥ = OPη0

(
1

d

)
.

This implies
∥∥Σ̂d∥∥ Pη0−→ 0 and especially Σ̂d

Pη0−→ 000. Hence, for each δ2 > 0 and ε > 0, there is an

N ∈ N such that Pη0(Gd(B) ⊂ Bδ2(η0)) > 1− ε for all d > N , i.e. condition (A6) of Lemma 3

(2.) is satisfied, where Gd is defined in (W41). We can therefore apply Lemma 3 (2.) and get∫
Gd(B) P

(d)(Y(d) |η)h(η) dη

P (d)(Y(d) | η̂d) det
(
Σ̂

1/2
d

) Pη0−→ Φ̃q(Id(η̂d)1/2(Gd(B)− η̂d))h(η0)(2π)q/2, (W43)

for d→∞. Further, from the definition of Gd, we get

Id(η̂d)1/2
(
Gd(B)− η̂d

)
= Id(η̂d)1/2

(
Id(η̂d)−1/2B + η̂d − η̂d

)
= B. (W44)

Combining (W42), (W43), (W44) and Corollary 1 results in Theorem 5 (iii) for bounded B

and convergence in Pη0 , i.e. (26) for bounded B.

Next, we show the case of unbounded B ∈ Bq. In order to show this, we define the

sequence of random probability measures {Ψd}d∈N on (Rq,Bq) by setting

Ψd(A) :=

∫
A
|det(Id(η̂d)1/2)|h(G−1

d (η) |Y(d)) dη, A ∈ Bq, d ∈ N.
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Due to the transformation theorem,

Ψd(A) =

∫
Gd(A)

h(η |Y(d)) dη

holds for all d ∈ N and A ∈ Bq. Notice that Ψd is the posterior probability distribution of the

affine transformation G−1
d (η) of η given Y(d). So, Ψd(A) is well-defined and finite for each

Borel set A ∈ Bq and d ∈ N.

Now, let B be an unbounded Borel set, then it is always possible to decompose it into a

sequence {Bm}m∈N with Bm bounded,
⋃
m∈NBm = B and Bm ∩BM = ∅ for all m,M ∈ N

with m 6= M . From the definition of convergence in probability and the proof for the case of

bounded B given above, we get

lim
d→∞

Pη0(|Ψd(Bm)− Φ̃q(Bm)| < ε) = 1, for all m ∈ N, (W45)

for any ε > 0. Especially, (W45) also holds for ε = 6ε′

π2m2 with ε′ > 0. Since the probability of

each of these events is tending to one, this is also true for the (countable) intersection of these

events. Thus, we get

|Ψd(B)− Φ̃q(B)| =
∣∣∣∣ ∑
m∈N

(
Ψd(Bm)− Φ̃q(Bm)

)∣∣∣∣ ≤∑
m∈N

∣∣∣∣Ψd(Bm)− Φ̃q(Bm)

∣∣∣∣
<
∑
m∈N

6ε′

π2m2
= ε′,

with probability tending to one for d→∞ for any ε′ > 0 and this completes the proof of (26).

For the convergence in P, let B ∈ Bq be chosen arbitrarily. We define

Hd,ε(η
′) := P

(∣∣∣Ψd(B)− Φ̃q(B)
∣∣∣ > ε

∣∣∣∣∣η0 = η′

)

for all d ∈ N, ε > 0 and η′ ∈ Θ, where φq is the pdf of Nq(000, Iq). Notice that 0 ≤ Hd,ε ≤ 1 is

true for all d ∈ N and ε > 0. Hence, for each ε > 0, η 7→ 1 dominates the sequence {Hd,ε}d∈N,

while η 7→ 1 is always G-integrable for a proper G. An application of Lebesgue’s theorem of

dominated convergence to {Hd,ε}d∈N results in

lim
d→∞

P

(∣∣∣Ψd(B)− Φ̃q(B)
∣∣∣ > ε

)
= lim

d→∞

∫
Θ
Hd,ε dG =

∫
Θ

lim
d→∞

Hd,ε dG = 0, (W46)

since limd→∞Hd,ε(η0, ε) = 0 for all ε > 0 and η0 ∈ Rq, due to (26), and this finishes the proof.
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Proof of Theorem 6. We first prove part (i). Similar to (W42), we utilize the

reformulation

H(B|Y(d)) =

∫
B P

(d)(Y(d) | η)h(η) dη

P (d)(Y(d) | η̂d) det
(
Σ̂

1/2
d

)( P (Y(d))

P (d)(Y(d) | η̂d) det
(
Σ̂

1/2
d

))−1

(W47)

for an arbitrary B ∈ Bq with η0 6∈ ∂B and each d ∈ N. If η0 ∈ B, then condition (A7) of

Lemma 3 (2.) is satisfied with Gd(B) := B for all d ∈ N. However, if η0 6∈ B, then the

condition of Lemma 3 (1.) is satisfied with f := 11B. We therefore get∫
B P

(d)(Y(d) | η)h(η) dη

P (d)(Y(d) | η̂d) det
(
Σ̂

1/2
d

) Pη0−→ h(η0)(2π)q/211B(η0), (W48)

for d→∞. The claim follows from a combination of (W47), (W48) and Corollary 1.

Next, we prove part (ii). In a first step, the existence of E(f(η) | Y(d)) for all functions

f : Θ→ R, which are continuous and for which the integral
∫

Θ f(η)h(η) dη exists, will be

proved. In a second step its consistency for f(η0) will be discussed.

