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SUPPLEMENTAL TEXT 49 

ATAC-STARR-seq plasmid library complexity 50 

A successful ATAC-STARR-seq experiment is predicated on maintaining complexity at all 51 

stages of the protocol. We estimated the initial complexity of our ATAC-STARR-seq plasmid 52 

library by sequencing the library at low depth and estimating the number of unique reads with 53 

the Preseq software package (Daley and Smith 2013) (Supplemental Figure S1A). The 54 

GM12878 ATAC-STARR-seq plasmid library contains a maximum complexity of about 50 55 

million unique accessible DNA fragments, providing ample coverage of accessible loci. 56 

Optimizing ATAC-STARR-seq assay timeframe 57 

The introduction of plasmid DNA into cells produces an interferon-stimulated gene response 58 

that can confound the isolation of biologically relevant regulatory activity (Muerdter et al. 2018). 59 

To minimize this interference in our data, we determined the optimal incubation time between 60 

electroporation and harvest. Two factors play an important role in determining when to harvest 61 

RNA: global reporter RNA expression levels and the timing of interferon stimulated gene 62 

response to STARR-seq reporter plasmid DNA. To investigate both factors, we electroporated 63 

ATAC-STARR-seq plasmid DNA, isolated poly-adenylated RNA at several time points after 64 

transfection, quantified RNA expression with qPCR, and compared to an untransfected sample 65 

(Supplemental Figure S1A). An increase in reporter RNA expression is observed at 3 hours (the 66 

earliest timepoint) and remains stable at later time points. We measured expression of IFNB1, 67 

IFIT2, and ISG15 to characterize the interferon stimulated gene response in our system. RNA 68 

expression for all three genes increases initially but returns to baseline by 24 hours. Given the 69 

persistent level of reporter RNAs and the attenuated interferon stimulated gene response in our 70 

system, we decided to harvest 24 hours after electroporation. Together, this allows us to 71 
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capture reporter RNAs that reflect steady-state regulatory properties of GM12878 accessible 72 

regions without sacrificing reporter RNA recovery.  73 

Investigating the influence of replicates on region calls 74 

We note that the Wang et al. 2018 study reported twice the number of active regions reported 75 

herein. This discrepancy may be explained in part by using the super core promoter in their 76 

assay, but another major difference between the two studies is replicate number (five replicates 77 

versus three replicates). To determine if the difference in active region count is driven by 78 

replicate number, we downloaded and analyzed raw sequencing data from Wang et al. 2018 79 

using our pipeline and analysis methods. We then assigned reads to the bins we analyzed and 80 

called active regions using either three or five replicates (Supplemental Figure S5A). With five 81 

replicates, we also captured ~66,000 active regions; however, we identified ~39,000 regions 82 

with only three replicates. This is much closer to the number we report (~30,000) and suspect 83 

the extra 9,000 regions may be the result of experimental differences, such as the promoter 84 

employed. Altogether the number of called active regions increases with more replicates. 85 

To further investigate the effect of replicate number on region calling sensitivity in our data, we 86 

merged and split our three ATAC-STARR-seq replicates into five randomly sampled “pseudo-87 

replicates”. We then called active regions using two, three, four, or five pseudo-replicates 88 

(Supplemental Figure S5B). We find the largest increase in region count going from two to three 89 

replicates. Thus, the three replicate condition seems to yield the best value, while additional 90 

replicates may be needed to detect more weakly active regulatory regions. However, it is also 91 

very important to note that studies investigating the relationship between replicate number, 92 

sensitivity, and accuracy for RNA-seq data have demonstrated that performing more replicates 93 

yields more differentially expressed genes, but this is concomitant with an increase in false 94 

positive rate (Schurch et al. 2016; Lamarre et al. 2018). Therefore, the additional regions that 95 

5



are called with increasing replicate counts may represent a disproportionate number of false 96 

positives and may affect the outcomes of certain accuracy-sensitive applications like 97 

computational modelling. 98 

Duplicate removal hinders region calling sensitivity 99 

A question that often arises when determining biological signals from sequence read count data 100 

is whether to collapse read duplicates, as duplicates can arise both technically (PCR duplicates) 101 

and biologically (active regions generate multiple transcripts of themselves). To understand their 102 

contribution to data interpretation, we analysed our data with and without duplicates and 103 

compared the output. Removal of duplicates produces modest improvements to correlation 104 

coefficients between replicates, although both conditions had correlations indicative of 105 

satisfactory reproducibility (Supplemental Figures S3, 6A-B). However, excluding duplicates 106 

produced many fewer active regions called than including duplicates (~21,000 fewer regions) 107 

(Supplemental Figure S6C). Together, this indicates that removing duplicates modestly 108 

improves reproducibility but significantly sacrifices sensitivity. Furthermore, most of the regions 109 

called without duplicates are also called when duplicates are included, indicating that, for the 110 

most part, duplicate removal affects sensitivity and not accuracy (Supplemental Figure S6D). 111 

Because the with-duplicate analysis yielded many more additional regions and is reproducible 112 

between replicates, we included duplicates in our activity analysis moving forward. Importantly, 113 

because our approach filters by significance, reproducibility is required when calling active and 114 

silent regions. Therefore, identified active and silent regions are of high confidence when 115 

including duplicates. 116 

Guidelines for ATAC-STARR-seq quality control 117 

Generate highly complex ATAC-STARR-seq plasmid libraries 118 
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Library complexity is the most important consideration when generating an ATAC-STARR-seq 119 

plasmid library.  Library complexity is defined by the number of unique DNA fragments analyzed 120 

in the library, i.e., the number of unique plasmid inserts, and the more complex a plasmid 121 

library, the more DNA sequences that are tested. Greater library complexity translates to greater 122 

coverage of the genome. While we have not experimented directly with different library 123 

complexities, less complex libraries would likely result in a reduction in sensitivity and fewer 124 

regions being called active and silent. To estimate library complexity, we suggest performing 125 

low-depth sequencing of the plasmid library prior to conducting the reporter assay portion of 126 

