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Section 1.  Morse Oscillator as an Illustrative Model for Vibrational Excitation 

The Morse oscillator [P. M. Morse, “Diatomic Molecules According to the Wave 

Mechanics. II. Vibrational Levels,” Phys. Rev. 34, 57–64 (1929); also R. B. Shirts, “Use of 

Classical Fourier Amplitudes as Quantum Matrix Elements:  A Comparison of Morse Oscillator 

Fourier Coefficients with Quantum Matrix Elements,” J. Phys. Chem. 91, 2258–2267 (1987)] is 

a useful approximate description of the stretching motion of a diatomic molecule.  The 

Hamiltonian that describes the molecular kinetic and potential energy is
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H 0=
−ℏ2

2m
∂2

∂q2+D (1−e−α q )2, (S1)

where the parameters are the dissociation energy, D, the reduced mass, m, and the length 

parameter, α.  The coordinate, q, is the deviation of the bond length from its equilibrium value, q 

= R − Re.  When an example is needed here, we will choose parameters appropriate for the 

hydrogen fluoride molecule, HF:  m = 1.589229 × 10-24 g, D = 6.123 eV, and α = 2.2188 × 108 

cm-1  [B. G. Dibble and R. B. Shirts, Theoretical Prediction of Ultrahigh Vibration Excitation 

Using Picosecond IR Pulse Trains:  Coherent Absorption of Several Photons Each of Different 

Frequency, J. Chem. Phys. 94, 3451–3467 (1991)].  The energy levels and zero-order 

wavefunctions of the Morse oscillator are well known [Morse, (1929) and Dibble/Shirts (1991)]. 

The energy levels are given by:

En
0=ℏ (n+1/2 )ω0−

ℏ2 (n+1/2 )2ω0
2

4D
, (S2)

for n = 0, 1, 2,. . . nmax − 1, where ω0 = α(2D/m)1/2 is the classical frequency of vibration in the 

low energy limit.  For the HF parameters above, nmax = 24 and there are 24 bound states.  

Section 2.  Electric Dipole Coupling 

When a diatomic molecule interacts with an electromagnetic field, a suitable time-

dependent Hamiltonian for vibration is [L. I. Schiff, Quantum Mechanics, 3rd ed. (McGraw-Hill,

New York, 1968), p. 177:

H ( x⃗ , t )=∑
j

1
2mj

[−iℏ∇ j−
e j
c
A ( x⃗ ,t )]

2

+V ( x⃗ )+eΦ ( x⃗ ), (S3)

where ej is the charge of particle j, c is the speed of light,  and A and Φ are the vector and scalar 
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potentials which describe the field.  Because of the gauge flexibility in the field, we can choose 

Φ(x) = 0 and ∇⋅A = 0 (Coulomb gauge) without loss of generality [Schiff (1968), p. 177)]. Thus:

H ( x⃗ , t )=−∑
j

ℏ2

2mj
∇ j

2+V ( x⃗ )+∑
j [ iℏ e jmj c

A ( x⃗ , t )+
e j

2

2mj c
2 A ⋅ A ]. (S4)

This Hamiltonian can now be separated into time-independent and time-dependent parts.  The 

first two terms are the time-independent Hamiltonian, H0(q), and the latter two are the time 

dependent Hamiltonian, H1(q, t).  Since the first term of H1 dominates the second in most 

situations, we will neglect the A2 term.  Ignoring uniform translational motion and overall 

rotation of the molecule, the time-independent terms can be rewritten in terms of the relative 

motion of the atoms in a diatomic molecule to obtain Eq. (S1).  Using a gauge transformation, 

the time-dependent term can be written as the dipole moment dotted into the electric field vector 

of the electromagnetic field [R. B. Shirts and T. F. Davis, “Classical Resonance Analysis of 

Conservative Models of Infrared Multiphoton Absorption,” J. Phys. Chem. 88, 4665–4671 

