Supplementary Information

Computational Biology of BRCA2 in Male Breast Cancer, Through Prediction of Probable nsSNPs, and Hit Identification

Sangita Dattatray Shinde,^a Dinesh Parshuram Satpute,^a Santosh Kumar Behera,^{*,b} Dinesh Kumar^{*, a}

^aDepartment of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) – Ahmadabad, Palaj, Gandhinagar-382355, Gujarat, India

^bDepartment of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) – Ahmadabad, Palaj, Gandhinagar-382355, Gujarat, India

Contents

Table S1. Population-based study of BRCA2 mutations in MBC4
Figure S1. Structure of <i>BRCA2</i> gene5
Table S2. Mining of Genes Associated with MBC from GWAS Catalog
Figure S2. Construction of Protein-Protein Interaction Network for the Identification of Hub Gene 7
Table S3. Disease Association Analysis results obtained from WebGestalt
Table S4. Result of GO biological process enrichment analysis obtained from WebGestalt9
Table S5. Result of GO cellular component enrichment analysis obtained from WebGestalt10
Table S6. Result of GO molecular function enrichment analysis obtained from WebGestalt10
Table S7. Drug Association Analysis results obtained from WebGestalt11
Table S8. Pathway common Analysis results obtained from WebGestalt11
Table S9. List of nsSNPs that were analyzed by PredictSNP 1.0 web server 12
Table S10. Effect of nsSNPs on protein stability predicted by DUET
Table S11. Selected top14 phytochemicals following virtual screening of NCEs (TIPdb) by PyRx14
Table S12. Molecular docking analysis of 14 phytochemicals and Tamoxifen against native BRCA2protein
Table S13. Molecular docking analysis of TIP006136 against native and mutant BRCA2 protein16
Table S14. Molecular docking analysis of Tamoxifen against native and mutant BRCA2 protein17
Table S15. Density Function Theory Calculations of TIP006136 and Tamoxifen
Table S16. Geometry optimized atomic coordinates and partial atomic charges of TIP00613618
Table S17. Geometry optimized atomic coordinates and partial atomic charges of Tamoxifen20
Table S18. Geometry optimized Bond lengths of TIP006136 22
Table S19. Geometry optimized Bond lengths of Tamoxifen24
Table S20. Geometry optimized Bond angles of TIP00613626
Table S21. Geometry optimized Bond angles of Tamoxifen
Table S22. Geometry optimized Energies of TIP00613632
Table S23. Geometry optimized Energies of Tamoxifen37
Figure S3 (A-F). Intermolecular hydrogen bonding, electrostatic and hydrophobic interactions formed between 6 screened phytochemicals against Native BRCA240
Figure S4 (A-F). Intermolecular hydrogen bonding, electrostatic and hydrophobic interactions formed between 6 screened phytochemicals against Native BRCA240
Figure S5 (A-F). Intermolecular hydrogen bonding, electrostatic and hydrophobic interactions formed between Tamoxifen against Mutant BRCA241
Figure S6 (A-F). Intermolecular hydrogen bonding, electrostatic and hydrophobic interactions formed between Tamoxifen against Mutant BRCA241

Figure S7 (A-F). Intermolecular hydrogen bonding, electrostatic and hydrophobic interactions formed between Tamoxifen against Mutant BRCA242
Figure S8 (A-F). Intermolecular hydrogen bonding, electrostatic and hydrophobic interactions formed between TIP006136 against Mutant BRCA242
Figure S9 (A-F). Intermolecular hydrogen bonding, electrostatic and hydrophobic interactions formed between TIP006136 against Mutant BRCA243
Figure S10 (A-D). Intermolecular hydrogen bonding, electrostatic and hydrophobic interactions formed between TIP006136 against Mutant BRCA243
Figure S11. (A) Pre-MD simulations intermolecular hydrogen bonding, electrostatic and hydrophobic contacts formed between BRCA2-Tamoxifen complex (B) Post-MD simulations intermolecular hydrogen bonding, electrostatic and hydrophobic contacts formed between BRCA2-Tamoxifen complex
Figure S12. (A) Pre-MD simulations intermolecular hydrogen bonding, electrostatic and hydrophobic contacts formed between R3052W-Tamoxifen complex (B) Post-MD simulations intermolecular hydrogen bonding, electrostatic and hydrophobic contacts formed between R3052W -Tamoxifen complex
11. References

Author	Year	Population	No. of Patient	Patient with BRCA2	Patient with BRCA2 Mutations (%)
			Tested	Mutations	
Couch <i>et al</i> . ¹	1996	USA	50	7	14
Thorlacius et al. ²	1996	Iceland	30	12	40
Friedman <i>et al</i> . ³	1997	Southern	54	2	4
		California			
Mavraki <i>et al</i> .4	1997	Iceland	28	3	11
Haraldson <i>et al</i> . ⁵	1998	Swedish	34	7	21
Csokay et al. ⁶	1999	Hungarian	18	6	33
Kwiatkowska <i>et al.</i> ⁷	2000	Polish	37	4	11
Sverdlov <i>et al</i> . ⁸	2000	Israel	31	1	3
Diez et al. ⁹	2000	Spanish	17	3	18
Bashman <i>et al</i> . ¹⁰	2001	UK	94	3	8
Frank <i>et al</i> . ¹¹	2002	Ashkenazi	76	14	18
Ottini <i>et al</i> . ¹²	2003	Italy	25	4	16
Palli <i>et al</i> . ¹³	2007	Italy	99	6	6.1
Besic <i>et al</i> . ¹⁴	2007	Slovenian	25	4	16
Tai <i>et al</i> . ¹⁵	2007	US	87	23	26
Evans <i>et al</i> . ¹⁶	2008	England	64	17	26
Ottini <i>et al</i> . ¹⁷	2009	Italy	108	8	7.4
Ding et al. ¹⁸	2011	US	115	18	16
Jaun <i>et al</i> . ¹⁹	2015	Spanish	312	47	15
Schayek <i>et al</i> . ²⁰	2018	Israel	61	7	11.4

Table S1. Population-based study of BRCA2 mutations in MBC

Figure S1. Structure of BRCA2 gene

Sr.	Gene	Sr. No.	Gene
No.			
1	PRKACB	41	MSH6
2	RAD51B	42	WT1
3	TOX3	43	PAX5
4	LOC643174	44	PAX6
5	BRCA1	45	CDH13
6	BRCA2	46	CDKN2A
7	c-erbB-2	47	VHL
8	p53	48	CHFR
9	Bcl-2	49	GSTP
10	AR	50	RASSF1A
11	cytochrome p45017	51	RARβ
12	PTEN	52	BRAC2 N372H
13	CHEK2	53	BRAC2 6174delT
14	XXY	54	CCND2
15	HER-2	55	P161nk4a
16	CHEK2 1100delC	56	BRIP1
17	CCND2	57	XRCC2
18	p16INK4A	58	PALB2
19	p14ARF	59	CDH1
20	CCND2	60	RAD50
21	p15	61	RAD51C
22	RARbeta	62	TP53
23	RASSF1A	63	MRE11A
24	APC	64	NBN
25	HOXA5	65	NF1
26	BCL2	66	RAD51D
27	APC	67	PRKACB
28	HOXA5	68	ATM
29	TWIST	69	MUTYH
30	EFEMP1	70	I157T
31	THBS1	71	S428F
32	GSTP1	72	CHEK2I157T
33	MGMT	73	CHEK2 W/OI157T
34	ESR1	74	BRCA1334delAG
35	ARH1	75	CCDC170
36	CYP1B1	76	MLLT10
37	CDH1	77	CCND1
38	CDH3	78	LINC01488
39	CDH13	79	CASC16
40	TIMP3		

Table S2. Mining of Genes Associated with MBC from GWAS Catalog

Figure S2. Construction of Protein-Protein Interaction Network for the Identification of Hub Gene

Visualization of MBC protein-protein interactome map retrieved from the STRING database. The predicted network summarizes the network of associations with other proteins. The network nodes are proteins, and the edges signify the functional associations. The nodes with a structural logo designate that structural data of protein is available. The thickness of the edge denotes the STRING score (thinner edges have a low score and thicker edges have a high score), depicting the interaction between two connecting nodes and the degree of confidence prediction of the interaction. The colored lines of the edges represent the existence of different types of evidence used in predicting the associations (Green: Neighborhood evidence; Blue: Co-occurrence evidence; Purple: Experimental evidence; Light blue: Database evidence; Light green: Text mining, and Black: Co-expression evidence).

The protein-protein interaction network of BRCA1, BRCA2, PTEN and CHEK2 were obtained from the STRING database.

Disease	Gene	Statistics
Cancer or viral infections	BRCA2	C=951; O=35; E=0.95; R=36.91; rawP=6.92e-51;
		adjP=2.25e-48
Neoplasms	BRCA2	C=854; O=33; E=0.85; R=38.76; rawP=5.33e-48;
		adjP=8.66e-46
Breast Diseases	BRCA2	C=350; O=25; E=0.35; R=71.64; rawP=1.21e-41;
		adjP=1.31e-39
Skin Diseases, Genetic	BRCA2	C=310; O=24; E=0.31; R=77.65; rawP=1.04e-40;
		adjP=8.45e-39
Breast Neoplasms	BRCA2	C=377; O=24; E=0.38; R=63.85; rawP=1.30e-38;
		adjP=8.45e-37
Skin Diseases	BRCA2	C=417; O=23; E=0.42; R=55.32; rawP=2.01e-35;
		adjP=1.09e-33
Urogenital Neoplasms	BRCA2	C=432; O=21; E=0.43; R=48.75; rawP=5.47e-31;
		adjP=2.54e-29
Pathologic Processes	BRCA2	C=561; O=22; E=0.56; R=39.33; rawP=1.76e-30;
		adjP=7.15e-29
Ovarian Neoplasms	BRCA2	C=211; O=17; E=0.21; R=80.81; rawP=1.03e-28;
		adjP=3.72e-27
Skin and Connective Tissue	BRCA2	C=481; O=20; E=0.48; R=41.70; rawP=4.53e-28;
Diseases		adjP=1.47e-26

Table S3. Disease Association Analysis results obtained from WebGestalt

The statistic column lists:

C: the number of reference genes in the category

O: the number of genes in the gene set and also in the category

E: the expected number in the category

R: ratio of enrichment

rawP: p-value from hypergeometric test

adjP: p-value adjusted by the multiple test adjustment.

