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Gene/transgene Use Primer Sequence

FLP genotyping FLP     For GAGACAAAGACAAGCGTTAGTAGG

genotyping FLP    Rev GTGCGAAGTAGTGATCAGGTATTG

Cre genotyping Cre    For CACCAGCCAGCTATCAACTCG

genotyping Cre    Rev TTACATTGGTCCAGCCACCAG

Ambra1<tm1a> genotyping Neo   For GGGATCTCATGCTGGAGTTCTTCG

genotyping tm1c   Rev CTAATCCGCCTACTGCGACT

Ambra1<tm1c> genotyping tm1c_d   For TGATAGTCCACGCTCGACCT

genotyping tm1c   Rev CTAATCCGCCTACTGCGACT

Ambra1<tm1d> genotyping tm1c_d   For TGATAGTCCACGCTCGACCT

genotyping tm1d    Rev TGAACATTCCAGCTTGGTGC

Ambra1 (wt) genotyping Ambra1   For TCTGGTTGCCTAGATGGGGA

genotyping Ambra1   Rev ACTCATGTTAGAGCCTCCTGC

Tert qPCR TERT For CTAGCTCATGTGTCAAGACCCTCTT

qPCR TERT Rev GCCAGCACGTTTCTCTCGTT

Nd4 qPCR ND4 For AACGGATCCACAGCCGTA

qPCR ND4 Rev AGTCCTCGGGCCATGATT

Ppargc1a qPCR PGC1α For CACCAAACCCACAGAAAACAG

qPCR PGC1α Rev GGGTCAGAGGAAGAGATAAAGTTG

Tfam qPCR TFAM For CACCCAGATGCAAAACTTTCAG

qPCR TFAM Rev CTGCTCTTTATACTTGCTCACAG

Ambra1 qPCR Ambra1 For CTGCCTGATAGTCCACGCTC

qPCR Ambra1 Rev TGTGTGGATGCCAAGAGAGTC

Supplementary Table S1

List of primer sequences used for genotyping or qPCR.

Supplementary Table S2

List of antibodies and concentrations used for western blotting (WB) or immunofluorescence (IF).

Primary 
antibody Company cat.n use conc

FLAG Sigma F1804 WB 1:1000 

GAPDH Millipore MAB374 WB 1:50000

COX4 Cell Signalling 4844 WB 1:2000 

LC3B Thermo PA1-169 WB 1:1000 

Ambra1 Millipore ABC131 WB 1:1000 

Vinculin Sigma V4505 WB 1:2000 

Dystrophin SCBT sc-15376 IF 1:100

Myosin IIA DSHB SC-71-c IF 1:100

LAMP1 DSHB 1D4B IF,WB
1:100, 

1:1000

TOMM20 SCBT sc-11415 IF,WB
1:100, 

1:1000

DRP1 BD Bioscience 611112 WB 1:1000 

PARK2 SCBT sc-32282 WB 1:1000 

SQSTM1 Progen GP62-C WB 1:1000 

TFAM Genetex 103231 WB 1:1000 

PGC-1α Abcam Ab54481 WB 1:1000 
Histone-H1 SCBT sc-10806 WB 1:1000
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Supplementary Figure S1. Generation and characterization of Ambra1 knockout mice.

(a) Schematic drawing of the procedure for generation of whole-body and muscle-specific

Ambra1 knockout mice. The Ambra1 <tm1a(EUCOMM)Wtsi> (“tm1a”) construct is made of

FRT-flanked lacZ/neo cassettes inserted in the fourth intron of Ambra1 gene and followed by

one loxP site. Two additional loxP sites are inserted between lacZ and neo cassettes and

downstream Ambra1 exon 4, respectively. A conditional Ambra1 floxed (“tm1c”) allele, in

which exon 4 is flanked by loxP sites, is obtained by FLP recombinase expression.

Subsequent Cre expression results in the deletion of exon 4 and generation of a null (“tm1d”)

allele for Ambra1 gene. Whole-body Ambra1 null (Ambra1–/–) embryos were generated by

breeding Ambra1 floxed (Ambra1fl/fl) mice with transgenic mice carrying the CAG-Cre

transgene, in which Cre expression is driven by a chicken cytomegalovirus immediate early

enhancer/chicken beta-actin hybrid promoter, thus allowing for Cre-mediated recombination

at the zygote stage. Muscle-specific Ambra1 null (Ambra1fl/fl:Mlc1f-Cre) mice were obtained

by breeding Ambra1 floxed (Ambra1fl/fl) mice with mice carrying the Cre transgene under the

control of the Mlc1f promoter, which allows for selective expression of Cre recombinase in

skeletal muscle. (b) Western blotting for Ambra1 in protein extracts derived from whole

Ambra1fl/fl (fl/fl) and Ambra1–/– (–/–) embryos. Ponceau staining served as a loading control.

The square bracket indicates the position of Ambra1 signal. (c) Quantitative RT-PCR for

Ambra1 mRNA in whole Ambra1fl/fl, Ambra1fl/– and Ambra1–/– embryos. Data are shown as

mean±s.e.m. (n = 4 mice, each genotype; ***, P<0.001). (d) Genotypic analysis of the

progeny of Ambra1fl/− mating pairs, as determined at the embryonic stage E13.5 and in

newborn pups, comparing expected mendelian genotypes (exp) with the observed genotypes

(obs) (***, P<0.001; n.s., not significant). (e) Phenotypic defects of Ambra1–/– E13.5 embryos.