(1984)]:

H=−ℏ
2

2m
∂2

∂q2 +D (1−e−α q )2− µ (q ) ⋅E (t ), (S5)

where m is the reduced mass of the diatomic molecule, and the Morse potential from Eq. (S1) is 

an excellent approximation for V(q); µ(q) parameterizes the dipole moment of the molecule as it 

vibrates (for HF, we will use the parameterization of Ogilvie, et al. [J. F. Ogilvie, W. R. Rodwell 

and R. H. Tipping,  “Dipole moment functions of the hydrogen halides,” J. Chem. Phys. 73, 

5221–5229 (1980) and Dibble/Shirts (1991)], and E(t) is the projection of the electric field on the

internuclear axis of the molecule.  Numerically calculated matrix elements of the dipole moment 

operator for HF are tabulated in Section 5 below.
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Section 3.  Perturbation Theory Beyond the Rotating Wave Approximation 

The inclusion of the counter-rotating term in Eq. (11) into Eq. (5) through perturbation 

theory can be done in several ways.  Shirley [J. H. Shirley, “Solution of the Schrodinger Equation

with a Hamiltonian Periodic in Time,” Phys. Rev. 138, B979–B987 (1965)] has given a clear 

exposition of one method based on Floquet theory.  We have investigated another method which 

gives good results for the cases that we have checked.  Our method consists of treating the 

counter-rotating term in Eq. (11) as a perturbation in ordinary, Raleigh-Schrödinger perturbation 

theory.  We take

an=∑
k=0

∞

λk an
(k ) (S6)

where λ is a dummy perturbation parameter.  A factor of λ is likewise placed in the counter-

rotating term.  Restricting ourselves to two levels and using the same notation at Section IIA, 

substitution in Eq. (5) and equating terms with equal powers of λ yields the following equations 

for the amplitudes

˙a1
( k )=iVa2

(k ) ei (δ t+γ )+iVa2
(k−1) e− i (ε t+ γ )

˙a2
( k )=iVa1

(k ) e− i ( δ t+γ )+iVa1
(k−1 ) ei (ε t+ γ ) (S7)

where ω − ω21= δ is the detuning and ω + ω21 = ε is the counter-rotating-wave frequency.  The 

zero-order solution to these equations is just the Rabi solution, Eq. (13).  The solution for higher 

orders requires solution of a second-order inhomogeneous differential equation. There can be 

several inhomogeneous terms, but since the equation is linear and since the inhomogeneous 

terms are all of the same form, the solution is straightforward though tedious.  For small 

detunings and for small fields (δ, V << ε) and retaining only terms of the lowest order in V, the 
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amplitude of the upper state is given by

a2
( 1 )= εV

Ω ( ε2+V 2 ) [Ωcos (Ω t )+i δ
2

sin (Ω t )ei ( ε t+δ t /2+ γ )] (S8)

Near resonance, the frequency of this term is ε ≈ 2ω.  This term gives, to first order in V, the size 

and phase of the fast oscillations in Figs. 1 and 2 (neglecting diagonal matrix elements of the 

dipole moment).

Section 4.  Beats Between Coupled Classical Oscillators

This section reviews several features of classical, coupled harmonic oscillator systems 

which have behavior strictly analogous to that shown by the quantum systems discussed in the 

accompanying paper.  First, consider the simple, familiar harmonic oscillator Hamiltonian

H= p2

2m
+ k q

2

2
, (S9)

where q is the coordinate, p is the canonical momentum conjugate to q,  m is the mass, k is the 

force constant, and the angular oscillation frequency is ω = (k/m)1/2.  A canonical transformation 

to action-angle variables (I, θ) can be made (H. Goldstein, Classical Mechanics, 2nd ed. 