ATAC-STARR (see methods). In this report we find our library complexity is roughly 50 million 127 

unique sequences. We made critical choices in procedure and reagents used to ensure this 128 

high library complexity; therefore, we strongly discourage replacement of key procedures with 129 

faster, cheaper, or simpler alternatives. For the human genome, we recommend library 130 

complexities of at least 20 million. 131 

Perform minimal PCR cycles to keep PCR duplication rates low 132 

As mentioned previously, duplicates should not be collapsed when calling active and silent 133 

regions, because they can arise both technically (PCR duplicates) and biologically (active 134 

regions generate multiple transcripts of themselves). Due to this issue, it is important to 135 

minimize PCR duplicates when preparing sequencing libraries. To achieve this, we try to obtain 136 

just enough sequence-able material using the fewest number of PCR cycles. We recommend a 137 

duplication rate < 90% for Reporter RNA samples and < 50% for plasmid DNA samples. 138 

Reads should pass general quality filters 139 

The sequenced Reporter RNA and plasmid DNA libraries should be analyzed for quality using 140 

FastQC. Both should pass all FastQC quality filters except per base sequence content (Tn5 has 141 
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a bias) and sequence duplication levels (inherent quality of ATAC-STARR-seq). Mapping rate 142 

should be high (>80%) for most cell lines. For GM12878 cells, at least in our hands, ~20% of 143 

reads map to the Epstein-Barr Virus genome which causes our mapping rates to be low (~60-144 

70%). This phenomenon is unique to viral-transformed cell lines like GM12878.  145 

Replicates should be reproducible 146 

We recommend calculating Spearman’s correlation values between ATAC-STARR-seq 147 

replicates (see methods). In STARR-seq-based methods, Spearman’s correlation values > 0.7 148 

are typically sufficient for downstream analysis (Arnold et al. 2013; Barakat et al. 2018; Wang et 149 

al. 2018; Chaudhri et al. 2020; Glaser et al. 2021). Importantly, our analytical pipeline does not 150 

identify non-replicating regions as active or silent. Therefore, data for regions that are not 151 

reproducible should not manifest as false positives in our system. Less reproducibility, however, 152 

will lead to drop out and a greater false negative rate.  153 

Assessment of Batch Effects 154 

While correlation scores are one measure of assessing batch effects between replicates, 155 

principal component analyses (PCA) can also provide critical insights into batch effects, 156 

particularly when several conditions are compared to each other. If batch effects are minimal, 157 

samples should cluster together only by condition and not by the batch in which they were 158 

processed. In our system, batch effects could contribute to false negatives, rather than false 159 

positives, as reproducibility is required for active and silent region calling to reach the necessary 160 

statistical significance. If needed, we recommend correcting for batch effects by including 161 

replicate number in the DESeq2 formula, i.e., ~ replicate + condition, as described in the 162 

DESeq2 vignette: 163 

(http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html). 164 
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Plasmid DNA data should meet general ATAC-seq standards 165 

Because plasmid DNA samples reflect ATAC-seq libraries, they should generally meet ATAC-166 

seq quality thresholds, such as a FRiP score > 0.2. Importantly, a stringent q-value should be 167 

applied to yield between 50,000-110,000 ChrAcc peaks that represent about 2% of the human 168 

genome. The fragment size distribution should be bimodal with two peaks representing 169 

nucleosome free DNA fragments (>100bp) and mono-nucleosomal DNA fragments (~200bp). 170 

This should be determined prior to sequencing via tapesation (Supplemental Figure S2A) and 171 

during the analysis phase (Supplemental Figure S2B). We do not see the di-, tri-, quad-, etc. 172 

nucleosomal bands due to removal of large fragments via SPRI bead size selection in the 173 

plasmid library generation process. 174 

SUPPLEMENTAL METHODS 175 

Determination of Harvest Time with Quantitative PCR 176 

GM12878 cells were cultured so that cell density was between 400,000 and 800,000 cells/mL 177 

on day of transfection. Three replicates were performed on separate days. For each sample, 5 178 

million GM12878 cells were electroporated with 5μg ATAC-STARR-seq plasmid DNA using the 179 

Neon™ Transfection System 100 µL Kit (Invitrogen, #MPK10025) and the associated Neon™ 180 

Transfection System (Invitrogen, #MPK5000) in Buffer R with the following parameters: 1100V, 181 

30ms, and 2 pulses. Electroporated cells were dispensed immediately into pre-warmed T-12.5 182 

flasks containing 6.25mL of RPMI 1640 with 20% fetal bovine serum and 2mM GlutaMAX. 183 

Total RNA was harvested at various time points—3hr, 6hr, 12hr, 24hr, and 36hr—using the 184 

TRIzol™ Reagent and Phasemaker™ Tubes Complete System (Invitrogen™, #A33251). For 185 

each sample, 0.75mL TRIzol was added to cell pellets. First-strand cDNA synthesis was 186 

performed using an Oligo (dT)25 primer and the SuperScript™ IV First-Strand Synthesis System 187 
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(Invitrogen™, #18091050). cDNA was treated with RNase H to remove RNA from RNA-DNA 188 

dimers. For each replicate, 10μL quantitative PCR reactions were performed in technical 189 

triplicate using PowerUp™ SYBR™ Green Master Mix (Applied Biosystems™, #A25742) on a 190 

StepOnePlus™ Real-Time PCR System (Applied Biosystems™, #4376600). For each reaction, 191 

1μL of the reverse-transcribed product was added and gene-specific primers were supplied at a 192 

final concentration of 500nM (see Supplemental Table S4 for primer sequences). Fold-change 193 

was calculated with the ΔΔCt method, using either GAPDH or ACTB as the housekeeping gene 194 

for reporter RNA or ISG targets, respectively. Plots were made with ggplot2 (version 3.3.5) 195 