Biological Process	Gene	Statistics				
Response to DNA damage	BRCA2	C=608; O=21; E=1.75; R=12.03; rawP=1.66e-18;				
stimulus		adjP=1.92e-15				
DNA repair	BRCA2	C=398; O=17; E=1.14; R=14.88; rawP=2.39e-16;				
		adjP=1.38e-13				
Cellular response to stress	BRCA2	C=1193; O=24; E=3.42; R=7.01; rawP=5.07e-16;				
		adjP=1.96e-13				
Negative regulation of	BRCA2	C=2840; O=32; E=8.15; R=3.92; rawP=2.68e-15;				
cellular process		adjP=7.76e-13				
Double-strand break repair	BRCA2	C=111; O=11; E=0.32; R=34.52; rawP=1.02e-14				
		adjP=2.36e-12				
Negative regulation of	BRCA2	C=3110; O=32; E=8.93; R=3.58; rawP=3.99e-14;				
biological process		adjP=6.60e-12				
Positive regulation of	BRCA2	C=1981; O=27; E=5.69; R=4.75; rawP=3.82e-14;				
metabolic process		adjP=6.60e-12				
Regulation of apoptotic	BRCA2	C=1153; O=22; E=3.31; R=6.65; rawP=4.87e-14;				
process		adjP=7.05e-12				
Regulation of programmed	BRCA2	C=1167; O=22; E=3.35; R=6.57; rawP=6.24e-14;				
cell death		adjP=8.03e-12				
Cell cycle process	BRCA2	C=1062; O=21; E=3.05; R=6.89; rawP=1.22e-13;				
		adjP=1.18e-11				

Table S4. Result of GO biological process enrichment analysis obtained from WebGestalt

The statistic column lists:

C: the number of reference genes in the category

O: the number of genes in the gene set and also in the category

E: the expected number in the category

R: ratio of enrichment

rawP: p-value from hypergeometric test

adjP: p-value adjusted by the multiple test adjustment.

Cellular component	Gene	Statistics				
Nucleoplasm	BRCA2	C=1478; O=21; E=3.64; R=5.77; rawP=3.93e-12;				
		adjP=3.89e-10				
Nuclear part	BRCA2	C=3071; O=27; E=7.56; R=3.57; rawP=4.18e-11;				
		adjP=2.07e-09				
Nucleus	BRCA2	C=5955; O=35; E=14.67; R=2.39; rawP=1.44e-10;				
		adjP=4.70e-09				
Nuclear lumen	BRCA2	C=2737; O=25; E=6.74; R=3.71; rawP=1.90e-10;				
		adjP=4.70e-09				
Organelle lumen	BRCA2	C=3340; O=26; E=8.23; R=3.16; rawP=2.18e-09;				
		adjP=3.60e-08				
Membrane-enclosed	BRCA2	C=3385; O=26; E=8.34; R=3.12; rawP=2.95e-09;				
lumen		adjP=4.17e-08				
Intracellular organelle	BRCA2	C=3294; O=25; E=8.11; R=3.08; rawP=1.05e-08;				
lumen		adjP=1.15e-07				

Table S5. Result of GO cellular component enrichment analysis obtained from WebGestalt

The statistic column lists:

C: the number of reference genes in the category

O: the number of genes in the gene set and also in the category

E: the expected number in the category

R: ratio of enrichment

rawP: p-value from hypergeometric test

adjP: p-value adjusted by the multiple test adjustment.

Table S6. Result of GO molecular function enrichment analysis obtained from WebGestalt

Molecular function	Gene	Statistics
Enzyme binding	BRCA2	C=1086; O=16; E=2.98; R=5.36; rawP=1.08e-08;
		adjP=4.57e-07
Protein binding	BRCA2	C=7337; O=37; E=20.16; R=1.84; rawP=5.70e-08;
		adjP=1.45e-06

The statistic column lists:

C: the number of reference genes in the category

O: the number of genes in the gene set and also in the category

E: the expected number in the category

R: ratio of enrichment

rawP: p-value from hypergeometric test

adjP: p-value adjusted by the multiple test adjustment

Drug	Gene	Statistics
Mitomycin	BRCA2	C=102; O=13; E=0.10; R=127.83; rawP=1.13e-24;
		adjP=5.99e-23
Hydroxyurea	BRCA2	C=65; O=9; E=0.06; R=138.87; rawP=1.22e-17;
		adjP=3.23e-16
Progesterone	BRCA2	C=136; O=9; E=0.14; R=66.37; rawP=1.21e-14;
		adjP=2.14e-13

Table S7. Drug Association Analysis results obtained from WebGestalt

The statistic column lists:

C: the number of reference genes in the category

O: the number of genes in the gene set and also in the category

E: the expected number in the category

R: ratio of enrichment

rawP: p-value from hypergeometric test

adjP: p-value adjusted by the multiple test adjustment.

Pathway Name	Gene	Statistics
ATR signaling pathway	BRCA2	C=250; O=14; E=0.25; R=56.17;
		rawP=2.26e-21; adjP=3.89e-19
ATM pathway	BRCA2	C=307; O=14; E=0.31; R=45.74;
		rawP=4.15e-20; adjP=3.57e-18
Homologous recombination repair of	BRCA2	C=22; O=7; E=0.02; R=319.12;
replication-independent double-strand breaks		rawP=9.88e-17; adjP=4.25e-15
Homologous Recombination Repair	BRCA2	C=22; O=7; E=0.02; R=319.12;
		rawP=9.88e-17; adjP=4.25e-15
Fanconi anemia pathway	BRCA2	C=48; O=8; E=0.05; R=167.16;
		rawP=1.79e-16; adjP=6.16e-15
Double-Strand Break Repair	BRCA2	C=27; O=7; E=0.03; R=260.02;
		rawP=5.12e-16;
DNA Repair	BRCA2	C=106; O=9; E=0.11; R=85.16;
		rawP=1.22e-15; adjP=3.00e-14
Meiotic Recombination	BRCA2	C=42; O=7; E=0.04; R=167.16;
		rawP=1.54e-14: adiP=2.65e-13

Table S8. Pathway common Analysis results obtained from WebGestalt

The statistic column lists:

C: the number of reference genes in the category

O: the number of genes in the gene set and also in the category

E: the expected number in the category

R: ratio of enrichment

rawP: p-value from hypergeometric test

adjP: p-value adjusted by the multiple test

adjustment.

Sr. No.	SNP ID	MAF	Wild	Mutated	Position	PredictSNP	PhD-SNP	PolyPhen-1	Polyphen-2	SIFT	SNAP	Panther	Analysis
1	rs80359062	0.0003/1	Т	R	2722	Deletorious							
2	rs41293513	0.00004/1	D	А	2723	Deletorious							
3	rs41293513	0.00004/1	D	G	2723	Deletorious							
4	rs41293511	0.000007/1	D	Н	2723	Deletorious							
5	rs41293513	0.00004/1	D	V	2723	Deletorious							
6	rs28897749	0.000007/1	V	I	2728	Neutral							
7	rs28897749	0.000007/1	V	L	2728	Neutral							
8	rs80359065	0.000259/1	К	Ν	2729	Neutral	Neutral	Neutral	Deletorious	Neutral	Deletorious	Neutral	Neutral
9	rs80359071	0.000039/1	G	D	2748	Deletorious							
10	rs80359078	0.000085/3	R	Н	2787	Neutral	Neutral	Neutral	Neutral	Deletorious	Neutral	Deletorious	Neutral
11	rs28897751	0.000004/1	L	Р	2792	Deletorious							
12	rs80359082	0.000004/1	G	R	2793	Deletorious							
13	rs11571747	0.0002/1	E	А	2856	Neutral							
14	rs28897754	0.00079/142	К	Ν	2950	Deletorious	Neutral	Deletorious	Deletorious	Deletorious	Neutral	Neutral	Deletorious
15	rs11571769	0.000342/1	А	Т	2951	Neutral	Neutral	Neutral	Deletorious	Deletorious	Neutral	Neutral	Neutral
16	rs28897755	0.000519/102	Т	I	3013	Deletorious	Neutral	Deletorious	Deletorious	Deletorious	Deletorious	Neutral	Deletorious
17	rs45580035	0.000067/6	R	W	3052	Deletorious							
18	rs80359187	0.000004/1	G	E	3076	Deletorious							
19	rs80359198	0.000019/5	D	E	3095	Deletorious	Deletorious	Neutral	Deletorious	Deletorious	Deletorious	Deletorious	Deletorious
20	rs41293521	0.000225/42	Y	Н	3098	Neutral							
21	rs28897758	0.00027/1	L	Р	3101	Deletorious							
22	rs28897758	0.00027/1	L	Q	3101	Deletorious							
23	rs28897758	0.00027/1	L	R	3101	Deletorious							
24	rs80359204	0.0005/1	I	М	3103	Deletorious	Neutral	Deletorious	Deletorious	Deletorious	Deletorious	Deletorious	Deletorious
25	rs56204128	0.000018/3	М	Т	3118	Neutral							
26	rs28897759	0.000004/1	Ν	I	3124	Deletorious							
27	rs28897759	0.000004/1	Ν	S	3124	Deletorious							