(Addison-Wesley, Reading, Mass., 1980), p. 462) where

I= 1
2 π∮ p dq, (S10)

where the integral is over one cycle of the motion and

tanθ= − p
q√mk

. (S11)

In these variables the Hamiltonian transforms to

H=Iω, (S12)

 and the motion is described simply by a time invariant action, I, and a linearly evolving angle 
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variable:

θ=ω t+θ0, (S13)

where θ0 is the initial phase.  Motion can be considered to be in a two-dimensional plane with 

horizontal q-axis and vertical p-axis, where rotation is in a clockwise direction.  The radius of 

circular motion is constant only when q is scaled by (mk)1/2 and is given by (2I(mk)1/2)1/2.

Now consider two coupled classical oscillators with unit masses and coupling constant 

k12:

H=1
2 ( p1

2+ p2
2+k1q2

2+k2q2
2)+k12q1q2=

1
2 ( px2+ py2+ωx2 x2+ω y

2 y2 ), (S14)

where the transformation between the numerically subscripted variables and the x, y subscripted 

normal modes is given by the F3-type generating function (Goldstein,  p. 384):

F3=− p1 ( x cosϕ+ y sin ϕ )− p2 (− x sin ϕ+ y cosϕ ) (S15)

This transformation is a simple rotation of coordinate system by an angle ϕ, where

tan 2ϕ=
2 k12

k2−k1
, (S16)

and

ωx , y
2 =1

2 (k1+k2 )± 1
2 √ (k2−k1 )2+4 k12

2  . (S17)

If all of the energy of this system is placed in oscillator #1 at time t = 0, this system exhibits 

classical beats in which the energy flows from oscillator #1 to oscillator #2 and returns with 

frequency ωx − ωy and with maximum energy in oscillator #2 given by

E2max=sin2 (2 ϕ )= 1

1+
(k2−k1 )2

4 k12
2

= 1

1+
(ω2−ω1 )2ωavg2

k12
2

, (S18)
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where the zero-order oscillator angular frequencies are ωi = ki
1/2 for i = 1, 2.  The maximum 

energy in oscillator #2 has a resonant shape (Lorentzian) as a function of frequency difference, 

with half width at half height k12/ωavg , where ωavg = (ω1 + ω2)/2 and falling off as the inverse 

square of the frequency difference.  

For near-resonant, weakly-coupled oscillators (|k12|, |k2 − k1| << k2, k1), the period for 

energy exchange as a function of frequency has a resonance shape with maximum when k2 = k1, 

with half-width at half height approximately (3)1/2k12/ωavg and falling off as the inverse of the 

absolute frequency difference, |ω1
 − ω2|.  

If the phase angles of oscillators #1 and #2 are expressed in terms of angle-like variables:

tanθ1=
− p1

k1
1/2q1

; tanθ2=
− p2

k2
1/2q2

. (S19)

The difference in these two phase angles, d21 = θ2 − θ1 − π/2, shows the same behavior shown in 

Fig. 3 of the accompanying paper for a quantum two-state system.  If a resonant system (k2 = k1) 

starts with p1 = 1, q1 = q2 = p2 = 0, then d21 quickly locks into a value near zero so oscillator #1 

drives oscillator #2 and remains in the same phase relationship until all the energy is transferred 

to oscillator #2.  Then d21 jumps by − π, the phase relationship reverses, and oscillator #2 drives 

oscillator #1 until all the energy is transferred back to oscillator #1.  If the system is nonresonant 

(k2 ≠ k1), the initial phase difference drifts away from the initial favorable relationship, and the 

extent of energy transfer is limited by the time d21 stays near zero (see Fig. 3 and compare with 

Fig. S1).  Similar behavior is also shown by driven oscillator systems as contained in typical 

first-year physics texts.  We propose that any coherent process can be examined in terms of phase

differences and understood in terms of periodic phase reversals such as are shown by this 

classical system.
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Figure S1.  Classical beats for the Hamiltonian given by Eq. (S14).  Plots show d21 = θ2 − θ1 − π/2 versus time for 

two trajectories.  The action-like variables θ1 and θ2 are defined by Eq. (S19).  The black, on-resonance plot used k1 

= k2 = 1 and k12 = 0.0112.   The red, dashed, plot for negative detuning used k1 = 1.014, k2 = 1, k12 = 0.0112.  For both

cases, initial conditions were p1 = 1, p2 = q1 = q2 = 0.  Classical beat motion is analogous to the quantum dynamics 

shown in Fig. 3 of the accompanying paper.