(Wickham 2016) in R (version 4.1.1). 196 

Plasmid Library Complexity Estimation 197 

Plasmid inserts were amplified via PCR for 10 cycles from 3.75μg ATAC-STARR-seq plasmid 198 

library using NEBNext® Ultra™ II Q5® Master Mix and the Nextera indexes, N505 and N701, 199 

see Supplemental Table S3 for primer sequences. Products were purified with the Zymo 200 

Research DNA Clean & Concentrator-5 kit (#D4013) and analyzed for concentration and size 201 

distribution using a HSD5000 screentape. Purified products were sequenced on an Illumina 202 

NovaSeq, PE150, at a requested read depth of 25 million reads through the Vanderbilt 203 

Technology for Advanced Genomics (VANTAGE) sequencing core. 204 

Transfection efficiency estimation 205 

Transfection efficiency is a critical ATAC-STARR-seq bottleneck, particularly for difficult to 206 

transfect cells like GM12878. In parallel with ATAC-STARR-seq, we electroporated GM12878 207 

cells with a pcDNA3.1-eGFP plasmid and estimated transfection efficiency as the percentage of 208 

GFP positive cells when measured by flow cytometry 24 hours later. Specifically, GM12878 209 

cells were electroporated following same conditions as above with either purified pcDNA3.1-210 
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eGFP plasmid or nuclease-free water and then prepared for flow cytometry 24 hours later at a 211 

concentration of 1.25×106 cells/mL in 1xPBS solution containing 1% BSA. We halved both GFP 212 

and water samples and stained one half of each with propidium iodide (Sigma-Aldrich, #P4864). 213 

Unstained cells (water/PI-) were used in conjunction with compensation control cells (GFP/PI- or 214 

water/PI+) to quantify the percentage of living GFP positive cells in the experimental condition 215 

(GFP/PI+) via flow cytometry; this percentage was the reported transfection efficiency. When 216 

performed in parallel to ATAC-STARR-seq plasmid library transfection, we consistently achieve 217 

around 10-20% efficiency (data not shown).  218 

Read Processing 219 

FASTQ files for the two Omni-ATAC-seq replicates from Corces et al. 2017 and all five HiDRA 220 

replicates from Wang et al. 2018 were downloaded from the NCBI sequence read archive (run 221 

codes: SRR5427886- SRR5427887 and SRR6050484-SRR6050523, respectively) and were 222 

processed using the same pipeline as ATAC-STARR-seq (Corces et al. 2017; Wang et al. 223 

2018). For this publicly available data and our own, FASTQ files were trimmed and analysed for 224 

quality with Trim Galore! (version 0.6.7, 225 

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore) using the --fastqc and --paired 226 

parameters. Trimmed reads were mapped to hg38 with bowtie2 (version 2.3.5.1) using the 227 

following parameters: -X 500 --sensitive --no-discordant --no-mixed (Langmead and Salzberg 228 

2012). Mapped reads were filtered to remove reads with MAPQ < 30, reads mapping to 229 

mitochondrial DNA, and reads mapping to ENCODE blacklist regions using a variety of 230 

functions from the Samtools software package (version 1.13) (Li et al. 2009). When desired, 231 

duplicates were removed with the markDuplicates function from Picard (version 2.26.3) 232 

(https://broadinstitute.github.io/picard/). Read count was determined using the flagstat function 233 

from Samtools. Read counts for each step are provided in Supplemental Table S1. We also 234 

provide a python script on our GitHub repository (Hansen and Hodges 2022) that performs the 235 
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processing steps above. Complexity was estimated using the lc-extrap function from the Preseq 236 

package (version 2.0.0) (Daley and Smith 2013) and insert size was determined using the 237 

CollectInsertSizeMetrics function from Picard. Complexity curves were plotted in R with ggplot2. 238 

Accessibility Analysis 239 

Peak Calling. We called accessibility peaks with the Genrich software package (version 0.5, 240 

https://github.com/jsh58/Genrich), using deduplicated bam files. For ATAC-STARR-seq, we 241 

used all three replicates of reisolated plasmid samples. For Corces data, we used the two 242 

available replicates. For both, we set a false-discovery rate of 0.0001 and the -j parameter, 243 

which specifies ATAC-seq mode.  244 

Peak Comparisons. Peaks between Corces and ATAC-STARR-seq plasmid DNA were 245 

compared using the jaccard function from the BEDTools package (version 2.30.0) (Quinlan and 246 

Hall 2010).  FRiP scores (the fraction of reads in peaks) and the genomic fraction represented 247 

by each peak set was calculated using custom code available on our GitHub repository. Euler 248 

plots were made in R with the eulerr package (version 6.1.0) (Larsson 2021) and bar charts 249 

were made in R with ggplot2.  250 

Signal Tracks. Accessibility signal tracks were generated with the bamCoverage function from 251 

the deepTools package (version 3.5.1) (Ramirez et al. 2016) using the following parameters: -bs 252 

10 --normalizeUsing CPM -e --centerReads. Signal was plotted using the Sushi package 253 

(version 1. 30.0) (Phanstiel et al. 2014) in R.  254 

Active and Silent Region Calling  255 

We called active and silent regions using the sliding window and fragment groups methods. In 256 

both cases, except where specified, mapped read files containing duplicates were used for 257 
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region calling. Overlap between the two active region sets identified by each method was 258 

determined using BEDTools jaccard. Methods for each are listed below.  259 

Sliding Window. Within ATAC-STARR-defined open chromatin regions, we generated 50 bp 260 

genomic, sliding window bins with a 10bp step size using the makewindows function and -s 10 -261 

w 50 parameters from the BEDTools software package. Bins smaller than 50bp were removed 262 

from the analysis and reads were counted per bin for each replicate using the featureCounts 263 

function from the Subread package with the following parameters: -p -B -O --minOverlap 1 (Liao 264 

et al. 2014). The resulting counts matrix was pre-filtered to remove bins with zero counts and 265 

then analyzed with the DESeq2 software package (version 1.32.0) in R to identify active and 266 

silent bins (Love et al. 2014). Bins with an Benjamini–Hochberg (BH) adjusted p-value < 0.1 and 267 

log2 fold-change (RNA/DNA) > 0 were defined as active, whereas silent had a BH adjusted p-268 

value < 0.1 and log2 fold-change (RNA/DNA) < 0. Overlapping and book-ended bins were 269 

merged with the merge function from BEDTools (using default parameters), resulting in active 270 

and silent regions. A python script for region calling is available on our GitHub repository. For 271 

the sliding window strategy, we also performed the analysis with or without duplicates in order to 272 

compare the results. For the without-duplicate analysis, deduplicated bam files were used at the 273 

featureCounts step, otherwise all parameters were the same. Active regions were compared 274 

using the jaccard function from the BEDTools package. Scatter plots and correlation coefficients 275 

for replicate-to-replicate comparisons were generated by first extracting DESeq-normalized 276 

counts, using the counts(normalized=TRUE) function, plotted using ggplot2, and compared 277 

using the cor.test() function in R using both Spearman’s and pearson correlation methods.   278 