Table S9. List of nsSNPs that were analyzed by PredictSNP 1.0 web server

r. No.	SNP ID	Wild	Mutated	Position	mCSM (kcal/mol)	SDM (kcal/mol)	DDG Value prediction (kcal/mol)
1	rs80359062	Т	R	2722	0.013	-0.04	0.284
2	rs41293513	D	А	2723	-0.277	0.53	0.082
3	rs41293513	D	G	2723	-0.556	0.78	-0.148
4	rs41293511	D	Н	2723	-0.262	0.51	-0.008
5	rs41293513	D	V	2723	0.218	1.47	0.765
6	rs28897749	V	I	2728	-0.294	0.08	-0.001
7	rs28897749	V	L	2728	-0.294	-0.5	-0.135
8	rs80359065	К	N	2729	-0.465	-0.22	-0.407
9	rs80359071	G	D	2748	-1.559	0.46	-1.035
10	rs80359078	R	Н	2787	-1.239	0.39	-0.987
11	rs28897751	L	Р	2792	-1.144	0.08	-0.874
12	rs80359082	G	R	2793	-0.537	-2.20	-0.573
13	rs11571747	E	A	2856	-0.658	0.54	-0.312
14	rs28897754	К	N	2950	-0.257	-0.43	-0.052
15	rs11571769	Α	Т	2951	-0.680	-1.97	-0.676
16	rs28897755	Т	I	3013	0.281	1.81	1.006
17	rs45580035	R	W	3052	-0.054	-0.24	-0.308
18	rs80359187	G	E	3076	-1.213	-2.17	-1.274
19	rs80359198	D	E	3095	-0.794	-0.76	-0.702
20	rs41293521	Y	Н	3098	-0.209	0.15	0.022
21	rs28897758	L	Р	3101	-0.889	-4.31	-1.547
22	rs28897758	L	Q	3101	-1.748	-2.84	-1.94
23	rs28897758	L	R	3101	-1.832	-3.04	-1.856
24	rs80359204	I	М	3103	-0.693	-1.91	-0.96
25	rs56204128	Μ	Т	3118	-1.795	-0.55	-1.463
26	rs28897759	N	I	3124	-0.831	-1.82	-0.959
27	rs28897759	N	S	3124	0.153	0.36	0.528

Table S10. Effect of nsSNPs on protein stability predicted by DUET

Compound ID	Protein	Binding Energy
TIP001922	BRCA2	-10.1
TIP002754	BRCA2	-10.2
TIP003223	BRCA2	-10.3
TIP003237	BRCA2	-10.4
TIP003461	BRCA2	-10.6
TIP005092	BRCA2	-10.6
TIP006136	BRCA2	-10.4
TIP009431	BRCA2	-10
TIP010010	BRCA2	-10
TIP011681	BRCA2	-10.4
TIP012106	BRCA2	-11.7
TIP012114	BRCA2	-10
TIP008902	BRCA2	-10
TIP008979	BRCA2	-10.3

Table S11. Selected top14 phytochemicals following virtual screening of NCEs (TIPdb) by PyRx

Compound ID	Binding	Ligand	Inhibition	Number of H-bond	H-bond forming residues	Average
	Energy	efficiency	constant			distance
TIP001922	-7.74	-0.21	2.11 μM	4	LYS313, SER315, GLU312, PRO398	2.286
TIP002754	-8.89	-0.19	304.64 nM	2	PRO398, ASP395	1.831
TIP003223	-8.24	-0.21	918.16 nM	4	ASP473, LYS435, ARG304	2.953
TIP003237	-7.66	-0.19	2.44 μM	4	LYS311, GLU384, LYS390, SER399	2.482
TIP003461	-9.5	-0.22	108.35 nM	3	GLU234, ASP473, GLN457	2.565
TIP005092	-8.66	-0.15	448.96 nM	3	LYS435,GLN457, ASP473	3.019
TIP006136	-9.51	-0.21	106.92 nM	5	ARG304, GLN357,GLN457, ASP473	2.214
TIP008902	-8.71	-0.19	413.28 nM	4	ARG304, LYS348	3.069
TIP008979	-9.04	-0.22	236.35 nM	4	GLU461, GLN457, TRP458, SER401	2.426
TIP009431	-7.5	-0.23	3.16 µM	6	LYS313,LYS311, CYS400, GLN381	2.274
TIP010010	-8.24	-0.20	912.38 nM	6	ARG304, LYS348, GLN357, GLN457, ASP473	2.451
TIP011681	-9.19	-0.22	182.29 nM	6	LYS390, PRO398, SER399, LYS311, ASN355, LYS313	2.658
TIP012106	-9.15	-0.25	196.25 nM	3	GLN457, ARG304	2.952
TIP012114	-8.89	-0.22	305.27 nM	1	GLN457	2.750
Tamoxifen	-5.72	-0.20	64.42 μM	-	-	-

 Table S12. Molecular docking analysis of 14 phytochemicals and Tamoxifen against native BRCA2 protein

Target	Binding	Ligand	Inhibition	Number of H-bond	H-bond forming residues	Average
(BRCA2 with	Energy	efficiency	constant			distance
native and						
mutant						
amino acids)						
BRCA2 Native	-9.51	-0.21	106.92 nM	5	ARG304, GLN357, GLN457, ASP473	2.205
T2722R	-8.58	-0.19	515.67 nM	1	ASN455	2.205
D2723A	-9.06	-0.2	228.14 nM	3	ASN455, GLY472, ARG304	2.643
D2723G	-8.84	-0.2	333.34 nM	3	ASP473, GLN357	2.165
D2723H	-9.62	-0.21	88.80 nM	6	TYR236, SER347, LYS302, CYS400, GLU402,	2.363
					ASN355	
D2723V	-9.10	-0.2	213.40 nM	4	TYR236, ASN455, GLN457, ARG304	2.668
G2748D	-9.28	-0.21	158.25 nM	5	ARG304, GLN357, GLN457, ASP473	2.166
L2792P	-8.14	-0.18	1.09 μM	5	GLU234, TYR236, LYS302, GLN357	2.368
G2793R	-9.38	-0.21	132.18 nM	6	TYR236, LYS302, GLN402, ASN355,	2.403
					SER347, CYS400	
K2950N	-9.28	-0.21	158.26 nM	4	ASN455, TYR236, GLN457, ARG304	2.699
T3013I	-9.33	-0.21	143.79 nM	5	GLU402, TYR236, SER347, ASN355, CYS400	2.226
R3052W	-8.12	-0.18	1.12 μM	4	GLN357, GLN457, ASP473	2.049
G3076E	-8.76	-0.19	376.11 nM	3	LYS302, GLN357, ASP473	2.401
D3095E	-9.42	-0.21	124.27 nM	5	ARG304, GLN457, ASP473, GLN357	2.191
L3101P	-8.99	-0.2	255.48 nM	4	LYS348, ASP473, ARG304, GLU402	2.226
L3101Q	-9.03	-0.2	241.25 nM	5	ASN455, GLN457, GLN357, LYS302, ASP473	2.525
L3101R	-9.61	-0.21	90.85 nM	6	TYR236, LYS302, GLU402, CYS400, ASN355, SER347	2.363
I3103M	-9.12	-0.2	207.26 nM	6	TRP437. TYR236. ASN455. GLY472.	2.784
					GLN457, ARG304	
N3124I	-8.70	-0.19	416.86 nM	1	ILE455	2.243
N3124S	-8.96	-0.2	268.38 nM	4	ASP473, SER455, ARG304, CYS400	2.288

Table S13. Molecular docking analysis of TIP006136 against native and mutant BRCA2 protein

Target (BRCA2	Binding Energy	Ligand efficiency	Inhibition constant (µM)	Number of H-bond	H-bond forming	Average distance
with native and					residues	
mutant amino						
acids)						
BRCA2 Native	-5.72	-0.20	64.42	-	-	-
T2722R	-6.27	-0.22	25.50	-	-	-
D2723A	-5.82	-0.21	54.48	-	-	-
D2723G	-5.28	-0.19	135.79	-	-	-
D2723H	-5.99	-0.21	40.67	1	ASP473	2.947
D2723V	-5.82	-0.21	54.21	-	-	-
G2748D	-5.66	-0.2	71.35	-	-	-
L2792P	-5.85	-0.21	51.53	-	-	-
G2793R	-5.42	-0.19	106.48	-	-	-
K2950N	-5.51	-0.2	92.20	-	-	-
T3013I	-6.29	-0.22	24.43	-	-	
R3052W	-6.30	-0.23	24.07	1	ASP473	2.971
G3076E	-5.39	-0.19	111.19			
D3095E	-5.97	-0.21	41.84	1	TYR236	3.249
L3101P	-5.73	-0.20	63.31	1	CYS400	3.143
L3101Q	-5.76	-0.21	59.74	-	-	-
L3101R	-6.26	-0.22	25.84	1	ASP473	2.928
I3103M	-5.74	-0.21	62.20	-	-	-
N3124I	-6.06	-0.22	36.33	-	-	-
N3124S	-5.90	-0.21	47.20	1	ARG304	2.766

 Table S14. Molecular docking analysis of Tamoxifen against native and mutant BRCA2 protein

Compound	Electronic energy (eV)	Е _{LUMO} (Kcal/mol)	Е _{номо} (Kcal/mol)	GAP Energy (ΔE) (Kcal/mol)	Dipole Moment (Debye)
TIP006136	-56770.896	1.507	-8.168	9.675	4.53408
Tamoxifen	-30745.743	3.207	-8.209	11.416	1.02430