Now consider a system of three coupled harmonic oscillators

H=1
2 ( p1

2+ p2
2+ p3

2+k1q2
2+k2q2

2+k3q3
2 )+k12q1q2+k23q2q3=

1
2 ( px2+p y2+ωx2 x2+ω y

2 y2+ωz
2 z2 ), (S20)

where the transformation from numerically subscripted variables to x, y, z subscripted normal 

modes can be obtained by a Fourier transform and the solution of a cubic polynomial.  

For a suitable choice of parameters, this system displays the same kind of beats seen in 

quantum two-photon absorption.  Fig. S2 shows the energies of three oscillators where initially 

the energy is placed in oscillator #1.  The parameters chosen are k1 = k3 = 1.01, k2 = 1, and k12 = 

k23 = 0.003 with initial conditions p1 = 21/2, p2 = p3 = q1 = q2 = q3 = 0.  The frequency mismatch 
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between oscillator #1 and oscillator #2 is somewhat greater than the dashed curve in Fig. S1, and

the energy in oscillator #2 only reaches 0.2 before the phase reversal occurs.  However, the phase

difference between oscillator #2 and #3 allows most of that energy to flow into oscillator #3, and 

after several cycles between #1 and #2, the energy is transferred eventually completely to #3 at 

about t = 4000.  Then the cycle reverses.  This transfer only occurs for a narrow frequency range 

if ω1 is varied.   The half-width at half height for energy transfer to #3 is approximately 

k12k23/(δω2), where δ is the frequency difference between oscillator #1 and oscillator #2.

Figure S2.  Energy as a function of time for three coupled oscillators defined by Eq. (S20) with k1 = k3 = 1.01, k2 = 1,

k12 = k23 = 0.003 with p1 = 21/2 initially and all other variables zero.  The black line is for E1, red dashed line is for E2 

and the blue line is for E3.  Detuning between #1 and #2 limits energy transfer, but resonance between #1 and #3 

overcomes the detuning and allows for complete energy transfer in repeating classical beats with a period of about 

8000 time units.  Compare with quantum dynamics of two-photon absorption in Fig. 6 of the accompanying paper.

Figure S3 shows, for the same trajectory of Fig. S2, the double angle difference, d21 − d23,
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where dij = θi − θj − π/2 as defined before.  This variable shows the same periodic phase reversals

as the analogous phase difference in quantum mechanical two photon absorption.

Figure S3.  Plot of phase angle difference d21 − d23 for the same trajectory shown in Fig. S2 and exhibiting periodic 

phase reversals during energy transfer.  The value oscillates between − π/2 when energy is being transferred to 

oscillator #3 and + π/2 when energy is being transferred back to oscillator #1 although the energy in oscillator #2 

never gets above 0.2. Compare with quantum dynamics of two-photon absorption in Fig. 10 of the accompanying 

paper.

