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Supplementary Fig. 1. Comparison of the prediction performance of the individualized 
model and group-based models. (a) To compare the prediction performance of the 
individualized and group-based models, we performed a preliminary analysis with data of a 
single individual including four sessions of the same experiment as in Study 14. The 
individualized model was trained with one session of the four-session data. The remaining three 
sessions were used as testing data for the individualized model, a group model based on Study 14 
and the Neurologic Pain Signature (NPS)1. The lines with different colors connect the testing 
results on the same session data. (b) We also compared the prediction performance of all 
individualized models from Study 14 (n = 124) that was obtained using 5-fold cross-validation in 
each model (orange), prediction performance of the group-based model built on Study 14 and 
Neurologic Pain Signature (NPS)1 on data of each individual from Study 14 (n = 124). Again, 
the individualized models showed significantly higher performance than the group-based 
models. In a pairwise t-test, for individualized models vs. group-based model based on Study 14 
p = 0.0015, for individualized models vs. NPS p = 9.64 ×10-23, and for group-based model based 
on Study 14 vs. NPS p = 1.17 × 10-12. All p-values are two-tailed and corrected for multiple 
comparisons using False Discovery Rate (FDR) correction. ** p < 0.01, **** p < 0.0001 
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Supplementary Fig. 2. Mean representational distance without regressing out the region 
sizes. (a) The plot shows the mean representational distance (z-scores) and standard error of the 
mean for each region across all pair comparisons of individuals, i.e., C(404, 2) = 81406, before 
residualizing the region size. Higher representational distance values indicate higher pattern-
level variability across people. (b) The scatter plot shows the relationship between the 
representational distance and mean importance measured by mean -log(p) (based on two-tailed 
p-values). 
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Supplementary Fig. 3. Voxel importance maps and their overlaps. (a) Voxel importance map 
in the discovery dataset. (b) Voxel importance map in the replication dataset (Study 14). (c) 
Voxel importance map of the group-based model built on data from Study 14. To obtain the map, 
we ran the bootstrap tests with 5,000 samples, calculated the p-values and thresholded at top 
10% of -log(p) = 8.510. (d) Reverse inference map for the term “pain” obtained from 
Neurosynth.org2 thresholded at q < 0.01, FDR. (e) The binary overlap of voxel importance maps 
shown in Supplementary Fig. 9a (individualized maps from the discovery dataset) and 
Supplementary Fig. 9b (individualized maps from Study 14). The two binarized voxel 
importance maps were correlated at ɸ = 0.502, p < 2.2 × 10−16, suggesting high similarity 
between them. (f) The overlap of voxel importance maps shown in Supplementary Fig. 9a and 
Supplementary Fig. 9c (group-based map from Study 14). The correlation between the maps 
significant at ɸ = 0.186, p < 2.2 × 10−16. (g) The overlap of voxel importance maps shown in 
Supplementary Fig. 9a and Supplementary Fig. 9d (Neurosynth map for the term “pain”). The 
maps were significantly correlated at ɸ = 0.287, p < 2.2 × 10−16. 
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Supplementary Fig. 4. Within-individual reliability of pain predictive weights. (a) To 
evaluate the reliability of the predictive weights within individuals, we used the replication 
dataset and selected individuals with complete data of 96 trials (n = 103). In each individual, we 
split the trials into two folds (i.e., the first four and the last four runs) and trained an SVR model 
on each fold. We, then, assessed similarity of the predictive patterns of the whole brain, our 21 
regions of interest, and three random regions as reference. The reference regions were defined as 
spheres (with 10-mm radius) around randomly selected points in areas that were not included as 
important pain-predictive regions in this study. The figure shows the mean within-individual 
pattern similarity (black points) as well as all values (gray points) measured by correlation. Most 
of the mean pattern similarity values showed medium-to-large correlations as evaluated by 
Cohen’s guidelines3, providing preliminary evidence for the reliability of the predictive patterns. 
(b) Glass brain visualization of the reference regions. (c) For further preliminary evaluation of 
the within-individual reliability, we used data of a single individual that were also used in 
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Supplementary Fig. 2. The heatmap shows the similarity measured by Pearson’s correlation 
coefficient between whole-brain predictive patterns of the four sessions. (d) The plot depicts all 
values of the inter-session variability (small grey points) as well as their mean (large black 
points) in the whole brain and all regions of interest and reference regions. Based on the Cohen’s 
guidelines, most of the regions manifested large or medium magnitude of correlation. On the 
other hand, the reference regions which were not found as important for pain prediction showed 
small magnitude of inter-session correlation. These results provide further preliminary support 
for reliability of predictive patterns within individuals.  
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Supplementary Fig. 5. Clustering subjects. A potential future direction of analysis in which 
the region clusters identified in our study could be used is subtyping individuals or defining pain 
biotypes based on brain representations of pain in the clusters. Since we lacked detailed 
phenotype data of the participants, we could not fully interpret these results, but we conducted a 
simple proof-of-concept clustering analysis to establish a direction for the future work. (a) We 
built dendrograms using a hierarchical clustering algorithm with average linkage on the mean 
inter-individual representational dissimilarity matrices in all region clusters. Then, we compared 
the dendrograms of subjects using Baker’s gamma. The violin plot shows that the resulting 
values were near zero, indicating that there was no statistically significant similarity of the 
dendrograms. This analysis suggests that subjects may constitute different subtypes across 
different brain regions. Therefore, lumping information from multiple brain regions to describe 
individuals can be costly. (b) We selected three region clusters, 1) dpIns and S2, 2) vlPFC and 
dlPFC, and 3) vmPFC, and clustered the subjects into four groups in each to further illustrate the 
heterogeneity of the subject subtypes in different regions. Each axis of the hive plot corresponds 
to each region cluster, and the points on the axes represent subjects colored by the cluster they 
belong to. The lines connect the same subjects in different clustering solutions (based on 
different brain regions) and are colored by the cluster membership in the previous clustering of 
the corresponding subject (counter-clockwise). The similarity between cluster solutions was 
evaluated with the element-centric similarity (EC) score4, which ranges from 0 to 1, with 0 
indicating completely different cluster membership and 1 indicating identical cluster membership 
profiles across individuals. The brain maps show the average patterns of predictive weights 
within each brain region across subjects within each subject cluster. This analysis also suggests 
that subjects may constitute different subtypes across different brain regions and clusters.  
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Supplementary Table 1. Demographics. 