Table S15. Density Function Theory Calculations of TIP006136 and Tamoxifen

Table S16. Geometry optimized atomic coordinates and partial atomic charges of TIP006136

Sr. No.	Atom	Х	Y	Z	R	ZDO atomic	Mulliken atomic
						charges	charges
1	С	0.476	0.131	-0.183	6	-0.0284	-0.1104
2	С	-0.603	0.481	-1.016	6	-0.0775	-0.085
3	С	-0.678	-0.114	-2.284	6	0.1227	0.1177
4	С	0.267	-1.046	-2.698	6	-0.1423	-0.2398
5	С	1.333	-1.365	-1.861	6	-0.0633	-0.1381
6	С	1.477	-0.771	-0.597	6	-0.0874	-0.096
7	С	-1.624	1.425	-0.529	6	-0.1333	-0.1528
8	С	2.639	-1.023	0.246	6	0.0519	0.0579
9	0	2.954	-0.241	1.257	8	-0.0969	-0.1034
10	С	3.875	-0.338	2.187	6	0.1409	0.1506
11	С	4.725	-1.461	2.12	6	-0.1404	-0.1622
12	С	4.545	-2.343	1.057	6	0.0847	0.0822
13	С	3.51	-2.128	0.131	6	-0.1661	-0.2596
14	С	3.998	0.605	3.203	6	-0.2395	-0.3416
15	С	4.971	0.422	4.185	6	0.1396	0.1374
16	С	5.816	-0.684	4.165	6	-0.1869	-0.2900
17	С	5.689	-1.615	3.136	6	0.1354	0.1345
18	0	5.096	1.315	5.212	8	-0.2265	-0.2388
19	0	5.162	-3.332	0.778	8	-0.2397	-0.251
20	0	6.522	-2.701	3.149	8	-0.2475	-0.2589
21	С	-1.425	2.819	-0.586	6	0.1345	0.1493
22	С	-2.460	3.704	-0.255	6	-0.1425	-0.1606
23	С	-3.711	3.189	0.112	6	0.0996	0.1017
24	С	-3.951	1.804	0.184	6	-0.0835	-0.1019
25	С	-2.865	0.942	-0.087	6	0.1167	0.1233
26	0	-4.726	4.058	0.425	8	-0.2353	-0.246
27	С	-5.193	1.232	0.481	6	0.0121	0.0109
28	С	-5.332	-0.162	0.576	6	-0.1562	-0.2532
29	С	-4.213	-0.996	0.421	6	0.0289	0.0344
30	0	-3.13	-0.333	0.087	8	-0.0891	-0.0956
31	0	-6.241	1.78	0.672	8	-0.2239	-0.2343
32	С	-4.215	-2.437	0.606	6	-0.0733	-0.0827
33	С	-3.448	-3.257	-0.238	6	-0.0341	-0.1186
34	С	-3.454	-4.644	-0.093	6	-0.192	-0.2895
35	C	-4.242	-5.223	0.896	6	0.0999	0.0934
36	C	-5.004	-4.441	1.755	6	-0.1424	-0.2414
37	С	-4.974	-3.051	1.620	6	-0.0568	-0.1398
38	0	-4.257	-6.58	1.034	8	-0.2259	-0.2384

39	0	-1.649	0.226	-3.188	8	-0.2177	-0.2313
40	0	-0.195	3.255	-1.015	8	-0.1729	-0.1741
41	C	0.173	4.632	-0.79	6	0.1399	0.1466
42	C	-0.986	5.568	-0.558	6	-0.1882	-0.2860
43	C	-2.226	5.139	-0.328	6	-0.0541	-0.1377
44	C	0.904	5.081	-2.061	6	-0.1208	-0.3295
45	С	1.137	4.673	0.409	6	-0.1345	-0.3420
46	Н	0.541	0.593	0.803	1	0.1179	0.2124
47	Н	0.198	-1.519	-3.674	1	0.1208	0.2150
48	Н	2.055	-2.09	-2.228	1	0.1065	0.1861
49	Н	3.38	-2.837	-0.684	1	0.1378	0.2243
50	Н	3.335	1.466	3.228	1	0.1354	0.2259
51	Н	6.558	-0.829	4.944	1	0.1411	0.2364
52	Н	4.698	2.156	4.929	1	0.2017	0.2276
53	Н	6.149	-3.322	3.8	1	0.2087	0.2357
54	Н	-4.539	4.381	1.325	1	0.1999	0.2256
55	Н	-6.305	-0.597	0.797	1	0.1307	0.2208
56	Н	-2.828	-2.819	-1.018	1	0.1147	0.2088
57	Н	-2.851	-5.259	-0.754	1	0.1119	0.2001
58	Н	-5.618	-4.896	2.527	1	0.1229	0.2182
59	Н	-5.563	-2.452	2.312	1	0.1098	0.199
60	Н	-4.797	-6.922	0.299	1	0.1983	0.2239
61	Н	-2.49	0.325	-2.711	1	0.2096	0.2389
62	Н	-0.795	6.638	-0.558	1	0.1163	0.2052
63	Н	-3.034	5.838	-0.151	1	0.1185	0.2096
64	Н	1.253	6.116	-1.973	1	0.0471	0.1144
65	Н	1.78	4.452	-2.257	1	0.0560	0.1258
66	Н	0.252	5.018	-2.941	1	0.0548	0.1255
67	Н	2.183	4.622	0.087	1	0.0519	0.1213
68	Н	1.027	5.595	0.993	1	0.0481	0.1166
69	Н	0.97	3.833	1.093	1	0.0535	0.1231
70	Н	5.853	-3.111	-0.048	1	0.2043	0.2307
71	Н	-6.960	1.474	-0.102	1	0.1939	0.2191

Sr.	Atom	Х	Y	Z	R	ZDO atomic	Mulliken atomic
No.						charges	charges
1	0	3.415	1.513	-0.805	8	-0.1994	-0.2012
2	0	3.415	1.513	-0.805	7	-0.0784	-0.0974
3	0	3.415	1.513	-0.805	6	-0.0253	-0.0278
4	0	3.415	1.513	-0.805	6	-0.0565	-0.0614
5	0	3.415	1.513	-0.805	6	-0.0600	-0.0660
6	0	3.415	1.513	-0.805	6	-0.0571	-0.1965
7	0	3.415	1.513	-0.805	6	-0.0266	-0.0333
8	0	3.415	1.513	-0.805	6	-0.0341	-0.0411
9	0	3.415	1.513	-0.805	6	-0.0589	-0.1434
10	0	3.415	1.513	-0.805	6	-0.0573	-0.1405
11	0	3.415	1.513	-0.805	6	-0.1125	-0.3099
12	0	3.415	1.513	-0.805	6	0.0867	0.0935
13	0	3.415	1.513	-0.805	6	-0.1331	-0.2303
14	0	3.415	1.513	-0.805	6	-0.1690	-0.2638
15	0	3.415	1.513	-0.805	6	-0.0923	-0.1817
16	0	3.415	1.513	-0.805	6	-0.0928	-0.1802
17	0	3.415	1.513	-0.805	6	-0.0923	-0.1798
18	0	3.415	1.513	-0.805	6	-0.0909	-0.1797
19	0	3.415	1.513	-0.805	6	-0.0904	-0.2264
20	0	3.415	1.513	-0.805	6	0.0488	-0.0838
21	0	3.415	1.513	-0.805	6	-0.1001	-0.1890
22	0	3.415	1.513	-0.805	6	-0.1002	-0.1891
23	0	3.415	1.513	-0.805	6	-0.1002	-0.1891
24	0	3.415	1.513	-0.805	6	-0.0999	-0.1887
25	0	3.415	1.513	-0.805	6	-0.1036	-0.1935
26	0	3.415	1.513	-0.805	6	-0.1034	-0.1933
27	0	3.415	1.513	-0.805	6	-0.0840	-0.2743
28	0	3.415	1.513	-0.805	6	-0.0933	-0.2815
29	0	3.415	1.513	-0.805	1	0.0580	0.1306
30	0	3.415	1.513	-0.805	1	0.0613	0.1354
31	0	3.415	1.513	-0.805	1	0.1047	0.1944
32	0	3.415	1.513	-0.805	1	0.1042	0.1934
33	0	3.415	1.513	-0.805	1	0.0431	0.1098
34	0	3.415	1.513	-0.805	1	0.0396	0.1071
35	0	3.415	1.513	-0.805	1	0.0424	0.1097
36	0	3.415	1.513	-0.805	1	0.1186	0.2125
37	0	3.415	1.513	-0.805	1	0.1156	0.2050
38	0	3.415	1.513	-0.805	1	0.1064	0.1967
39	0	3.415	1.513	-0.805	1	0.1068	0.1950
40	0	3.415	1.513	-0.805	1	0.0476	0.1162
41	0	3.415	1.513	-0.805	1	0.0667	0.1379
42	0	3.415	1.513	-0.805	1	0.1074	0.1962
43	0	3.415	1.513	-0.805	1	0.1059	0.1965

Table S17. Geometry optimized atomic coordinates and partial atomic charges of Tamoxifen

44	0	3.415	1.513	-0.805	1	0.0399	0.1010
45	0	3.415	1.513	-0.805	1	0.0562	0.1287
46	0	3.415	1.513	-0.805	1	0.1024	0.1924
47	0	3.415	1.513	-0.805	1	0.1021	0.1920
48	0	3.415	1.513	-0.805	1	0.1019	0.1918
49	0	3.415	1.513	-0.805	1	0.1019	0.1918
50	0	3.415	1.513	-0.805	1	0.1023	0.1923
51	0	3.415	1.513	-0.805	1	0.1017	0.1917
52	0	3.415	1.513	-0.805	1	0.0470	0.1135
53	0	3.415	1.513	-0.805	1	0.0238	0.0872
54	0	3.415	1.513	-0.805	1	0.0468	0.1139
55	0	3.415	1.513	-0.805	1	0.0477	0.1153
56	0	3.415	1.513	-0.805	1	0.0262	0.0898
57	0	3.415	1.513	-0.805	1	0.0480	0.1115