Fragment Groups. We generated fragment groups using custom code based on the method 279 

described in Wang et al 2018 (Wang et al. 2018). Paired-end mapped reads were converted 280 

from bam to bed format using the bamtobed function from the BEDTools software package with 281 

option -bedpe and a custom awk function. Overlapping paired-end fragments were grouped 282 
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using the bedmap function from the BEDOPS software package (version 2.4.28) (Neph et al. 283 

2012) using the following parameters: --count --echo-map-range --fraction-both 0.75. 284 

Importantly, only fragment groups made up of 10 or more reads were used for downstream 285 

analysis. Reads were counted per fragment group for each replicate bam file using the 286 

featureCounts function from the Subread package (version 2.0.1) with the following parameters: 287 

-p -B -O --minOverlap 1. The resulting counts matrix was pre-filtered to remove bins with zero 288 

counts and then analyzed with the DESeq2 software package in R to identify active fragment 289 

groups.  Fragment groups with an adjusted p-value < 0.1 and log2 fold-change (RNA/DNA) > 0 290 

were defined as active. This method resulted in many fragment groups that overlapped each 291 

other, so we isolated the most active region within each overlap using a custom function 292 

available on our GitHub repository; the resulting, non-redundant regions were defined as active 293 

peaks.   294 

Replicate Count Effects 295 

HiDRA replicate count comparison. Raw HiDRA sequencing data was downloaded and 296 

processed as described in the read processing section above. Using the same bins generated 297 

and analyzed in the active and silent region calling section, reads from all five HiDRA replicates 298 

were counted per bin using the featureCounts function from the Subread package and the 299 

following parameters: -p -B -O --minOverlap 1. Active and regions were called in the same 300 

manner as described in the active and silent region calling section using either three or five 301 

replicates. Region counts for each condition were plotted using ggplot2.  302 

Pseudo-replicate analysis. To create pseudo-replicates, all three replicate bam files of our 303 

ATAC-STARR data were merged using Samtools merge. Merged reads were split into five 304 

separate files using the Samtools view command with the -s options set to $rep.2, where .2 305 

represents 20% of the reads and $rep represents the seed number for random sampling. In this 306 
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way, each pseudo-replicate was sampled with a unique seed number and should, therefore 307 

differ from the other pseudo-replicates. Using the same bins analyzed in the active and silent 308 

region calling section, reads from all five pseudo-replicates were counted per bin and active 309 

regions were called in the same manner as described in the active and silent region calling 310 

section using two, three, four, or five pseudo-replicates. Region counts for each condition were 311 

plotted using ggplot2.  312 

Short vs. Long DNA Fragment Analysis 313 

Reads were split from filtered bam files (read duplicates included) into short and long groups 314 

using samtools view piped to an awk command that filters paired end fragments shorter/equal to 315 

125nts (awk ‘substr($0,1,1)=="@" || ($9<= 125 && $9>=0) || ($9>= -125 && $9<=0)’) or longer 316 

than 125nts (awk ‘substr($0,1,1)=="@" || ($9> 125) || ($9<-125)’). Read counts were performed 317 

with samtools flagstat. Active and silent regulatory regions were called in the same manner as 318 

described above using the “sliding windows” approach. Overlaps were calculated using bedtools 319 

jaccard (default parameters). Region size was calculated in R and annotation was perfomed 320 

using the ChIPSeeker package (version 1.28.3) (Yu et al. 2015); promoters were defined as 2kb 321 

upstream and 1kb downstream of a TSS. All plots were made using ggplot2 in R.  322 

Orientation Analysis 323 

Replicate bam files were merged using Samtools merge. Reads were split by orientation using 324 

Samtools view -f, which selects reads based on their SAM flags. Reads with flags 99 and 147 325 

were assigned to the 5’-3’ bam file, while reads with flags 83 and 163 were assigned to the 3’-5’ 326 

bam file. The same bins generated and analyzed for region calling were used. Bins designated 327 

as active and silent were used for the active only and silent only analysis, respectively. The 328 

three bin sets were further subset into proximal and distal based on distance to the nearest TSS 329 
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using the ChIPSeeker software package; proximal bins were defined as 2kb upstream and 1kb 330 

downstream of a TSS while distal was everything else. For each subset of bins, reads were 331 

counted per bin for the orientation-specific bam files using the featureCounts function from the 332 

Subread package with the following parameters: -p -B -O --minOverlap 1. Scatter plots of counts 333 

per million normalize read count were generated with ggplot2 and both Spearman’s and 334 

pearson correlation coefficients were determined with the cor.test() function in R. Bins with a 335 

greater than 5 read count difference between insert orientations were considered to be biased; 336 

we based this threshold on the all distal bins scatterplot with the assumption that distal bins 337 

should not display an orientation bias. The percentage biased was plotted with ggplot2.  338 

Active and Silent Peak Characterization 339 

Annotation. Active and silent peak sets were annotated relative to transcription start site (TSS) 340 

locations and plotted in R using the ChIPSeeker package (version 1.28.3) (Yu et al. 2015); 341 

promoters were defined as 2kb upstream and 1kb downstream of a TSS. ChromHMM state was 342 

assigned to each peak using the BEDTools intersect function and -u parameter; the list of hg38 343 