 
Note. aSex of one participant is unknown. bAge of one participant is unknown cThe original 

publication included 21 participants, but here we included only 17 participants’ data due to the 

unsuccessful extraction of the single-trial data from 4 participants. dWe were not able to extract 

the age information about this study, but the range should be comparable to other datasets 

collected at the University of Colorado Boulder (Studies 1, 2, 4, 9, 10) because the participants 

were recruited from the same subject pool. 

  

Study number Sample size Sex Mean age in years (SD) Previous publications 

1 33 22 F 27.9 (9.0) refs.1,5  

2 28  10 F 25.2 (7.4) ref.6 

3 26  9 F 27.8  ref.7 

4 50 27 F 25.1 (6.9) ref.8 

5 17 9 F 25.5 ref.9 

6 29 16 Fa 20.4 (3.3)b ref.10 

7 20 8 F 26.2 (6.7) Unpublished 

8 17c 11 F 24.7 ref.11 

9 19 10 F 25.3 (9.3) ref.12  

10 26 11 F 28 (9.3) ref.13  

11 40 0 F 26 ref.14 

12 40 20 F Unknownd Unpublished 

13 59 31 F 20.8 (3.0) ref.15 

14 124 61 F 22.2 (2.7) Unpublished 



 
SUPPLEMENTAL INFORMATION  10 

Supplementary Table 2. Multiple regression in the discovery dataset with study-related 
parameters as predictors.  
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aMCC  -0.08**      0.02575 0.01512 

