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Oxytocin preparation and administration: 

A commercially available oxytocin was purchased for the study (Victoria pharmaceuticals, Zurich, 

Switzerland). A single investigator handed the bottles to participants and supervised the 

administration. Oxytocin or 0.9% saline were prepared and placed in the bottle. The bottles were 

identical looking and were not labeled to preserve blinding. The investigator supervising (AJ) the 

administration was present with the subject during the administration. The participants were asked to be 

seated in the head upright position. Participants were asked to clean the nose before administration and all 

those with nasal congestion were excluded. After a test spray, the participants inserted the spray bottle tip 

into the nose and self-administered 3 puffs per nostril (4 IU of oxytocin/puff for a total dose of 24 IU). 

The puffs were alternated between nostrils so that an interval is given between puffs in the same nostril. 

The order of administration of oxytocin and placebo  

 
  



Figure S1- overview of the study design 
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Description of Effective Connectivity Analysis: 
 
Whole-brain effective connectivity (EC) was obtained using Granger causality. Granger causality is an 

exploratory technique used to quantify directional influences between brain regions. The underlying 

concept is that, if past values of a timeseries ‘T1’ can, in a mathematical sense, predict the future values 

of another timeseries ‘T2’ then a causal influence from timeseries T1 to timeseries T2 is inferred 

[Granger, 1969]. Granger causality employs a multivariate vector autoregressive (MVAR) model to 

quantitatively predict one timeseries using the other, which is briefly described next.  

Given a system defined by k different timeseries X(t) = [x1(t), x2(t), ... xk(t)], with k being 90 ROIs in 

this study, the traditional MVAR model of order p is given by: 

X(t) = A(1)X(t-1) + X(2)X(t-2) + … A(p)X(t-p) + E(T)                      -----(1) 

Where E(t) is the model error and A(1) ... A(p) are the model coefficients. The coefficients were 

estimated through multivariate least squares estimation, which calculates the optimal set of coefficients 

that minimizes the model error in the least squares sense. Model order p must be chosen either by 

employing a mathematical principle such as the Bayesian Information Criterion (BIC) [1] or based on 

the requirements of the application under consideration. In neuroimaging, the interest is in causal 

relationships within neural delays of a TR [2], thus we chose a first order model. Since fMRI’s temporal 

resolution is low, a first order model is shown to capture the most relevant causal information [2]. 

Coefficient A(p) indicates the degree to which the past X(t-p) can predict the present X(t). Then, the 

sum of coefficients of all delays would represent the degree to which all the past values together can 

predict the present. This formulation is used to evaluate Granger causality by predicting the present 

value of timeseries-2 (T2) using the past values of timeseries-1 (T1). If, for example, the sum of the 

resulting model coefficients is large, then it implies that T1 can predict T2 very well. If T1’s past can 

predict T2’s present, then that implies a causal relationship from T1 to T2. As in previous studies [2], 

Granger causality (GC) was derived formally, based on the model coefficients, as: 

GCij = ∑P
n=1 aij(n)                  -----(2) 

Where GCij is the EC value from ROI i to ROI j and aij are the elements of matrix A. It is notable that 

a single coefficient matrix is obtained for the entire duration of data, and the coefficients do not vary 

over time. This traditional formulation of Granger causality was slightly modified, as in earlier studies 

[3], to remove the effect of zero-lag cross correlation between timeseries. For this, we included the zero-

lag term in Eq.1 as shown below. 

X(t) = A’(0)X(t) + A’(1)X(t-1) + A’(2)X(t-2) + …  

+ A’(p) X(t-p) + E(t)                                                                 ---- (3) 



The diagonal elements of A(0) are set to zero, such that only the instantaneous cross correlation, and 

not autocorrelation, between the timeseries are modeled. The model coefficients obtained from Eq.3 

would not be equal to those obtained from Eq.1, since the inclusion of zero-lag term affects other 

coefficients by removing cross-correlation effects from them. The zero-lag term is thus not used in the 

evaluation of Granger causality. Granger causality thus obtained would be free from zero-lag correlation 

effects and is defined as correlation-purged Granger causality (CPGC), which has been widely used in 

recent times.  