18-state ChromHMM regions (Roadmap Epigenomics et al. 2015) 344 

(https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/core345 

_K27ac/jointModel/final/E116_18_core_K27ac_hg38lift_mnemonics.bed.gz) were intersected 346 

against the regions sets of interest and the proportion was plotted with ggplot2.  347 

Heatmaps. The activity bigwig was generated with the deepTools package. Merged bam files for 348 

RNA and DNA were converted to counts per million normalized bedGraph files using the 349 

bamCoverage function and the following parameters: -bs 10 --normalizeUsing CPM. The 350 

resulting RNA bigwig was normalized to the DNA bigwig to generate a signal file of 351 

log2(RNA/DNA) ratio using the bigwigCompare function and the following parameters: -bs 1 --352 

operation log2 --pseudocount 1 –skipZeroOverZero. Heatmaps were generated using the 353 
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deepTools package. Activity signal was plotted at distal and proximal regions and region order 354 

was ranked by maximum mean signal. GM12878 ChIP-seq bigwig files were downloaded from 355 

the ENCODE consortium (The ENCODE Project Consortium et al. 2020) and plotted. The 356 

matrix was made using the computeMatrix function, with the following parameters: -a 2000 -b 357 

2000 --referencePoint center -bs 10 --missingDataAsZero. The matrix was plotted using the 358 

plotHeatmap function with the following key parameters: --sortUsing mean --sortUsingSamples 359 

1.  360 

Histone Signal Boxplots. We intersected silent and active regions with our accessible peaks file 361 

using the intersect function from the BEDTools software package to get peaks that contain an 362 

active region, a silent region, both an active and silent region, or neither. Using the slop function 363 

from BEDTools we then extended ChrAcc peaks by 1kb on either side and then used the 364 

bigwigCompare function from the DeepTools package to determine 365 

H3K4me1/H3K4me3/H3K27ac/H3Kme3 GM12878 ChIP-seq bigwig signal distributions for each 366 

for the ChrAcc peak types. The same ENCODE files used in the heatmap analysis above, were 367 

also used here. The plotted values represent the average fold-change over control for each 368 

ChrAcc peak +/- 1kb. Plots were made with ggplot2.  369 

Motif enrichment. We performed motif enrichment on the active and silent peak sets using the 370 

findMotiftsGenome.pl script from the HOMER package (version 4.10, http://homer.ucsd.edu/) 371 

(Duttke et al. 2019) using the following parameters: -size given -mset vertebrates. Plots were 372 

made with ggplot2.  373 

Neutral region calling.  374 
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Neutral regions were called in the exact same manner as active or silent except for one critical 375 

difference: only bins with padj > 0.1 were selected. Annotation of distance to nearest TSS and 376 

ChromHMM were performed as described for the active and silent regions above. 377 

TF footprinting 378 

Computational footprinting. Transcription factor footprinting was performed using the TOBIAS 379 

software package (version 0.12.12) (Bentsen et al. 2020). Deduplicated mapped reads were 380 

used to generate Tn5-bias corrected bigwig signal files using the ATACorrect function. Using 381 

the corrected signal files, TF binding was calculated with the ScoreBigWig function and 382 

footprints for individual TFs were called for all core non-redundant vertebrate JASPAR motifs 383 

(Fornes et al. 2020) using the BINDetect function. Motifs with a footprint were classified as 384 

“bound”, while motifs without a footprint were classified as “unbound”. The “archetype” for each 385 

TF was assigned by cross-referencing the motif annotations table from Viestra et al. 2020 386 

(Vierstra et al. 2020).  387 

Data Visualization. Heatmaps were generated using the deepTools package. GM12878 ChIP-388 

seq bigwig files were downloaded from ENCODE (www.encodeproject.org) (The ENCODE 389 

Project Consortium et al. 2020) and plotted with Tn5-corrected signal at all accessible CTCF 390 

and ETS/1 motifs (defined as the “all” bed file for CTCF or ETS1 from BINDetect) using the 391 

computeMatrix reference-point function with the following key parameters:  -a 200 -b 200 --392 

referencePoint center --missingDataAsZero -bs1. The resulting matrix was plotted using the 393 

plotHeatmap function and the following key parameters: --sortUsing mean --sortUsingSamples 394 

1. Aggregate plots were also generated using the deepTools package. Tn5-corrected signal was395 

measured at bound and unbound sites for each TF archetype using the computeMatrix 396 

reference-point function with the following key parameters:  -a 75 -b 75 --referencePoint center -397 

-missingDataAsZero -bs 1. The resulting matrix was plotted using the plotProfile function.398 
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Integration of Regulatory Activity, Chromatin Accessibility, and TF footprinting 399 

Signal and regions were visualized at the given locus using the Sushi package in R. To 400 

determine the presence or absence of a TF footprint, we intersected TF footprints with the 401 

active and silent regions bed file and reported +/- for presence of the footprint using custom 402 

code available on our GitHub repository. Footprints were selected based on top hits from the 403 

motif enrichment analysis above. Active and silent regions without a footprint for the queried 404 

TFs were removed from the analysis. We clustered the region subsets with the pheatmap 405 

package (version 1.0.12, https://github.com/raivokolde/pheatmap), using the 406 

clustering_distance_row/columns = “binary” parameter; we cut the tree into 6 clusters for active 407 

and silent. We extracted the regions from each cluster and then, using the ChIPSeeker 408 

package, assigned the nearest neighbor gene. Using ClusterProfiler (Yu et al. 2012) and 409 

ReactomePA (Jassal et al. 2020), we then performed reactome pathway enrichment analysis on 410 

the nearest neighbor gene sets. We applied a 0.05 and 0.1 p-value cut-off for active and silent 411 

clusters, respectively. 412 

SUPPLEMENTAL FIGURE LEGENDS 413 

Supplemental Figure S1. ATAC-STARR Optimization. (A) Estimated complexity curve for the 414 