We get∫
Θ
|f(η)|H(dη | y(d)) =

∫
Θ |f(η)|P (d)(y(d) | η)h(η) dη

P (d)(y(d))
≤
∫

Θ |f(η)|h(η) dη

P (d)(y(d))
<∞,

for each d ∈ N and for all y(d) ∈ {0, 1}d, because P (d)(y(d) | η) ∈ (0, 1), P (d)(y(d)) is positive

and independent of η ∈ Θ, and
∫

Θ |f(η)|h(η) dη exists if and only if
∫

Θ f(η)h(η) dη exists.

Hence, E(f(η) | Y(d)) exists. Furthermore, it remains integrable for d→∞, as shown next.

Notice that the last statement does not follow directly, because P (d)(y(d))→ 0 for any

sequence {yi}i∈N and d→∞.

Similar to (W42), we start with the representation∫
Θ
|f(η)|H(dη | Y(d))

=

∫
Θ |f(η)|P (d)(Y(d) | η)h(η) dη

P (d)(Y(d) | η̂d) det(Σ̂d)1/2

(
P (d)(Y(d))

P (d)(Y(d) | η̂d) det
(
Σ̂d
)1/2

)−1

,

(W49)

for each d ∈ N. We decompose for an arbitrary δ > 0 as follows∫
Θ
|f(η)|P (d)(Y(d) | η)h(η) dη =

∫
Bδ(η0)

|f(η)|P (d)(Y(d) | η)h(η) dη

+

∫
Θ\Bδ(η0)

|f(η)|P (d)(Y(d) | η)h(η) dη.



Psychometrika Web-Appendix © 2022 M. J. K. Kornely, M. Kateri 24

Due to the integrability of f with respect to H, Lemma 3 (1.) implies∫
Θ\Bδ(η0) |f(η)|P (d)(Y(d) | η)h(η) dη

P (d)(Y(d) | η̂d) det(Σ̂)1/2

Pη0−→ 0, d→∞. (W50)

Since f is continuous, we get

sup
η∈Bδ(η0)

|f(η)| =: C1 <∞. (W51)

Hence, ∫
Bδ(η0)

|f(η)|P (d)(Y(d) | η)h(η) dη ≤ C1

∫
Bδ(η0)

P (d)(Y(d) | η)h(η) dη. (W52)

An application of Lemma 3 (2.) on the right-hand side results in

C1

∫
Bδ(η0) P

(d)(Y(d) | η)h(η) dη

P (d)(Y(d) | η̂d) det
(
Σ̂d
)1/2 Pη0−→ C1h(η0)(2π)q/2, (W53)

because Gd(B) := Bδ(η0), d ∈ N, satisfies (A7). By summing up (W49)–(W53) and applying

Corollary 1 to the second factor on the right-hand side of (W49) we obtain

lim
d→∞

Pη0

(∫
Θ
|f(η)|H(dη | Y(d)) < C1

)
= 1.

Next, we compute the value of E(f ◦ η | Y(d)) for d→∞. Since H( · | Y(d)) is always a

probability measure, for every δ > 0 it holds∣∣∣∣∣
∫

Θ
f(η)H(dη | Y(d))− f(η0)

∣∣∣∣∣ =

∣∣∣∣∣
∫

Θ
f(η)H(dη | Y(d))− f(η0)H( Θ | Y(d))

∣∣∣∣∣
=

∣∣∣∣∣
∫
Bδ(η0)

(
f(η)− f(η0)

)
H(dη | Y(d))

+

∫
Θ\Bδ(η0)

f(η)H(dη | Y(d))− f(η0)H( Θ \Bδ(η0) | Y(d))

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Bδ(η0)

(
f(η)− f(η0)

)
H(dη | Y(d))

∣∣∣∣∣+

∣∣∣∣∣
∫

Θ\Bδ(η0)
f(η)H(dη | Y(d))

∣∣∣∣∣
+ |f(η0)| · H( Θ \Bδ(η0) | Y(d)).

Using a similar representation to (W49) and applying (W50) and Corollary 1 to it, leads to∣∣∣∣∣
∫

Θ\Bδ(η0)
f(η)H(dη | Y(d))

∣∣∣∣∣ Pη0−→ 0 for d→∞.
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Further, part (i) implies

|f(η0)| · H( Θ \Bδ(η0) | Y(d))
Pη0−→ 0 for d→∞.

Finally, since f is continuous at η0, for each ε > 0 there is a δ′ > 0 such that

|f(η)− f(η0)| < ε, for all η ∈ Bδ′(η). Therefore, for every ε > 0 we get∣∣∣∣∣
∫
Bδ′ (η0)

(
f(η)− f(η0)

)
H(dη | Y(d))

∣∣∣∣∣ ≤
∫
Bδ′ (η0)

∣∣f(η)− f(η0)
∣∣H(dη | Y(d))

≤ ε · H(Bδ′(η0) | Y(d)) ≤ ε.

Since δ > 0 was chosen arbitrarily in the decomposition of Θ, we get for each ε > 0

lim
d→∞

Pη0

(∣∣E(f ◦ η | Y(d))− f(η0)
∣∣ > ε

)
= 1− lim

d→∞
Pη0

(∣∣E(f ◦ η | Y(d))− f(η0)
∣∣ ≤ ε)

= 0,

which is what we had to show for the consistency of E(f(η) | Y(d)). The consistency of

E(η | Y(d)) follows directly by considering the mappings η 7→ ηj , j ∈ {1, . . . , q}, in the first

part, which are continuous and by assumption integrable.
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