Sr. No.	Atoms	Bond Length (Å)		
1	1 2 (C)-(C)	1.400644		
2	1 6 (C)-(C)	1.408846		
3	1 46 (C)-(H)	1.086939		
4	2 3 (C)-(C)	1.402992		
5	2 7 (C)-(C)	1.474316		
6	3 4 (C)-(C)	1.396454		
7	3 39 (C)-(O)	1.411571		
8	4 5 (C)-(C)	1.396734		
9	4 47 (C)-(H)	1.085875		
10	56 (C)-(C)	1.411005		
11	5 48 (C)-(H)	1.083031		
12	68 (C)-(C)	1.490981		
13	7 21 (C)-(C)	1.468329		
14	7 25 (C)-(C)	1.469959		
15	89 (C)-(O)	1.382587		
16	8 13 (C)-(C)	1.410958		
17	9 10 (O)-(C)	1.318124		
18	10 11 (C)-(C)	1.481933		
19	10 14 (O)-(C)	1.468200		
20	11 12 (C)-(C)	1.394768		
21	11 17 (C)-(C)	1.409107		
22	12 13 (C)-(C)	1.387609		
23	12 19 (C)-(O)	1.411154		
24	13 49 (C)-(H)	1.083504		
25	14 15 (C)-(C)	1.392933		
26	14 50 (C)-(H)	1.085652		
27	15 16 (C)-(C)	1.400054		
28	15 18 (C)-(O)	1.410475		
29	16 17 (C)-(C)	1.402502		
30	16 51 (C)-(H)	1.085877		
31	17 20 (C)-(O)	1.412034		
32	18 52 (O)-(H)	1.034511		
33	20 53 (O)-(H)	1.034847		
34	21 22 (C)-(C)	1.473952		
35	21 40 (C)-(O)	1.270237		
36	22 23 (C)-(C)	1.406653		
37	22 43 (C)-(C)	1.471645		
38	23 24 (C)-(C)	1.414562		
39	23 26 (C)-(O)	1.414416		
40	24 25 (C)-(C)	1.489579		
41	24 27 (C)-(C)	1.399795		
42	25 30 (C)-(O)	1.320305		
43	26 54 (O)-(H)	1.035122		
44	27 28 (C)-(C)	1.387044		

Table S18. Geometry optimized Bond lengths of TIP006136

45	27 31 (C)-(O)	1.411048
46	28 29 (C)-(C)	1.405046
47	28 55 (C)-(H)	1.085196
48	29 30 (C)-(O)	1.378350
49	29 32 (C)-(C)	1.485696
50	32 33 (C)-(C)	1.407815
51	32 37 (C)-(C)	1.409800
52	33 34 (C)-(C)	1.398558
53	33 56 (C)-(H)	1.086437
54	34 35 (C)-(C)	1.397970
55	34 57 (C)-(H)	1.086039
56	35 36 (C)-(C)	1.397658
57	35 38 (C)-(O)	1.410681
58	36 37 (C)-(C)	1.398113
59	36 58 (C)-(H)	1.085903
60	37 59 (C)-(H)	1.084641
61	38 60 (O)-(H)	1.034775
62	39 61 (O)-(H)	1.034614
63	40 41 (O)-(C)	1.437059
64	41 42 (C)-(C)	1.522143
65	41 44 (C)-(C)	1.532342
66	41 45 (C)-(C)	1.533991
67	42 43 (C)-(C)	1.337045
68	42 62 (C)-(H)	1.090013
69	43 63 (C)-(H)	1.088371
70	44 64 (C)-(H)	1.114431
71	44 65 (C)-(H)	1.114219
72	44 66 (C)-(H)	1.114082
73	45 67 (C)-(H)	1.114491
74	45 68 (C)-(H)	1.114793
75	45 69 (C)-(H)	1.114007

Sr. No.	Atoms	Bond Length (Å)
1	1 12 (O)-(C)	1.370166
2	1 20 (O)-(C)	1.421565
3	2 19 (N)-(C)	1.462042
4	2 27 (N)-(C)	1.462557
5	2 28 (N)-(C)	1.462907
6	3 7 (C)-(C)	1.500928
7	3 4 (C)-(C)	1.375295
8	3 5 (C)-(C)	1.453593
9	4 8 (C)-(C)	1.375295
10	4 6 (C)-(C)	1.521712
11	5 10 (C)-(C)	1.394995
12	59 (C)-(C)	1.394794
13	6 11 (C)-(C)	1.523908
14	6 29 (C)-(H)	1.097396
15	6 30 (C)-(H)	1.096010
16	7 15 (C)-(C)	1.372400
17	7 16 (C)-(C)	1.372620
18	8 18 (C)-(C)	1.380789
19	8 17 (C)-(C)	1.379375
20	9 31 (C)-(H)	1.087383
21	9 13 (C)-(C)	1.395085
22	10 14 (C)-(C)	1.395321
23	10 32 (C)-(H)	1.087440
24	11 33 (C)-(H)	1.095062
25	11 34 (C)-(H)	1.094421
26	11 35 (C)-(H)	1.093126
27	12 13 (C)-(C)	1.390223
28	12 14 (C)-(C)	1.390259
29	13 36 (C)-(H)	1.086179
30	14 37 (C)-(H)	1.085243
31	15 21 (C)-(C)	1.394683
32	15 38 (C)-(H)	1.085448
33	16 22 (C)-(C)	1.395400
34	16 39 (C)-(H)	1.085970
35	17 23 (C)-(C)	1.395600
36	17 42 (C)-(H)	1.086499
37	18 24 (C)-(C)	1.394839
38	18 43 (C)-(H)	1.086050
39	19 20 (C)-(C)	1.520336
40	19 40 (C)-(H)	1.098562
41	19 41 (C)-(H)	1.097946
42	20 44 (C)-(H)	1.093934
43	20 45 (C)-(H)	1.098532
44	21 25 (C)-(C)	1.394531

Table S19. Geometry optimized Bond lengths of Tamoxifen

45	21 46 (C)-(H)	1.086211
46	22 25 (C)-(C)	1.395029
47	22 47 (C)-(H)	1.085515
48	23 26 (C)-(C)	1.393807
49	23 48 (C)-(H)	1.085987
50	24 26 (C)-(C)	1.395241
51	24 49 (C)-(H)	1.085129
52	25 50 (C)-(H)	1.085880
53	26 51 (C)-(H)	1.085890
54	27 52 (C)-(H)	1.095966
55	27 53 (C)-(H)	1.095831
56	27 54 (C)-(H)	1.095637
57	28 55 (C)-(H)	1.096877
58	28 56 (C)-(H)	1.095366
59	28 57 (C)-(H)	1.094470

Sr. No.	Atoms	Bond angles	Alternate Bond Angle
1	60 38 35 (H)-(O)-(C)	109.47	106.20
2	38 35 34 (O)-(C)-(C)	120.00	119.49
3	38 35 36 (O)-(C)-(C)	120.00	119.43
4	35 34 33 (C)-(C)-(C)	120.00	119.37
5	34 33 32 (C)-(C)-(C)	120.00	121.05
6	33 32 37 (C)-(C)-(C)	120.00	118.21
7	32 37 36 (C)-(C)-(C)	120.00	121.02
8	37 36 35 (C)-(C)-(C)	120.00	119.25
9	36 35 34 (C)-(C)-(C)	120.00	121.07
10	35 34 57 (C)-(C)-(H)	120.00	120.78
11	57 34 33 (H)-(C)-(C)	120.00	119.85
12	34 33 56 (C)-(C)-(H)	120.00	118.50
13	56 33 32 (H)-(C)-(C)	120.00	120.45
14	32 37 59 (C)-(C)-(H)	120.00	120.65
15	59 37 36 (H)-(C)-(C)	120.00	118.33
16	37 36 58 (C)-(C)-(H)	120.00	119.84
17	58 36 35 (H)-(C)-(C)	120.00	120.91
18	32 29 30 (C)-(C)-(O)	120.00	122.30
19	32 29 28 (C)-(C)-(C)	120.00	125.03
20	29 30 25 (C)-(O)-(C)	120.00	133.64
21	30 25 24 (O)-(C)-(C)	120.00	114.31
22	25 24 27 (C)-(C)-(C)	120.00	118.27
23	24 27 28 (C)-(C)-(C)	120.00	120.53
24	27 28 29 (C)-(C)-(C)	120.00	120.22
25	28 29 30 (C)-(C)-(O)	109.47	112.67
26	55 28 29 (H)-(C)-(C)	120.00	119.83
27	55 28 27 (H)-(C)-(C)	120.00	119.93
28	28 27 31 (C)-(C)-(O)	109.47	110.90
29	27 31 71 (C)-(O)-(H)	109.47	109.46
30	31 27 24 (O)-(C)-(C)	120.00	128.56
31	24 25 7 (C)-(C)-(C)	120.00	122.02
32	25 7 21 (C)-(C)-(C)	120.00	118.56
33	7 21 22 (C)-(C)-(C)	120.00	120.72
34	21 22 23 (C)-(C)-(C)	120.00	119.27
35	22 23 24 (C)-(C)-(C)	120.00	121.81
36	23 24 25 (C)-(C)-(C)	120.00	117.36
37	23 26 54 (C)-(O)-(H)	109.47	106.18
38	26 23 22 (O)-(C)-(C)	120.00	119.15
39	26 23 24 (O)-(C)-(C)	120.00	119.03
40	40 21 22 (O)-(C)-(C)	120.00	122.32
41	21 22 43 (C)-(C)-(C)	120.00	119.47
42	22 43 42 (C)-(C)-(C)	120.00	118.41
43	43 42 41 (C)-(C)-(C)	120.00	122.83
44	42 41 40 (C)-(C)-(O)	120.00	114.86