AMIns  -0.04*      0.01877 0.04245 

AMOp 0.06*** -0.07***  -0.05*    0.06365 2.44e-05 

BG    -0.05*** 0.01***   0.04861 0.000356 

dlPFC        0.02599 0.01458 

dpIns      -0.001*  0.004983 0.2546 

leftCERB  -0.04*      0.02288 0.02329 

LThal  -0.03* 0.02* -0.03* 0.004*  0.03** 0.03453 0.003795 

MT        -0.004984 0.6598 

MThal   -0.02**   0.001*** -0.03*** 0.05197 0.0001981 

PCun -0.03*  0.03*   -0.001*  0.02331 0.02186 

pMCC    -0.12* 0.02** 0.002*  0.03932 0.001726 

rightCERB    -0.03* 0.006**  0.02* 0.01836 0.04502 

S2    -0.04*    0.001275 0.3796 

SMA  -0.07*  -0.17*** 0.02* 0.002*  0.08883 2.091e-07 

SMC  -0.08**  -0.29*** 0.04*** -0.002* 0.14*** 0.1195 4.31e-10 

upperBS     0.004*   0.01725 0.0527 

vermis   0.02** -0.02*    0.02577 0.01507 

visual     0.01**  0.05* 0.04587 0.0005716 

vlPFC    -0.04*** 0.005** -0.001* 0.03** 0.04443 0.0007305 

vmPFC       -0.02* 0.03048 0.007251 
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Note. *p < 0.05, **p < 0.01, ***p < 0.001, uncorrected. The values in the variable columns show 
the significant predictors with their beta coefficients and levels of significance. Beta coefficients 
for non-significant predictors were omitted, but all variables were used in the model. Note that 
all results are uncorrected for the exploratory purpose, and if we use Bonferroni correction, the 
corrected threshold for significance becomes p = 0.0024.  

The predictor variables were built as follows. In case of scanner, body site and cue, the variables 
were coded as 1 vs. -1 for 3 T vs. 1.5 T scanner, stimulation site on arm vs. leg, and presence vs. 
absence of cue. In Columbia vs. Boulder/Hamburg, studies performed at Columbia university 
were coded as -1, the rest as 0.5. In case of Boulder vs. Hamburg, the studies performed at 
University of Colorado in Boulder were coded as -1, study performed in Hamburg as 1, and the 
rest as 0. Stimulus duration and no. of trials were both continuous variables with the duration of 
stimulus in each study and number of trials available for each individual, respectively. All 
variables were mean-centered.  
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Supplementary Table 3. Task characteristics and stimulation parameters. 
 

Study 
number 
(project 
name) 

Stimulation 
site 

Intensity 
levels 

Temperature 
range (°C) 

Duration 
(s) Rating scale 

Number of trials per 
person (mean number 
of trials used per 
person ± SD) 

Other experimental manipulations 

1 (bmrk3) Arm 6 (fix) 44.3-49.3 12.5 0-200 VASa 97 (45.5 ± 18.6) Cognitive self-regulation to increase or 
decrease pain 

2 (bmrk4) Arm, foot 3 (fix) 46-48 11 0-100 LMSb 81 (74 ± 5.9) Heat-predictive cues for low, medium and 
high 

3 (nsf) Arm 4 (cal) PT/L/M/H 10 0-10 VASc 48 (44.2 ± 3.2) Masked emotional faces evenly crossed 
with temperature 

4 (ie) Arm 3 (fix) 46-48 11 0-100 VASd 48 (42.1 ± 4.7) Heat-predictive visual cues and placebo 
manipulation 

5 (exp) Arm 3 (cal) L/M/H 10 0-10 VASc 64 (61.1 ± 2.6) Heat-predictive auditory cues 

6 (ilcp) Arm 2 (cal) L/H 10 0-100 VASd 64 (63 ± 1.3) 
Perceived control (make choice vs. 
observe choice); expectation (80% vs. 50% 
low pain) 