From left to right, the respective panels show representative images of: (i) macroscopic

appearance of E13.5 Ambra1fl/fl and Ambra1–/– embryos; (ii) haematoxylin-eosin staining of a

frontal section of the head, in which arrowhead points at exencephaly; (iii) haematoxylin-

eosin staining of the dorsal region of the trunk, showing enlargement of the caudal part of the

neural tube (arrowhead); (iv) haematoxylin-eosin staining of a sagittal section of the caudal

region, showing defective closure of the neural tube (arrowhead). Scale bar, 1 mm. (f)

Western blotting for p62/SQSTM1 and LC3 in protein extracts of Ambra1fl/fl and Ambra1–/–

E13.5 embryos. GAPDH was used as loading control. Densitometric quantifications of

SQSTM1 vs GAPDH and of LC3-II vs GAPDH, as determined by at least three independent

experiments, are shown on the right panels. Data are shown as mean±s.e.m. (n = 4-5 mice,

each genotype; *, P <0.05).
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Supplementary Figure S2. Characterization of muscle-specific Ambra1 knockout

mice. (a) Western blot analysis to confirm correct Ambra1 ablation in different types of

skeletal muscles. The panels show representative blotting of protein extracts from tibialis

anterior, quadriceps (Quadri) and soleus muscle of Ambra1fl/fl (Aff) and Ambra1f/f:Mlc1f-

Cre (Aff:Mlc1f) mice. Ponceau staining or GAPDH were used as loading controls.

Asterisks mark non-specific bands. (b) Morphometric analysis for CSA distribution among

myofibers and average cross-sectional area of fiber type IIA (left) and type IIB/IIX (right) of

6-month-old Ambra1fl/fl (Aff) and Ambra1fl/fl::Mlc1f-Cre (Aff:Mlc1f) mice. Data are shown as

mean±s.e.m. (n = 5-6 mice, each genotype; *, P <0.05). (c) Representative western

blotting for LC3 in TA muscle protein extract from 6-month-old Ambra1fl/fl (Aff) and

Ambra1fl/fl::Mlc1f-Cre (Aff:Mlc1f) mice, treated (+) or not (-) with colchicine (COL). GAPDH

was used as loading control. Densitometric quantifications of LC3-I vs LC3-II and of LC3-II

vs GAPDH, as determined by at least three independent experiments, are shown on the

right panels. Data are shown as mean±s.e.m. (n = 6-7 mice, each condition; *, P <0.05;

n.s., not significant). (d) Western blotting for LAMP1 and TOMM20 in protein extract of TA

muscle from 6-month-old Ambra1f/f (Aff) and Ambra1f/f:Mlc1f-Cre (Aff:Mlc1f-Cre) mice.

GAPDH was used as loading control. Densitometric quantifications of LAMP1 vs GAPDH

and of TOMM20 vs GAPDH are shown on the right panels. Data are provided as

mean±s.e.m. (n = 4-6 mice, each genotype; *, P <0.05).



Supplementary Figure S3
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Supplementary Figure S3. Investigate mitochondria in muscles lacking

Ambra1. (a) Western blotting for PGC-1α and TFAM in total protein extract of

quadriceps muscle from 6-month-old Ambra1f/f (Aff) and Ambra1f/f:Mlc1f-Cre

(Aff:Mlc1f-Cre) mice. GAPDH was used as loading control. Densitometric

quantifications of PGC-1α vs GAPDH and of TFAM vs GAPDH are shown on the

bottom panels. Data are provided as mean±s.e.m. (n = 5-6 mice, each genotype

n.s., not significant). (b) Western blotting for PGC-1α in nuclear fraction protein

extract from quadriceps muscle of 6-month-old Ambra1f/f (Aff) and Ambra1f/f:Mlc1f-

Cre (Aff:Mlc1f-Cre) mice. Histone-H1 was used as loading control. Densitometric

quantifications of PGC-1α vs Histone-H1 are shown on the bottom panel. Data are

provided as mean±s.e.m. (n = 5-6 mice, each genotype; n.s., not significant). (c)

Quantitative RT-PCR for PGC-1α and TFAM transcripts in quadriceps muscle of 6-

month-old Ambra1fl/fl (Aff) and Ambra1fl/fl:Mlc1f-Cre (Aff:Mlc1f) mice. Data are

shown as mean±s.e.m. (n = 6-7 mice, each genotype; n.s., not significant). (d)

Quantitative PCR for mitochondrial DNA (mDNA), normalized on nuclear DNA

(nDNA), in quadriceps muscle of 6-month-old Ambra1fl/fl (Aff) and Ambra1fl/fl:Mlc1f-

Cre (Aff:Mlc1f) mice. Data are shown as mean±s.e.m. (n = 4 mice, each genotype;

n.s., not significant). (e) Quantification of the activity of respiratory chain complex I

(CI), complex II (CII), complex III (CIII), complex IV (CIV), complex I+III (SCI+III)

and complex II+III (SCII+III) in mitochondria isolated from quadriceps muscles of

sedentary 6-month-old Ambra1fl/fl (Aff) and Ambra1fl/fl:Mlc1f-Cre (Aff:Mlc1f) mice.

The activity of the different complexes was normalized on citrate synthase (CS)

activity. Data are shown as mean±s.e.m. (n = 4 mice, each genotype; n.s., not

significant).
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