Section 5.  Hydrogen Fluoride Dipole Moment Matrix Elements

The following dipole moment matrix elements <n|µ|m> of the HF molecule were 

integrated numerically using the dipole moment of Ogilvie et al. (1980) and the exact Morse 

oscillator wave functions with the HF parameters given in Section 1.  Only elements for the first 

three states were used in the calculations included in the journal article.
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        n             m                  <  n  |µ|  m  >                 
0 0 7.18332680958864E+01
1 0 3.88330920028936E+00
2 0 -4.69038661152100E-01
3 0 4.07901328468283E-02
4 0 -1.28469947096340E-02
5 0 3.16954645622662E-03
6 0 -1.20887867638402E-03
7 0 1.25803279481808E-03
8 0 -1.26874795823292E-03
9 0 1.10063634217087E-03

10 0 -8.80898392410669E-04
11 0 6.79088936028490E-04
12 0 -5.15608325683861E-04
13 0 3.90375044164964E-04
14 0 -2.96897151330197E-04
15 0 2.27802841748126E-04
16 0 -1.76712905599487E-04
17 0 1.38639200994382E-04
18 0 -1.09843284173269E-04
19 0 8.75424123445200E-05
20 0 -6.95969636741100E-05
21 0 5.41767338569602E-05
22 0 -3.92106876114042E-05
23 0 1.98267812315833E-05
1 1 7.34913116736805E+01
2 1 5.40906048520160E+00
3 1 -9.01131372414360E-01
4 1 7.53319061864168E-02
5 1 -3.18190226008979E-02
6 1 1.11750042299042E-02
7 1 -3.61899274801774E-03
8 1 2.78294065388170E-03
9 1 -2.88333004316476E-03

10 1 2.68807555388713E-03
11 1 -2.29577384424221E-03
12 1 1.87412961735973E-03
13 1 -1.49820872935223E-03
14 1 1.18823525464493E-03
15 1 -9.41975340579709E-04
16 1 7.49647559203227E-04
17 1 -6.00073259772329E-04
18 1 4.82998972608909E-04
19 1 -3.89691720066286E-04
20 1 3.12702942475510E-04
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21 1 -2.45048467076733E-04
22 1 1.78110952550732E-04
23 1 -9.02371680424806E-05
2 2 7.50730443230427E+01
3 2 6.40819304142863E+00
4 2 -1.44672896257069E+00
5 2 1.06919373697706E-01
6 2 -5.36682902465961E-02
7 2 2.72068128148234E-02
8 2 -9.29975539713747E-03
9 2 5.00793697066806E-03

10 2 -4.81667112805148E-03
11 2 4.74992652373109E-03
12 2 -4.30912302336343E-03
13 2 3.70439451437698E-03
14 2 -3.09986640136503E-03
15 2 2.56229924354493E-03
16 2 -2.10790503369540E-03
17 2 1.73223105811204E-03
18 2 -1.42325961046019E-03
19 2 1.16663881174102E-03
20 2 -9.47295765478085E-04
21 2 7.48583121119961E-04
22 2 -5.46976997040125E-04
23 2 2.77783780812545E-04
3 3 7.64641951272296E+01
4 3 6.94404026677277E+00
5 3 -2.16066286849293E+00
6 3 1.43075845151711E-01
7 3 -6.63931909781412E-02
8 3 5.20929682997977E-02
9 3 -2.17797588886168E-02

10 3 9.20186134320516E-03
11 3 -6.97114250871577E-03
12 3 6.93699346032120E-03
13 3 -6.66871607954348E-03
14 3 6.03056621482825E-03
15 3 -5.25631695134582E-03
16 3 4.49676469670321E-03
17 3 -3.81038137698484E-03
18 3 3.20829440040211E-03
19 3 -2.68106997232101E-03
20 3 2.20924771375367E-03
21 3 -1.76430865530405E-03
22 3 1.29779936343833E-03
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23 3 -6.61107382856906E-04
4 4 7.74935309694646E+01
5 4 6.93092048984191E+00
6 4 -3.08685093845048E+00
7 4 2.16751512267760E-01
8 4 -5.23338843771186E-02
9 4 7.94982888441337E-02