7 (app) Arm 2 (cal) L/M 20.16 0-100 VASe 90 (75.8 ± 20.8) Placebo manipulation and distracting 
cognitive tasks 

8 (remi) Arm 2 (cal) L//H 10 0-8 VASf 72 (68.2 ± 5.1) Analgesic drug administration, analgesia 
expectancy, heat-predictive visual cues 

9 (ie2) Leg 2 (fix) 48, 49 1.8 0-100 VASd 70 (67.7 ± 2.2) Cues previously associated with high or 
low heat 

10 (scebl) Leg 3 (fix) 48, 49, 50 1.85 0-100 VASd 96 (90 ± 3.5) Social cues and heat-predictive visual cues 

11 (placebo 
value) Arm 4 (cal) VAS 30, 50, 

60, 80 20 0-100 VASg 60 (59.4 ± 2.4) Expectation and placebo manipulation  

12 (levoderm) Arm 2 (fix) 45.5, 46 20 0-100 VASd 48 (46.3 ± 2.6) Placebo conditioning manipulation with 
scheduled unblinding 

13 (dpsp) Arm 2 (cal) L/H 15 1-5 Likerth 16 (15.6 ± 0.9) Eye gaze fixation cross 

14 (mpc) Arm 6 (fix) 
45, 45.5, 46, 
46.5, 47, 
47.5 

12 0-1 gLMSi 96 (91.6 ± 10.6) Pre-stimulus state manipulations by video 
watching 
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Note. Cal – temperature levels individually calibrated; fix – temperature levels same for all participants; a Pain or no pain decision 

followed by 0-100 VAS for warmth or pain rating. b 0 – no sensation; 1.4 – barely detectable; 6.1 – weak; 17.2 – moderate; 35.4 – 

strong; 53.3 – very strong; 100 – strongest imaginable sensation. c 0 – no sensation; 1 – non-painful warmth; 2 – low pain; 5 – 

moderate pain; 8 – maximum tolerable pain. d 0 – no pain; 100 – worst imaginable pain. e 0 – no pain; 100 – worst tolerable pain. f  0 –  

no sensation; 1 – nonpainful warmth; 2 – low pain; 5 – moderate pain; 8 – maximum tolerable pain. g 0 – no pain; 100 – unbearable 

pain. h 1 – not painful; 5 – very painful. i 0 – no pain; 1 – “I never want to experience this again in my life” 16 
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Supplementary Table 4. Acquisition parameters. 
 

Study 
number 

Study 
location 

Scanner 
details 

Sequence parameters Voxel size 
(mm3) 

Acquisition 
parameters 

Discarded 
volumes 

Stimulus 
software 

Analysis 
software 

1 (bmrk3) Columbia 3T Phillips 
Achieva 
TX 

Seq. type = EPI 
TR = 2000 ms  
TE = 20 ms  
FOV = 224 mm  
Matrix = 64✕64  
Flip angle = 72°  

3.0 ✕ 3.0 ✕ 3.0  42 Slices 
Interleaved 
SENSE = 1.5  

4 E-prime  SPM8  

2 (bmrk4) CU 
Boulder 

3T 
Siemens 
Tim Trio 

Seq. type = EPI 
TR = 1300 ms  
TE = 25 ms 
FOV = 220 mm  
Matrix=64✕64  
Flip angle = 50°  

3.4 ✕ 3.4 ✕ 3.4  26 Slices 
Interleaved   
iPAT = 2  

6 Matlab SPM8  

3 (nsf) Columbia 1.5T GE 
Signa 
TwinSpeed 
Excite HD  

Seq. type = EPI 
TR = 2000 ms  
TE = 34 ms  
FOV = 224 mm  
Matrix = 64 ✕ 64  

3.5 ✕ 3.5 ✕ 4.0  29 Slices  5 E-prime  SPM5, SPM8  

4 (ie) CU 
Boulder 

3T 
Siemens 
Tim Trio 

Seq. type = EPI 
TR = 1300 ms  
TE = 25 ms  
FOV = 220 mm  
Matrix=64✕64  
Flip angle = 75°  