 Table S20. Geometry optimized Bond angles of TIP006136

45	41 40 21 (C)-(O)-(C)	120.00	118.85
46	22 43 63 (C)-(C)-(H)	120.00	120.54
47	63 43 42 (H)-(C)-(C)	120.00	120.99
48	43 42 62 (C)-(C)-(H)	120.00	118.73
49	62 42 41 (H)-(C)-(C)	120.00	118.43
50	42 41 44 (C)-(C)-(C)	109.47	108.19
51	45 41 44 (C)-(C)-(C)	109.47	109.84
52	41 44 65 (C)-(C)-(H)	109.47	111.17
53	41 44 64 (C)-(C)-(H)	109.47	111.21
54	41 44 66 (C)-(C)-(H)	109.47	111.39
55	66 44 65 (H)-(C)-(H)	109.47	107.37
56	64 44 65 (H)-(C)-(C)	109.47	107.57
57	66 44 64 (H)-(C)-(H)	109.47	107.94
58	41 45 68 (C)-(C)-(H)	109.47	111.98
59	41 45 69 (C)-(C)-(H)	109.47	111.74
60	41 45 67 (C)-(C)-(H)	109.47	111.58
61	69 45 67 (H)-(C)-(H)	109.47	107.05
62	67 45 68 (H)-(C)-(H)	109.47	106.94
63	69 45 68 (H)-(C)-(H)	109.47	107.26
64	7 2 1 (C)-(C)-(C)	120.00	119.67
65	7 2 3 (C)-(C)-(C)	120.00	122.24
66	2 3 4 (C)-(C)-(C)	120.00	121.14
67	3 4 5 (C)-(C)-(C)	120.00	119.67
68	4 5 6 (C)-(C)-(C)	120.00	121.52
69	5 6 1 (C)-(C)-(C)	120.00	117.54
70	1 2 3 (C)-(C)-(C)	120.00	118.07
71	2 3 39 (C)-(C)-(O)	120.00	121.96
72	3 39 61 (C)-(O)-(H)	120.00	108.35
73	39 3 4 (O)-(C)-(C)	120.00	116.86
74	3 4 47 (C)-(C)-(H)	120.00	121.07
75	47 4 5 (H)-(C)-(C)	120.00	119.26
76	4 5 48 (C)-(C)-(H)	120.00	117.28
77	48 5 6 (H)-(C)-(C)	120.00	121.20
78	6 1 46 (C)-(C)-(H)	120.00	119.62
79	46 1 2 (H)-(C)-(C)	120.00	118.38
80	1 6 8 (C)-(C)-(C)	120.00	120.46
81	5 6 8 (C)-(C)-(C)	120.00	121.96
82	9 8 13 (O)-(C)-(C)	120.00	112.33
83	8 13 12 (C)-(C)-(C)	120.00	121.36
84	13 12 11 (C)-(C)-(C)	120.00	120.08
85	12 11 10 (C)-(C)-(C)	120.00	117.56
86	11 10 9 (C)-(C)-(O)	120.00	116.63
87	10 9 8 (C)-(O)-(C)	120.00	131.93
88	8 13 49 (C)-(C)-(H)	120.00	119.83
89	49 13 12 (H)-(C)-(C)	120.00	118.81
90	13 12 19 (C)-(C)-(O)	120.00	110.61

91	12 19 70 (C)-(O)-(H)	109.47	109.46
92	19 12 11 (O)-(C)-(C)	120.00	129.31
93	10 11 17 (C)-(C)-(C)	120.00	117.73
94	11 17 16 (C)-(C)-(C)	120.00	121.45
95	17 16 15 (C)-(C)-(C)	120.00	119.09
96	16 15 14 (C)-(C)-(C)	120.00	121.18
97	15 14 10 (C)-(C)-(C)	120.00	119.14
98	14 10 11 (C)-(C)-(C)	120.00	121.41
99	10 14 50 (C)-(C)-(H)	120.00	119.98
100	50 14 15 (H)-(C)-(C)	120.00	120.89
101	14 15 18 (C)-(C)-(O)	120.00	120.48
102	15 18 52 (C)-(O)-(H)	109.47	108.00
103	18 15 16 (O)-(C)-(C)	120.00	118.32
104	15 16 51 (C)-(C)-(H)	120.00	120.71
105	51 16 17 (H)-(C)-(C)	120.00	120.20
106	16 17 20 (C)-(C)-(O)	120.00	117.88
107	17 20 53 (C)-(O)-(H)	109.47	106.21
108	20 17 11 (O)-(C)-(C)	120.00	120.66

Sr. No.	Atoms	Bond angles	Alternate Bond Angle
1	7 15 21 (C)-(C)-(C)	120.00	118.35
2	15 21 25 (C)-(C)-(C)	120.00	120.02
3	21 25 22 (C)-(C)-(C)	120.00	120.01
4	25 22 16 (C)-(C)-(C)	120.00	119.97
5	22 16 7 (C)-(C)-(C)	120.00	118.35
6	16 7 15 (C)-(C)-(C)	120.00	123.31
7	3 7 15 (C)-(C)-(C)	120.00	118.35
8	7 15 38 (C)-(C)-(H)	120.00	122.16
9	38 15 21 (H)-(C)-(C)	120.00	119.49
10	15 21 46 (C)-(C)-(H)	120.00	120.01
11	46 21 25 (H)-(C)-(C)	120.00	119.97
12	50 25 21 (H)-(C)-(C)	120.00	120.05
13	25 21 46 (C)-(C)-(H)	120.00	119.97
14	46 21 15 (H)-(C)-(C)	120.00	120.01
15	21 15 38 (C)-(C)-(H)	120.00	119.49
16	38 15 7 (H)-(C)-(C)	120.00	122.16
17	15 7 3 (C)-(C)-(C)	120.00	118.35
18	7 3 4 (C)-(C)-(C)	120.00	118.75
19	3 4 8 (C)-(C)-(C)	120.00	122.47
20	4 8 17 (C)-(C)-(C)	120.00	118.92
21	8 17 23 (C)-(C)-(C)	120.00	118.90
22	17 23 26 (C)-(C)-(C)	120.00	120.00
23	23 26 24 (C)-(C)-(C)	120.00	120.06
24	26 24 18 (C)-(C)-(C)	120.00	119.94
25	24 18 8 (C)-(C)-(C)	120.00	118.93
26	18 3 4 (C)-(C)-(C)	120.00	118.91
27	8 17 42 (C)-(C)-(H)	120.00	121.85
28	42 17 23 (H)-(C)-(C)	120.00	119.25
29	17 23 48 (C)-(C)-(H)	120.00	119.99
30	48 23 26 (H)-(C)-(C)	120.00	120.00
31	23 26 51 (C)-(C)-(H)	120.00	120.01
32	51 26 24 (H)-(C)-(C)	120.00	119.93
33	26 24 49 (C)-(C)-(H)	120.00	120.04
34	49 24 18 (H)-(C)-(C)	120.00	120.01
35	24 18 43 (C)-(C)-(H)	120.00	119.42
36	43 18 8 (H)-(C)-(C)	120.00	121.66
37	8 4 6 (C)-(C)-(C)	109.47	113.21
38	4 6 11 (C)-(C)-(C)	109.47	112.71
39	4 6 29 (C)-(C)-(H)	109.47	110.11
40	4 6 30 (C)-(C)-(H)	109.47	111.11
41	30 6 29 (H)-(C)-(H)	109.47	104.57
42	32 6 11 (H)-(C)-(C)	109.47	108.88
43	29 6 11 (H)-(C)-(C)	109.47	109.12
44	6 11 33 (C)-(C)-(H)	109.47	111.33

Table S21. Geometry optimized Bond angles of Tamoxifen

45	6 11 35 (C)-(C)-(H)	109.47	112.41
46	30 11 34 (H)-(C)-(H)	109.47	109.79
47	35 11 33 (H)-(C)-(H)	109.47	108.02
48	35 11 34 (H)-(C)-(H)	109.47	107.83
49	34 11 33 (H)-(C)-(H)	109.47	107.27
50	3 5 9 (C)-(C)-(C)	120.00	120.02
51	5 9 13 (C)-(C)-(C)	120.00	120.00
52	9 13 12 (C)-(C)-(C)	120.00	119.68
53	13 12 14 (C)-(C)-(C)	120.00	120.66
54	12 14 10 (C)-(C)-(C)	120.00	119.60
55	5 10 14 (C)-(C)-(C)	120.00	120.01
56	10 5 3 (C)-(C)-(C)	120.00	119.99
57	5 9 31 (C)-(C)-(H)	120.00	121.01
58	31 9 13 (H)-(C)-(C)	120.00	119.00
59	9 13 36 (C)-(C)-(H)	120.00	119.75
60	36 13 12 (H)-(C)-(C)	120.00	120.56
61	13 12 1 (C)-(C)-(O)	120.00	119.68
62	1 12 14 (O)-(C)-(C)	120.00	119.66
63	12 14 37 (C)-(C)-(H)	120.00	122.73
64	37 14 10 (H)-(C)-(C)	120.00	117.60
65	14 10 32 (C)-(C)-(H)	120.00	119.06
66	32 10 5 (H)-(C)-(C)	120.00	120.92
67	12 1 20 (C)-(O)-(C)	120.00	116.81
68	1 2019 (O)-(C)-(C)	109.47	108.75
69	1 20 44 (O)-(C)-(H)	109.47	106.39
70	1 20 45 (O)-(C)-(H)	109.47	111.90
71	44 20 45 (H)-(C)-(H)	109.47	109.64
72	44 20 19 (H)-(C)-(C)	109.47	112.22
73	45 20 19 (H)-(C)-(C)	109.47	107.98
74	20 19 40 (C)-(C)-(H)	109.47	109.59
75	20 19 41 (C)-(C)-(H)	109.47	108.48
76	40 19 41 (H)-(C)-(H)	109.47	106.08
77	20 19 2 (C)-(C)-(N)	109.47	110.65
78	19 2 28 (C)-(N)-(C)	109.47	110.50
79	19 2 27 (C)-(N)-(C)	109.47	110.45
80	28 2 27 (C)-(N)-(C)	109.47	110.43
81	2 28 56 (N)-(C)-(H)	109.47	112.55
82	2 28 55 (N)-(C)-(H)	109.47	110.33
83	2 28 57 (N)-(C)-(H)	109.47	111.87
84	2 27 52 (N)-(C)-(H)	109.47	110.56
85	2 27 53 (N)-(C)-(H)	109.47	112.19
86	2 27 54 (N)-(C)-(H)	109.47	110.63
87	53 27 52 (H)-(C)-(H)	109.47	108.33
88	52 27 54 (H)-(C)-(H)	109.47	106.50
89	54 27 53 (H)-(C)-(H)	109.47	108.42
90	57 28 56 (H)-(C)-(H)	109.47	109.49