10 4 -4.52943678701634E-02
11 4 1.89751476834097E-02
12 4 -1.02492426990056E-02
13 4 8.88769548638462E-03
14 4 -8.82743672207277E-03
15 4 8.44291149574416E-03
16 4 -7.69412815746301E-03
17 4 6.79500297150075E-03
18 4 -5.88604227861969E-03
19 4 5.02106143439422E-03
20 4 -4.20088520945790E-03
21 4 3.39155031660547E-03
22 4 -2.51220825580497E-03
23 4 1.28384310509057E-03
5 5 7.79355478727854E+01
6 5 6.23038275386308E+00
7 5 -4.22910975892226E+00
8 5 3.99367829018695E-01
9 5 2.79276297093417E-04

10 5 8.96765419490746E-02
11 5 -7.94334432681282E-02
12 5 4.07185070485905E-02
13 5 -1.87665245848464E-02
14 5 1.15768419177371E-02
15 5 -1.02333421794534E-02
16 5 1.00609668588080E-02
17 5 -9.65981241244851E-03
18 5 8.89077151968716E-03
19 5 -7.89139993375461E-03
20 5 6.77092300786926E-03
21 5 -5.55265063749037E-03
22 5 4.15027250625105E-03
23 5 -2.12928322252072E-03
6 6 7.75381509959876E+01
7 6 4.71680135046970E+00
8 6 -5.50948064414561E+00
9 6 7.98182122681601E-01

10 6 7.11879031367666E-02
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11 6 5.09211989761825E-02
12 6 -1.07766442385408E-01
13 6 7.78451263214559E-02
14 6 -4.12140694432527E-02
15 6 2.09349969533775E-02
16 6 -1.30484627211588E-02
17 6 1.07058232733672E-02
18 6 -1.00076872760179E-02
19 6 9.42989960619736E-03
20 6 -8.55047475571375E-03
21 6 7.29616357214139E-03
22 6 -5.58736654066627E-03
23 6 2.89747269377556E-03
7 7 7.60819864595553E+01
8 7 2.35173031653752E+00
9 7 -6.73810077215305E+00

10 7 1.51898571876853E+00
11 7 7.71581601877454E-02
12 7 -5.59781208829766E-02
13 7 -9.03963893997484E-02
14 7 1.14119701357877E-01
15 7 -8.21427539642789E-02
16 7 4.84944862018611E-02
17 7 -2.73708080352939E-02
18 7 1.66340978720488E-02
19 7 -1.16373311686753E-02
20 7 9.13929351428315E-03
21 7 -7.42269820819857E-03
22 7 5.62791624480817E-03
23 7 -2.91927962340923E-03
8 8 7.34576608005319E+01
9 8 -7.54113346498300E-01

10 8 -7.62897523322876E+00
11 8 2.59237876375461E+00
12 8 -1.30791764569187E-01
13 8 -1.88011105886230E-01
14 8 1.36383743390234E-02
15 8 1.00250736618267E-01
16 8 -1.17085335065358E-01
17 8 9.32601236192716E-02
18 8 -6.44983217412538E-02
19 8 4.25217670323498E-02
20 8 -2.80654464946475E-02
21 8 1.88354479071800E-02
22 8 -1.23803852456786E-02
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23 8 5.99372263861836E-03
9 9 6.97214173136274E+01