3.4 ✕ 3.4 ✕ 3.0  26 Slices 
Interleaved 
iPAT = 2  

6 E-prime  SPM8  

5 (exp) Columbia 1.5T GE 
Signa Twin 
Speed 
Excite HD 

Seq. type = spiral 
TR = 2000 ms  
TE = 40 ms  
FOV = 224 mm  
Matrix = 64 ✕ 64  
Flip angle = 84°  

3.5 ✕ 3.5 ✕ 4.5  24 Slices  5 E-prime  SPM5  

6 (ilcp) CU 
Boulder 

3T 
Siemens 
Tim Trio 

Seq. type = EPI 
TR = 1980 ms  
TE = 25 ms  
FOV = 220 mm  
Matrix=64✕64  
Flip angle = 75°  

3.4 ✕ 3.4 ✕ 3.0  35 Slices 
Interleaved 
iPAT = 2  

5 Matlab SPM8  

7 (app) Columbia 3T Philips Seq. type = EPI 
TR = 2000 ms  
TE = 20 ms  
FOV = 224 mm  
Flip angle = 72° 

3.0 ✕ 3.0 ✕ 3.0  42 slices 4 E-prime SPM5 
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8 (remi) Columbia 1.5T GE 
Signa Twin 
Speed 
Excite HD 

Seq. type = EPI 
TR = 2000 ms  
TE = 34 ms  
FOV = 224 mm  
Matrix = 64 ✕ 64 

3.5 ✕ 3.5 ✕ 4.0 28 slices 5 E-prime SPM5 

9 (ie2) CU 
Boulder 

3T 
Siemens 
Trio 

Seq. type = EPI 
TR = 1300 ms  
TE = 25 ms 
FOV = 220 mm  

3.4 ✕ 3.4 ✕ 3.0 26 slices 6 E-prime SPM8 

10 (scebl) CU 
Boulder 

3T 
Siemens 
Tim Trio 

Seq. type = EPI 
TR = 1300 ms  
TE = 25 ms 
FOV = 220 mm  
Matrix = 64✕64  
Flip angle = 50° 

3.4 ✕ 3.4 ✕ 3.4  26 Slices 
Interleaved  
iPAT = 2  

3 E-prime  SPM8 

11 
(placeboval
ue) 

Hamburg 3T 
Siemens 
Tim Trio 

Seq. type = EPI 
TR = 2580 ms  
TE = 26 ms  
FOV = 220 mm 
Flip angle = 80° 

2 ✕ 2 ✕ 2  42 slices 4 Cogent SPM8 

12 (levo 
derm) 

CU 
Boulder 

3T 
Siemens 
Tim Trio 

Seq. type = EPI 
TR = 1300 ms  
TE = 27 ms 
FOV, matrix, flip angle unknown 

3 ✕ 3 ✕ 3  25 slices 6 E-prime SPM8 

13 (dpsp 
pain) 

Columbia 1.5T GE 
Signa 
TwinSpeed 
Excite HD  

Seq. type = spiral 
TR = 2000 ms  
TE = 40 ms  
FOV = 220 mm 
Flip angle = 84° 

3.5 ✕ 3.5 ✕ 4.5  24 slices 4 E-prime  SPM8 

14 
(Replication 
dataset) 

CNIR  3T 
Siemens 
Prisma 

Seq. type = EPI 
TR = 460 ms 
TE = 2.34 ms 
FOV = 220 mm 
Matrix = 82✕82 
Flip angle = 44° 

2.7 ✕ 2.7 ✕ 2.7 56 slices 18  Matlab SPM12, FSL, 
ICA-AROMA 

 
Note. Columbia – Columbia University, New York, USA; CU Boulder – University of Colorado at Boulder, Colorado, USA; 

Hamburg – University Medical Center Hamburg-Eppendorf, Germany; CNIR– Center for Neuroscience Imaging Research, 

Sungkyunkwan University, South Korea
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