GM12878 ATAC-STARR plasmid library. Dashed lines represent predicted values from 415 

Preseq’s lc-extrap. The associated ribbon plots (light blue) represent the 95% confidence 416 

interval reported with the predicted value. (B) Relative expression of reporter RNAs and three 417 

interferon-stimulated genes (IFNB1, IFIT2, and ISG15) at varying timepoints between 0- and 36-418 

hours post-electroporation.  For each analysis, fold-change values are relative to the 419 

untransfected condition. Three replicates were isolated and quantified for each timepoint. 420 
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Supplemental Figure S2. Characterization of ATAC-STARR sequencing libraries. (A) 421 

Agilent Tapestation results for relevant steps of ATAC-STARR, this includes the following: 422 

tagmented products, plasmid library inserts, and Illumina sequencing libraries for all three 423 

replicates of DNA and RNA. Tagmented products lack the full Illumina adapter and therefore are 424 

about 100bp smaller than their later-stage counterparts. They also include larger fragments 425 

which were removed via selection before the cloning step. The Illumina-ready libraries were 426 

amplified using a minimal PCR cycle number and therefore the plasmid or cDNA template as 427 

well as the first and second round products can be seen as larger material—this material is not 428 

sequence-able as it lacks at least one of the adapters required for cluster amplification. (B) 429 

Insert size distribution of ATAC-STARR-seq reads, as quantified by Picard’s 430 

CalculateInsertSizeMetrics. (C) Estimated complexity curves for ATAC-STARR sequencing 431 

libraries. Dashed lines represent predicted values from Preseq’s lc-extrap. The associated 432 

ribbon plots (light blue) represent the 95% confidence interval reported with the predicted value. 433 

Supplemental Figure S3. Correlation between ATAC-STARR-seq replicates. Scatter plots 434 

of DESeq2-normalized read counts per bin between replicates for both (A) DNA and (B) RNA 435 

samples. Pearson (r2) and Spearman’s (ρ) correlation coefficients are indicated in the top left 436 

corner for each pairwise comparison. 437 

Supplemental Figure S4. Comparison between the sliding window and the fragment 438 

group active region calling methods. (A) Diagram of the fragment group region calling 439 

scheme. Paired-end fragments from the DNA samples are first assembled into “fragment 440 

groups” (FGs) which represent groups of more than 10 paired-end fragments with each 441 

fragment overlapping another fragment by at least 75%. Like the sliding window method, reads 442 

from RNA and DNA samples are then assigned to each FG and active FGs are identified using 443 

differential analysis with DESeq. The same padj (<0.05) and log2fold-change (>0) filters are 444 

applied. For FGs that overlap, the FG with the largest activity score is isolated.  (B) The number 445 
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of active regions called with either method. (C) Euler plot comparing the region overlap between 446 

the two methods. 447 

Supplemental Figure S5. Analysis of replicate count on region calling sensitivity. (A) 448 

Number of active regions called using HiDRA data with either 3 or 5 replicates. Current ATAC-449 

STARR-seq active region number is plotted for comparison. (B) Number of active regions called 450 

when 2, 3, 4, or 5 pseudoreplicates are provided. To generate pseudoreplicates, replicates were 451 

merged and then split into 5 separate files. 452 

Supplemental Figure S6. Comparison between keeping duplicates and removing 453 

duplicates to call active regions. (A-B) Scatter plots of DESeq2-normalized read counts per 454 

bin between replicates for both (A) DNA and (B) RNA samples when duplicates are removed. 455 

Pearson (r2) and Spearman’s (ρ) correlation coefficients are indicated in the top left corner for 456 

each pairwise comparison. (C) The number of active regions called with or without duplicates. 457 

(D) Euler plot comparing the region overlap between the two methods. 458 

Supplemental Figure S7. Effect of fragment length on regulatory region calls. ATAC-459 

STARR-seq fragments were parsed into “long” and “short” files based on whether they were 460 

greater than or less than or equal to 125nt. (A) read counts of each fragment length 461 

classification for each replicate for both plasmid DNA and reporter RNA samples.  (B) Active 462 

and silent region counts using only long fragments, only short fragments, or both. (C) Boxplots 463 

of basepair (bp) length for the active and silent region sets called for each fragment length 464 

classification.  (D) Annotation of regulatory regions relative to the transcriptional start site (TSS). 465 

The promoter is defined as 2kb upstream and 1 kb downstream of the TSS. (E) Venn diagrams 466 

representing the amount of active or silent region overlap between the region sets called from 467 

each fragment length classification. 468 
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Supplemental Figure S8. Assessment of potential orientation bias in ATAC-STARR-seq 469 

data. (A) Schematic of the method for separating reads based on insert orientation. Read 1 and 470 

Read 2 are sequenced from the same position regardless of insert orientation on the plasmid 471 

and reporter RNA samples. Therefore, insert orientation can be specified based on how the 472 

read pair map to the genome. 5’-3’ inserts have R1 on the top strand, while 3’ -5’ inserts have 473 

R1 on the bottom strand. (B-G) Scatter plots of counts per million normalized reporter RNA read 474 

counts between 5’ to 3’ inserts and 3’ to 5’ inserts for (B) all proximal bins analyzed, (C) all distal 475 

bins analyzed, (D) active proximal bins only, (E) active distal bins only, (F) silent proximal bins 476 

only or (G) silent distal bins only. Pearson (r2) and Spearman’s (ρ) correlation coefficients are 477 

indicated in the top left corner for each pairwise comparison. Proximal bins were defined as 478 

within 2kb upstream and 1kb downstream of a transcription start site, while distal bins were 479 

defined as everything else. Dashed lines indicate +/- 5 counts from the expectation (y=x). The 480 

percentage of bins that lie outside of these lines are denoted in (H). 481 

Supplemental Figure S9. Additional Characterization of ATAC-STARR-seq Regulatory 482 

Regions. (A) Histone modification ChIP-seq signal at accessible chromatin peaks. Boxplot of 483 

the distribution of histone modification ChIP-seq signal for accessible chromatin peaks (ChrAcc) 484 

that contain an active region, a silent region, both an active and silent region, or neither 485 

(neutral). Values represents the average fold change over control signal per region for each 486 

histone modification. (B) Annotation of regulatory regions relative to the transcriptional start site 487 

(TSS). The promoter is defined as 2kb upstream and 1 kb downstream of the TSS. (C) 488 

Annotation of regulatory regions by the ChromHMM 18-state model for GM12878 cells. 489 
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SUPPLEMENTARY TABLES 

Supplementary Table 1: A comparison of experimental differences and result metrics between 
accessible chromatin coupled to STARR-seq techniques. 