10 9 -4.33161396019624E+00
11 9 -7.87792814991788E+00
12 9 3.90083298950402E+00
13 9 -7.07160424296538E-01
14 9 -2.02624865527450E-01
15 9 1.80696614839610E-01
16 9 -1.54122829785695E-02
17 9 -8.10239570735930E-02
18 9 1.07983310656629E-01
19 9 -1.00211612580437E-01
20 9 8.13419046442983E-02
21 9 -6.15796655103218E-02
22 9 4.30295568397580E-02
23 9 -2.13165823909084E-02
10 10 6.50880990151053E+01
11 10 -8.01418851642817E+00
12 10 -7.27158858731963E+00
13 10 5.16605741591295E+00
14 10 -1.70011613605527E+00
15 10 1.04155939208664E-01
16 10 2.61060215474205E-01
17 10 -1.95625584760479E-01
18 10 6.86412143685999E-02
19 10 1.70092832508649E-02
20 10 -5.62280246280933E-02
21 10 6.47818334863926E-02
22 10 -5.51925852780645E-02
23 10 2.96189473428562E-02
11 11 5.98597333063726E+01
12 11 -1.14357951687123E+01
13 11 -5.76540396590715E+00
14 11 6.02256721858493E+00
15 11 -2.95915627118039E+00
16 11 8.66926446111511E-01
17 11 1.57390978701493E-02
18 11 -2.43745392414414E-01
19 11 2.26121657086958E-01
20 11 -1.53041463656085E-01
21 11 8.94931468975002E-02
22 11 -4.77419598071125E-02
23 11 1.98698450263647E-02
12 12 5.43352582281381E+01
13 12 -1.43091159405180E+01
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14 12 -3.49331927460223E+00
15 12 6.14096916161269E+00
16 12 -4.13568234384319E+00
17 12 2.00079846288910E+00
18 12 -7.12081818157476E-01
19 12 1.08714877685242E-01
20 12 1.14538356975450E-01
21 12 -1.63281222081581E-01
22 12 1.39808464495374E-01
23 12 -7.40741738429032E-02
13 13 4.87502591665246E+01
14 13 -1.64544624197427E+01
15 13 -7.22207120262339E-01
16 13 5.33875155356708E+00
17 13 -4.78927132762333E+00
18 13 3.14520151628801E+00
19 13 -1.78782455367488E+00
20 13 9.32486304983940E-01
21 13 -4.59888374139685E-01
22 13 2.18625206587568E-01
23 13 -8.56418824716848E-02
14 14 4.32597942184888E+01
15 14 -1.77892684117600E+01
16 14 2.21279650664175E+00
17 14 3.63970239717252E+00
18 14 -4.55256464790843E+00
19 14 3.76662982709204E+00
20 14 -2.71486693837243E+00
21 14 1.84228359570213E+00
22 14 -1.18240758124559E+00
23 14 5.60421037414662E-01
15 15 3.79488966793185E+01
16 15 -1.83014757080445E+01
17 15 4.96540386385210E+00
18 15 1.27726273197755E+00
19 15 -3.28980894118233E+00
20 15 3.39930193559471E+00
21 15 -2.83125752629829E+00
22 15 2.05858943387232E+00
23 15 -1.03377290999923E+00
16 16 3.28521148110500E+01
17 16 -1.80229824074853E+01
18 16 7.21811298586111E+00
19 16 -1.34382668679432E+00
20 16 -1.19978364176002E+00
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21 16 1.93924707820171E+00
22 16 -1.76931892664371E+00
23 16 9.65774984547096E-01
17 17 2.79715821316591E+01
18 17 -1.70093664231608E+01
19 17 8.70561178825727E+00
20 17 -3.70869551529622E+00
21 17 1.15711605237198E+00
22 17 -9.82954462014494E-02
23 17 -1.11099249161863E-01
18 18 2.32902123696176E+01
19 18 -1.53262586905127E+01
20 18 9.22509411818803E+00
21 18 -5.25687476413286E+00
22 18 2.88325598941745E+00
23 18 -1.24425175845270E+00
19 19 1.87800392205279E+01
20 19 -1.30403283436666E+01
21 19 8.63383198756685E+00
22 19 -5.41293711522497E+00
23 19 2.52983668382854E+00
20 20 1.44066623214049E+01
21 20 -1.02110745991760E+01
22 20 6.81545801041315E+00
23 20 -3.29054072925233E+00
21 21 1.01304142017068E+01
22 21 -6.87068894645082E+00
23 21 3.37641772726383E+00
22 22 5.90299410904188E+00
23 22 -2.84905699785409E+00
23 23 1.64336263898868E+00
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