91	56 28 55 (H)-(C)-(H)	109.47	107.51
92	57 28 55 (H)-(C)-(H)	109.47	104.71
93	40 19 2 (H)-(C)-(N)	109.47	111.74
94	41 19 2 (H)-(C)-(N)	109.47	110.15

Cycles	Energy (au)
1	64.193887
2	-114.01673
3	37.06030502
4	-191.1016432
5	-121.5098459
6	-211.3413018
7	-200.8554834
8	-214.8972095
9	-225.2095445
10	-226.4531308
11	-226.090228
12	-230.4996102
13	-233.5774397
14	-230.2567218
15	-217.7936375
16	-228.2658582
17	-233.4600727
18	-233.8788543
19	-220.7492268
20	-222.1162925
21	-232.297639
22	-235.7384853
23	-198.844338
24	-233.9161395
25	-239.5471021
26	-231.5627202
27	-188.1119466
28	-226.8926943
29	-228.9656724
30	-230.3131129
31	-233.0190993
32	-229.7379345
33	-235.006075
34	-231.8503796
35	-237.3942163
36	-236.9077177
37	-233.1867145
38	-236.8216569
39	-237.6404819
40	-236.8075563
41	-239.8233139
42	-239.7135747
43	-232.3062759
44	-237.1176674
1	1

Table S22. Geometry optimized Energies of TIP006136

45	-239.6398664
46	-241.8142436
47	-183.296833
48	-231.1524337
49	-231.1593476
50	-232.2573762
51	-230.9677837
52	-230.7541211
53	-233.1898744
54	-232.7856193
55	-234.4611125
56	-233.2606298
57	-234.0384677
58	-234.1809441
59	-237.1889713
60	-236.5943417
61	-236.3013478
62	-235.5577027
63	-239.6187689
64	-244.3344637
65	-243.4838603
66	-160.9651544
67	-228.4022075
68	-231.7475079
69	-205.0409361
70	-219.1713619
71	-228.3293175
72	-229.3638786
73	-229.7392253
74	-231.5520478
75	-233.2374376
76	-222.6605088
77	-230.0700096
78	-233.3504046
79	-235.6100145
80	-227.6562914
81	-234.7760354
82	-233.8213456
83	-237.8630246
84	-239.9031075
85	-218.0096644
86	-222.5358294
87	-233.0938107
88	-235.1837804
89	-214.151053
90	-232.0789086

91	-233.773072
92	-231.66622
93	-220.1721482
94	-232.7434023
95	-233.0368048
96	-221.6061694
97	-225.6129928
98	-230.7085813
99	-233.3155342
100	-229.6477703
101	-234.5228899
102	-235.8894169
103	-236.7562038
104	-223.323908
105	-235.1828319
106	-236.2676211
107	-238.6437393
108	-228.2134786
109	-238.8129487
110	-237.4019202
111	-241.1215979
112	-244.6801906
113	-210.704699
114	-220.7844632
115	-231.1949727
116	-231.2162349
117	-233.0027746
118	-228.701333
119	-232.6634585
120	-233.029894
121	-235.5061903
122	-234.5935979
123	-236.5842464
124	-237.8637504
125	-236.9397856
126	-221.0232682
127	-224.4298599
128	-231.3666416
129	-232.2593205
130	-227.2791726
131	-232.3219146
132	-232.9023434
133	-236.3109554
134	-236.6437216
135	-197.0237983
136	-225.3016122

137	-231.0966473
138	-232.9428081
139	-229.1443168
140	-233.1449934
141	-231.0641847
142	-235.5544236
143	-235.0770126
144	-222.2125361
145	-220.8908388
146	-229.5110095
147	-232.7040609
148	-226.2121217
149	-230.6222333
150	-230.2449187
151	-234.8978815
152	-236.0323853
153	-224.1717577
154	-211.8017461
155	-226.3074139
156	-228.7461073
157	-233.2172661
158	-235.7589757
159	-171.1021147
160	-228.7017842
161	-228.7276893
162	-228.7077251
163	-219.6235099
164	-232.1988553
165	-238.3818501
166	-209.7506204
167	-216.6378288
168	-229.8245803
169	-234.3617322
170	-209.1171362
171	-227.9416701
172	-229.6971689
173	-234.5028159
174	-239.8687635
175	-200,1613023
176	-221.8443683
177	-227.5069542
178	-230,8037779
179	-232,949876
180	-228 7629671
181	-229 9406665
192	-225.5400005
102	-223.3331543

183	-234.2593467
184	-237.041249
185	-206.2074307
186	-213.2065364
187	-225.9244288
188	-227.9389633
189	-230.5666899
190	-221.561777
191	-232.6403
192	-235.749564
193	-202.2812569
194	-222.4392664
195	-228.1279804
196	-231.0399824
197	-231.9094843
198	-225.4825343
199	-220.732886
200	-230.0277041

Cycles	Energy (au)
1	48.592909
2	-53.18778355
3	13.4990924
4	-105.6109618
5	-84.83370898
6	-111.0923604
7	-112.7267153
8	-112.0818493
9	-116.6563697
10	-119.3970599
11	-123.149028
12	-121.6790976
13	-124.5788999
14	-124.4310404
15	-126.1845768
16	-129.7599084
17	-133.3755144
18	-121.7895556
19	-126.9496875
20	-125.5815619
21	-127.4832877
22	-126.7803907
23	-127.1502806
24	-124.9385462
25	-127.5183871
26	-130.2398262
27	-141.2938361
28	-145.1427425
29	-146.1432362
30	-146.3064928
31	-146.3127861
32	-146.3132154
33	-146.3132685
34	-146.3132838
35	-146.3132883
36	-146.3132902
37	-146.3132909
38	-146.3132912
39	-146.3132914
40	-146.3132914
41	-146.3132915
42	-146.3132915
43	-146.3132915
44	-146.3132915

Table S23. Geometry optimized Energies of Tamoxifen

45	-146.3132915
46	-146.3132915
47	-146.3132915
48	-146.3132915
49	-146.3132915
50	-146.3132915
51	-146.3132915
52	-146.3132915
53	-146.3132915
54	-146.3132915
55	-146.3132915
56	-146.3132915
57	-146.3132915
58	-146.3132915
59	-146.3132915
60	-146.3132915
61	-146.3132915
62	-146.3132915
63	-146.3132915
64	-146.3132915
65	-146.3132915
66	-146.3132915
67	-146.3132915
68	-146.3132915
69	-146.3132915
70	-146.3132915
71	-146.3132915
72	-146.3132915
73	-146.3132915
74	-146.3132915
75	-146.3132915
76	-146.3132915
77	-146.3132915
78	-146.3132915
79	-146.3132915
80	-146.3132915
81	-146.3132915
82	-146.3132915
83	-146.3132915
84	-146.3132915
85	-146.3132915
86	-146.3132915
87	-146.3132915
88	-146.3132915
89	-146.3132915
90	-146.3132915

91	-146.3132915
92	-146.3132915
93	-146.3132915
94	-146.3132915
95	-146.3132915
96	-146.3132915
97	-146.3132915

Figure S3 (A-F). Intermolecular hydrogen bonding, electrostatic and hydrophobic interactions formed between 6 screened phytochemicals against Native BRCA2.

The images are drawn by BIOVIA Discovery Studio 20.1 Visualizer.

Figure S4 (A-F). Intermolecular hydrogen bonding, electrostatic and hydrophobic interactions formed between 6 screened phytochemicals against Native BRCA2.

Figure S5 (A-F). Intermolecular hydrogen bonding, electrostatic and hydrophobic interactions formed between Tamoxifen against Mutant BRCA2.

The images are drawn by BIOVIA Discovery Studio 20.1 Visualizer.

Figure S6 (A-F). Intermolecular hydrogen bonding, electrostatic and hydrophobic interactions formed between Tamoxifen against Mutant BRCA2.

Figure S7 (A-F). Intermolecular hydrogen bonding, electrostatic and hydrophobic interactions formed between Tamoxifen against Mutant BRCA2.

The images are drawn by BIOVIA Discovery Studio 20.1 Visualizer.

Figure S8 (A-F). Intermolecular hydrogen bonding, electrostatic and hydrophobic interactions formed between TIP006136 against Mutant BRCA2.