Type Description ATAC-STARR-seq (Hansen 
& Hodges, this report) 

HiDRA (Wang et al. 
2018) 

FAIRE-STARR-seq 
(Chaudhri et al. 

2020) 

Experimental 
Differences 

Cell type GM12878 GM12878 Purified murine splenic 
B cells 

Accessible 
chromatin 

extraction process 
ATAC-seq (Tn5-tagmentation) ATAC-seq (Tn5-

tagmentation) 
FAIRE-seq 

(crosslinking-based) 

mtDNA removal 
process 

Omni-ATAC (detergent-based) 
CRISPR against 
mtDNA gRNAs none 

Size selection 0-500bp 150-500bp 300-700bp

Reporter plasmid 
promoter 

Bacterial origin of replication (ORI) 
Super Core Promoter 

1 
Super Core Promoter 

1 

Manner of 
plasmid library 

sequence library 
preparation 

Reisolated after electroporation (in 
parallel with reporter RNAs) 

Sequenced as-is, no 
reisolation after 
electroporation 

Not sequenced 

Analysis Sliding windows & DESeq2 
Fragment groups & 

DESeq2 
Homer findPeaks, no 
normalization to DNA 

Result 
metrics 

Library 
Complexity 

~50 million 9.7 million 
Not reported directly, 

~81% coverage of 
input FAIRE-DNA 

Number of active 
regions called 

30,078 active regions 
66,254 active HiDRA 

regions 
11,809 STARR-
positive regions 

Number of silent 
regions called 

21,125 silent regions None reported None reported 

Number of 
accessible 

chromatin peaks 
called 

101,904 peaks None reported 
55,133 peaks (from 
FAIRE-seq not the 

plasmid library) 

Number of TFs 
footprinted 

746 TFs None reported None reported 

Number of 
SHARPER-RE 
driver elements 

identified 

None reported ~13,000 None reported 
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Supplementary Table 2. ATAC-STARR-seq Sequencing Summary Statistics. 

Metric Plasmid 
Library 

DNA Rep 
1 

DNA Rep 
2 

DNA Rep 
3 

RNA Rep 
1 

RNA Rep 
2 

RNA Rep 
3 

Total read count 
(paired end) 113,978,542 55,453,364 47,609,989 81,350,911 101,163,327 122,274,760 103,410,392 

Filtered read 
count (paired end) 66,730,249 30,803,098 26,530,451 44,046,983 56,307,716 67,956,476 56,098,454 

Filtered & 
deduplicated read 
count (paired end) 

29,482,015 22,626,181 20,015,687 28,369,114 11,385,851 8,122,462 9,285,796 

Trimming Rate 79.7% 76% 79% 82% 76% 76% 76% 

Mapping Rate 
(>30MAPQ) 73% 61% 61% 59% 61% 61% 59% 

% mtDNA reads 19.13% 8.6% 8.7% 8.6% 8.6% 8.6% 8.3% 
% ENCODE 
blacklist reads 0.147% 0.05% 0.05% 0.05% 0.05% 0.05% 0.05% 

Duplication rate 56% 27% 25% 35.6% 80% 88% 83% 
Number of PCR 
Cycles  10 8 8 8 13 13 12 

FastQC fields 
failed Per base sequence content, Sequence Duplication Levels 

*Plasmid library column represents data from the library complexity check.

Supplementary Table 3. Genrich peak counts for varying FDR thresholds. 

Sample FDR < 0.01 FDR < 0.001 FDR < 0.0001 FDR < 0.00001 
Corces 133,007 89,829 66,471 50,784 
ATAC-STARR 162,877 124,612 101,904 85,668 

*Underlined values indicate the peak sets that were analyzed further.

Supplementary Table 4 contains oligo sequences used in ATAC-STARR-seq and qPCR. It is 
included as a separate excel file. 
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Supplementary Figure 1. ATAC-STARR Optimization. (A) Estimated complexity curve for the GM12878 ATAC-STARR plasmid library. 
Dashed lines represent predicted values from Preseq’s lc-extrap. The associated ribbon plots (light blue) represent the 95% confidence 
interval reported with the predicted value. (B) Relative expression of reporter RNAs and three interferon-stimulated genes (IFNB1, IFIT2, 
and ISG15) at varying timepoints between 0- and 36-hours post-electroporation.  For each analysis, fold-change values are relative to the 
untransfected condition. Three replicates were isolated and quantified for each timepoint. 
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Default image(Contrast 50%), ImageisScaledtoSample

Sample Info

Well C onc. [pg/µl] Sample Description Alert Observations
A1 2410 Ladder Caution! ExpiredScreenTapedevice; Ladder
B1 165 GM12878_20200604 Caution! ExpiredScreenTapedevice
C1 1310 GM12878_Input-Plasmid_NGS-PCR_10cycles Caution! ExpiredScreenTapedevice
D1 2740 GGD1
E1 4020 GGD2
F1 2670 GGD3 Caution! ExpiredScreenTapedevice
G1 859 GGR1

H1 1400 GGR2 Caution! ExpiredScreenTapedevice(used
after twoweeksof first use)

A2 1340 GGR3 Caution! ExpiredScreenTapedevice

A

B C

A - Ladder
B - Tagmentation Products*

 C - Plasmid library Inserts
D - Illumina sequencing library DNA Rep1
E - Illumina sequencing library DNA Rep2
F - Illumina sequencing library DNA Rep3
G - Illumina sequencing library RNA Rep1
H - Illumina sequencing library RNA Rep2

 I - Illumina sequencing library RNA Rep3
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10,000bp
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Sequencable 
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PCR 
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G H I

*Tagmentation product adapters are ~100bp
smaller than after cloning. Additionally, size
selection was performed between tagmenta-
tion and cloning to extract fragments < 500bp.