A Granger causality value of 0 represents no causal relationship from the source to the destination 

region, a value of 1 represents strong positive causality (increase in BOLD response of the source region 

causes an increase in BOLD response of the destination, and vice versa), and a value of -1 represents 

strong negative causality (increase in BOLD response of the source region causes decrease in BOLD 

response of the destination, and vice versa). Recent simulations [4, 5] as well as experimental results 

[6–8] suggest that GC applied after deconvolving the HRF from fMRI data (as we have done), is reliable 

for making inferences about directional influences between brain regions. In fact, in a rat model of 

epilepsy with concurrent neuroimaging and invasive electrophysiological data, Dynamic Causal 

Modeling (DCM) and Granger causality applied on deconvolved data were the only methods that 

reproduced the electrophysiological ground truth [9]. Since our study is exploratory, we have opted to 

use Granger causality instead of DCM, and future confirmatory studies may adopt DCM as well. The 

method we have used for obtaining EC has also been employed in several recent fMRI studies [10–14]. 

 

 

 

 

 

 

 

 

 

 

 

 

  



Brain regions (with exact region boundaries) involved in the affected network 

 
 

Figure S2: Brain regions (with exact region boundaries) involved in the affected network. The 
regions were defined based on the WFU-pickatlas brain atlas. Red color indicates the left 
caudate, which is the source in all four connections. The Figure A to D show the connection of 
left caudate with left precentral gyrus (A), left frontal inferior triangular gyrus (B), left angular 
gyrus (C), and left supplementary motor area (D).    
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Table S1 – Effect of condition on effective connectivity in patients with schizophrenia 

 

   Areas & connectivity 

SCZ BL OXT Left caudate and left supplementary motor area (p<0.008) 

Left caudate and left precentral (p < 0.009) 

Left caudate and left frontal inferior triangular (p<0.025) 

Left caudate and left angular (p<0.003) 

 BL PLA No significant finding 

 PLA OXT Left caudate and left supplementary motor area (p=0.027) 

Left caudate and left precentral (p =0.014) 

Left caudate and left frontal inferior triangular (p=0.015) 

Left caudate and left angular (p=0.069) 

 
  



Correlation with Behavior 

As a previous study had reported relation between negative symptoms and response to oxytocin 

[15], we conducted a canonical correlation analysis (CCA) between connectivity variables on 

one-side and behavioral/symptom/demographic non-imaging measures on the other side [16]. 

The connectivity variables included the (i) change in connectivity between oxytocin and 

placebo in patients, and (ii) change in connectivity between oxytocin and baseline in patients, 

both for paths conforming to our hypotheses. The non-imaging measure included age (in years), 

years of education, SES (socio-economic status), Global Assessment of Functioning (GAF), 

Duration of illness, age of onset, PANSS (Positive and Negative Syndrome Scale) Positive, 

PANSS Negative, PANSS GP (General Psychopathology), PANSS Total, SANS (Scale for the 

Assessment of Positive Symptoms) Total, CGI (Clinical Global Impression) Severity, CDS 

(Calgary Depression Scale) Total, BCIS (Beck Cognitive Insight Scale) SR (self-reflectance), 

BCIS SC (self-certainty) and BCIS Composite. Permutation testing with 1000,000 iterations 

was used to find significant modes (latent variables that correlate with each other between the 

imaging and non-imaging measures) and their loadings [17]. 

 

Four modes were determined by the CCA algorithm. For the connectivity difference between 

oxytocin and placebo in patients, mode-3 was significant (FDR corrected p-values – mode-

1=0.37, mode-2=0.29, mode-3=0.003 and mode-4=0.18). For the connectivity difference 

between oxytocin and placebo in patients, all three paths were positively correlated with SES 

and BCIS SR and negatively correlated with age of onset, PANSS Negative and CGI Severity. 

This shows that better the socioeconomic status and cognitive insight, earlier the age of onset 

and lesser the severity of symptoms, the greater the increase in connectivity with oxytocin as 

compared to placebo.  

 

In Fig S3, we show the correlation of differences in behavioral scores with differences in 

connectivity values. It is noteworthy that there were no statistically significant differences 

between baseline and placebo scans as this was a criterion for the conjunction analysis. As this 

figure represents CCA models, please note that these differences themselves may not be 

statistically significant but can be significantly correlated with each other. It means that even 

small variations in connectivity between oxytocin and placebo mirrored corresponding small 

variations in demographic or clinical variables. 



 
 

Figure S3: The loadings of the CCA modes 3 and 4 on individual imaging and non-imaging 
measures. Significant loadings are shown in red (for positive correlations) and blue (for 
negative correlations). It is to be noted that for the connectivity difference between oxytocin 
and placebo/baseline in patients, mode 3/4 were significant, respectively 
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