Figure S9 (A-F). Intermolecular hydrogen bonding, electrostatic and hydrophobic interactions formed between TIP006136 against Mutant BRCA2.

The images are drawn by BIOVIA Discovery Studio 20.1 Visualizer.

Figure S10 (A-D). Intermolecular hydrogen bonding, electrostatic and hydrophobic interactions formed between TIP006136 against Mutant BRCA2.

Figure S11. (A) Pre-MD simulations intermolecular hydrogen bonding, electrostatic and hydrophobic contacts formed between BRCA2-Tamoxifen complex (B) Post-MD simulations intermolecular hydrogen bonding, electrostatic and hydrophobic contacts formed between BRCA2-Tamoxifen complex.

The images are drawn by BIOVIA Discovery Studio 20.1 Visualizer.

Figure S12. (A) Pre-MD simulations intermolecular hydrogen bonding, electrostatic and hydrophobic contacts formed between R3052W-Tamoxifen complex (B) Post-MD simulations intermolecular hydrogen bonding, electrostatic and hydrophobic contacts formed between R3052W -Tamoxifen complex.

11. References

- Couch, F. J.; Farid, L. M.; DeShano, M. L.; Tavtigian, S. V.; Calzone, K.; Campeau, L.; Peng, Y.; Bogden, B.; Chen, Q.; Neuhausen, S.; Shattuck-Eidens, D.; Godwin, A. K.; Daly, M.; Radford, D. M.; Sedlacek, S.; Rommens, J.; Simard, J.; Garber, J.; Merajver, S.; Weber, B. L. BRCA2 Germline Mutations in Male Breast Cancer Cases and Breast Cancer Families. *Nat. Genet.* **1996**, *13* (1), 123–125. https://doi.org/10.1038/NG0596-123.
- (2) Thorlacius, S.; Olafsdottir, G.; Tryggvadottir, L.; Neuhausen, S.; Jonasson, J. G.; Tavtigian, S. V.; Tulinius, H.; Ögmundsdottir, H. M.; Eyfjörd, J. E. A Single BRCA2 Mutation in Male and Female Breast Cancer Families from Iceland with Varied Cancer Phenotypes. *Nat. Genet.* 1996, 13 (1), 117–119. https://doi.org/10.1038/NG0596-117.
- (3) Friedman, L. S.; Gayther, S. A.; Kurosaki, T.; Gordon, D.; Noble, B.; Casey, G.; Ponder, B. A. J.; Anton-Culver, H. Mutation Analysis of BRCA1 and BRCA2 in a Male Breast Cancer Population. *Am. J. Hum. Genet.* **1997**, *60* (2), 313-319.
- (4) Mavraki, E.; Gray, I. C.; Bishop, D. T.; Spurr, N. K. Germline BRCA2 Mutations in Men with Breast Cancer. *Br. J. Cancer* **1997**, *76* (11), 1428-1431. https://doi.org/10.1038/BJC.1997.574.
- (5) Haraldsson, K.; Loman, N.; Zhang, Q.X.; Johannsson, O.; Olsson, H.; Borg, Å. BRCA2 germ-line mutations are frequent in male breast cancer patients without a family history of the disease. Cancer res., **1998**, *58* (7), 1367-1371.
- (6) Csokay, B.; Udvarhelyi, N.; Sulyok, Z.; Besznyak, I.; Ramus, S.; Ponder, B.; Olah, E. High frequency of germ-line BRCA2 mutations among Hungarian male breast cancer patients without family history. Cancer res., **1999**, *59* (5), 995-998.
- Kwiatkowska, E.; Teresiak, M.; Lamperska, K. M.; Karczewska, A.; Breborowicz, D.; Stawicka, M.; Godlewski, D.; Krzyzosiak, W. J.; Mackiewicz, A. BRCA2 Germline Mutations in Male Breast Cancer Patients in the Polish Population. *Hum. Mutat.* 2001, *17*(1), 73. https://doi.org/10.1055/s-2007-990330.
- Sverdlov, R. S.; Barshack, I.; Bar Sade, R. B.; Baruch, R. G.; Hirsh-Yehezkel, G.; Dagan, E.;
 Feinmesser, M.; Figer, A.; Friedman, E. Genetic Analyses of Male Breast Cancer in Israel.
 https://www.liebertpub.com/gte 2000, 4 (3), 313–317.
 https://doi.org/10.1089/10906570050501579.
- (9) Díez, O.; Cortés, J.; Domènech, M.; Pericay, C.; Brunet, J.; Alonso, C.; Baiget, M. BRCA2 Germ-Line Mutations in Spanish Male Breast Cancer Patients. Ann. Oncol. 2000, 11 (1), 81–84. https://doi.org/10.1023/A:1008339009528.
- (10) Basham, V. M.; Lipscombe, J. M.; Ward, J. M.; Gayther, S. A.; Ponder, B. A. J.; Easton, D. F.; Pharoah, P. D. P. BRCA1 and BRCA2 Mutations in a Population-Based Study of Male Breast Cancer. *Breast Cancer Res.* 2002, 4 (1), R2. https://doi.org/10.1186/BCR419.
- (11) Frank, T. S.; Deffenbaugh, A. M.; Reid, J. E.; Hulick, M.; Ward, B. E.; Lingenfelter, B.; Gumpper, K. L.; Scholl, T.; Tavtigian, S. V.; Pruss, D. R.; Critchfield, G. C. Clinical Characteristics of Individuals with Germline Mutations in BRCA1 and BRCA2: Analysis of 10,000 Individuals. *J. Clin. Oncol.* 2002, 20 (6), 1480–1490. https://doi.org/10.1200/JCO.2002.20.6.1480.
- Ottini, L.; Masala, G.; D'Amico, C.; Mancini, B.; Saieva, C.; Aceto, G.; Gestri, D.; Vezzosi, V.; Falchetti, M.; De Marco, M.; Paglierani, M. BRCA1 and BRCA2 mutation status and tumor characteristics in male breast cancer: a population-based study in Italy. Cancer Res., 2003, 63 (2), 342-347.
- Palli, D.; Falchetti, M.; Masala, G.; Lupi, R.; Sera, F.; Saieva, C.; D'Amico, C.; Ceroti, M.; Rizzolo, P.; Caligo, M. A.; Zanna, I.; Ottini, L. Association between the BRCA2 N372H Variant and Male Breast Cancer Risk: A Population-Based Case-Control Study in Tuscany, Central Italy. *BMC Cancer* 2007, 7, 170. https://doi.org/10.1186/1471-2407-7-170.
- Besic, N.; Cernivc, B.; Greve, J. De; Lokar, K.; Krajc, M.; Novaković, S.; Žgajnar, J.; Teugels, E.
 BRCA Gene Mutations in Slovenian Male Breast Cancer Patients. *Senol. Zeitschrift für Mammadiagnostik und -therapie* 2007, 4 (03), A15. https://doi.org/10.1055/S-2007-990330.

- (15) Tai, Y. C.; Domchek, S.; Parmigiani, G.; Chen, S. Breast Cancer Risk among Male BRCA1 and BRCA2 Mutation Carriers. J. Natl. Cancer Inst. 2007, 99 (23), 1811–1814. https://doi.org/10.1093/JNCI/DJM203.
- Evans, D. G. R.; Bulman, M.; Young, K.; Howard, E.; Bayliss, S.; Wallace, A.; Lalloo, F. BRCA1/2 Mutation Analysis in Male Breast Cancer Families from North West England. *Fam. Cancer* 2008, 7 (2), 113–117. https://doi.org/10.1007/S10689-007-9153-9.
- (17) Ottini, L.; Rizzolo, P.; Zanna, I.; Falchetti, M.; Masala, G.; Ceccarelli, K.; Vezzosi, V.; Gulino, A.; Giannini, G.; Bianchi, S.; Sera, F.; Palli, D. BRCA1/BRCA2 Mutation Status and Clinical-Pathologic Features of 108 Male Breast Cancer Cases from Tuscany: A Population-Based Study in Central Italy. *Breast Cancer Res. Treat.* **2009**, *116* (3), 577–586. https://doi.org/10.1007/S10549-008-0194-Z.
- Ding, Y. C.; Steele, L.; Kuan, C. J.; Greilac, S.; Neuhausen, S. L. Mutations in BRCA2 and PALB2 in Male Breast Cancer Cases from the United States. *Breast Cancer Res. Treat. 2010 1263* 2010, *126* (3), 771–778. https://doi.org/10.1007/S10549-010-1195-2.
- de Juan, I.; Palanca, S.; Domenech, A.; Feliubadaló, L.; Segura, Á.; Osorio, A.; Chirivella, I.; de la Hoya, M.; Sánchez, A. B.; Infante, M.; Tena, I.; Díez, O.; Garcia-Casado, Z.; Vega, A.; Teulé, À.; Barroso, A.; Pérez, P.; Durán, M.; Carrasco, E.; Juan-Fita, M. J.; Murria, R.; Llop, M.; Barragan, E.; Izquierdo, Á.; Benítez, J.; Caldés, T.; Salas, D.; Bolufer, P. BRCA1 and BRCA2 Mutations in Males with Familial Breast and Ovarian Cancer Syndrome. Results of a Spanish Multicenter Study. *Fam. Cancer 2015 144* **2015**, *14* (4), 505–513. https://doi.org/10.1007/S10689-015-9814-Z.
- Schayek, H.; Korach, H.; Laitman, Y.; Bernstein-Molho, R.; Friedman, E. Mutational Analysis of Candidate Genes in Israeli Male Breast Cancer Cases. *Breast Cancer Res. Treat. 2018 1702* 2018, *170* (2), 399–404. https://doi.org/10.1007/S10549-018-4765-3.