Insert Size Distribution of ATAC-STARR 
Sequencing Libraries

Supplementary Figure 2. Characterization of ATAC-STARR sequencing libraries. (A) Agilent Tapestation results for relevant steps 
of ATAC-STARR, this includes the following: tagmented products, plasmid library inserts, and Illumina sequencing libraries for all 
three replicates of DNA and RNA. Tagmented products lack the full Illumina adapter and therefore are about 100bp smaller than their 
later-stage counterparts. They also include larger fragments which were removed via selection before the cloning step. The Illumina-
ready libraries were amplified using a minimal PCR cycle number and therefore the plasmid or cDNA template as well as the first 
and second round products can be seen as larger material—this material is not sequence-able as it lacks at least one of the 
adapters required for cluster amplification. (B) Insert size distribution of ATAC-STARR-seq reads, as quantified by Picard’s 
CalculateInsertSizeMetrics. (C) Estimated complexity curves for ATAC-STARR sequencing libraries. Dashed lines represent 
predicted values from Preseq’s lc-extrap. The associated ribbon plots (light blue) represent the 95% confidence interval reported 
with the predicted value. 
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Supplementary Figure 3. Correlation between ATAC-STARR-seq replicates. Scatter plots of DESeq2-normalized read counts per bin 
between replicates for both (A) DNA and (B) RNA samples. Pearson (r2) and Spearman’s (ρ) correlation coefficients are indicated in the 
top left corner for each pairwise comparison. 
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A B

C

Supplementary Figure 4. Comparison between the sliding window and the fragment group active region calling methods. 
(A) Diagram of the fragment group region calling scheme. Paired-end fragments from the DNA samples are first assembled into 
“fragment groups”  (FGs) which represent groups of more than 10 paired-end fragments with each fragment overlapping another 
fragment by at least 75%. Similar to the sliding window method, reads from RNA and DNA samples are then assigned to each FG 
and active FGs are identified using differential analysis with DESeq. The same padj (<0.05) and log2fold-change (>0) filters are 
applied. For FGs that overlap, the FG with the largest activity score is isolated.  (B) The number of active regions called with either 
method. (C) Euler plot comparing the region overlap between the two methods. 
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A B

Supplementary Figure 5. Analysis of replicate count on region calling sensitivity. (A) Number of active regions called 
using HiDRA data with either 3 or 5 replicates. Current ATAC-STARR-seq active region number is plotted for comparison. (B) 
Number of active regions called when 2, 3, 4, or 5 pseudoreplicates are provided. To generate pseudoreplicates, replicates were 
merged and then split into 5 separate files. 
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Supplementary Figure 6. Comparison between keeping duplicates and removing duplicates to call active regions. (A-B) 
Scatter plots of DESeq2-normalized read counts per bin between replicates for both (A) DNA and (B) RNA samples when duplicates 
are removed. Pearson (r2) and Spearman’s (ρ) correlation coefficients are indicated in the top left corner for each pairwise 
comparison. (C) The number of active regions called with or without duplicates. (D) Euler plot comparing the region overlap between 
the two methods. 
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Supplementary Figure 7. Effect of fragment length on regulatory region calls. ATAC-STARR-seq fragments were parsed into 
“long” and “short” files based on whether they were greater than or less than or equal to 125nt. (A) read counts of each 
fragment length classification for each replicate for both plasmid DNA and reporter RNA samples.  (B) Active and silent region 
counts using only long fragments, only short fragments, or both. (C) Boxplots of basepair (bp) length for the active and silent region 
sets called for each fragment length classification.  (D) Annotation of regulatory regions relative to the transcriptional start site 
(TSS). The promoter is defined as 2kb upstream and 1 kb downstream of the TSS. (E) Venn diagrams representing the amount 
of active or silent region overlap between the region sets called from each fragment length classification. 
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Supplementary Figure 8. Assessment of potential orientation bias in ATAC-STARR-seq data. (A) Schematic of the method for 
separating reads based on insert orientation. Read 1 and Read 2 are sequenced from the same position regardless of insert orientation 
on the plasmid and reporter RNA samples. Therefore, insert orientation can be specified based on how the read pair map to the genome. 
5’-3‘ inserts have R1 on the top strand, while 3’ -5‘ inserts have R1 on the bottom strand. (B-G) Scatter plots of counts per million 
normalized reporter RNA read counts between 5’ to 3’ inserts and 3’ to 5’ inserts for  (B) all proximal bins analyzed, (C) all distal bins 
analyzed, (D) active proximal bins only,  (E) active distal bins only, (F) silent proximal bins only or (G) silent distal bins only. Pearson (r2) 
and Spearman’s (ρ) correlation coefficients are indicated in the top left corner for each pairwise comparison. Proximal bins were defined 
as within 2kb upstream and 1kb downstream of a transcription start site, while distal bins was defined as everything else. Dashed lines 
indicate +/- 5 counts from the expectation (y=x). The percentage of bins that lie outside of these lines are denoted in (H).
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Supplementary Figure 9. Additional Characterization of ATAC-STARR-seq Regulatory Regions. (A) Histone modification ChIP-seq 
signal at accessible chromatin peaks. Boxplot of the distribution of histone modification ChIP-seq signal for accessible chromatin peaks 
(ChrAcc) that contain an active region, a silent region, both and active and silent region, or neither (neutral). Values represents the average 
fold change over control signal per region for each histone modification. (B) Annotation of regulatory regions relative to the transcriptional 
start site (TSS). The promoter is defined as 2kb upstream and 1 kb downstream of the TSS. (C) Annotation of regulatory regions by the 
ChromHMM 18-state model for GM12878 cells. 
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