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S1 Derivation of the evidence lower bound (ELBO)

We here derive the ELBO from the marginal log-likelihood of a haplotype, x, using Jensen’s inequal-
ity and our following definitions, pθ(x, z, y) = pθ(x | z)pθ(z | y)p(y), qϕ(z, y |x) = qϕ(z |x, y)qϕ(y |x).
We follow the mathematical notation used in the machine learning literature and Kingma and
Welling [Kingma and Welling, 2013].

log pθ(x) = log
∑
y

∫
z

pθ(x, z, y) dz (S1)

= log
∑
y

∫
z

pθ(x, z, y)
qϕ(z, y |x)
qϕ(z, y |x)

dz (S2)

= logEqϕ(z,y |x)

[
pθ(x, z, y)

qϕ(z, y |x)

]
(S3)

≥ Eqϕ(z,y |x)

[
log

pθ(x, z, y)

qϕ(z, y |x)

]
(S4)

= Eqϕ(z,y |x)

[
log

pθ(x | z)pθ(z | y)p(y)
qϕ(z |x, y)qϕ(y |x)

]
(S5)

= Eqϕ(z,y |x)

[
log pθ(x | z)− log

qϕ(z |x, y)
pθ(z | y)

− log
qϕ(y |x)
p(y)

]
. (S6)

We can rewrite the last term in the expectation using p(y = c) = C−1, for c = 1, . . . , C:

Eqϕ(z,y |x)

[
log

qϕ(y |x)
p(y)

]
= Eqϕ(y |x)Eqϕ(z |x,y)

[
log

qϕ(y |x)
p(y)

]
(S7)

= Eqϕ(y |x)

[
log

qϕ(y |x)
p(y)

]
(S8)

= Eqϕ(y |x) [log qϕ(y |x)]− Eqϕ(y |x) [log p(y)] (S9)

= −H(qϕ(y |x)) + logC, (S10)

where H(X) is the entropy of a given distribution. In that way, both the second and third term will
act as regularization on the reconstruction term through the latent space distributed by qϕ(z, y |x).
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S2 Derivation of EM algorithm

Here we derive the EM algorithm for estimating ancestry proportions Q ∈ [0, 1]N×K and window-
based haplotype frequencies F ∈ [0, 1]W×K×C , and we will use the following notation:

W number of windows

N number of individuals

C number of haplotype states

K number of ancestral states

x
(w)
i,a observed data of the a-th haplotype of individual i in window w

ψ(n) auxiliary variable in iteration n

q
(n)
ik ancestry proportion of state k for individual i in iteration n

f
(n)
wkc ancestral frequency of haplotype state c in ancestral state k in window w in iteration n

We define the likelihood function:

L(Q,F;X) ∝
W∏

w=1

N∏
i=1

2∏
a=1

p(x
(w)
i,a |ψ) (S11)

p(x
(w)
i,a |ψ) =

K∑
k=1

C∑
c=1

p(x
(w)
i,a |ψ, k, y = c)p(y = c | k, ψ)p(k |ψ) (S12)

=

K∑
k=1

C∑
c=1

p(x
(w)
i,a | y = c)fwkcqik. (S13)

The EM update for qik is defined as follows for iteration n+ 1:

q
(n+1)
ik =

∑W
w=1

∑2
a=1 p(k |x

(w)
i,a , ψ

(n))∑K
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′ |x(w)
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(n))
(S14)

=
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(n))

2W
, (S15)

and the update for fwkc:

f
(n+1)
wkc =

∑N
i=1

∑2
a=1 p(k, y = c |x(w)

i,a , ψ
(n))∑C

c′=1

∑N
i=1

∑2
a=1 p(k, y = c′ |x(w)

i,a , ψ
(n))

, (S16)

where
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(n)) =
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i,a , ψ

(n)), (S17)

and
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p(x

(w)
i,a | k, y = c, ψ(n))p(y = c,x

(w)
i,a |ψ(n))∑K

k′=1

∑C
c′=1 p(x

(w)
i,a | k′, y = c′, ψ(n))p(y = c′,x

(w)
i,a |ψ(n))

(S18)
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. (S20)

S3 Signal-to-noise ratio measure

Here we define the signal-to-noise ratio measure used to quantify how separable populations are
given their labels. It is defined as the mean between-population distance relative to the mean
within-population distance of a given measure,

∑P
p

1
Np,b

∑N
i

∑N
j I[pi ̸= pj ]dij∑P

p
1

Np,w

∑N
i

∑N
j I[pi = pj ]dij

(S21)

where p is a population label, P is the total number of population labels, pi is the population label of
the i-th individual and dij is the euclidean distance of individual i and j given either their ancestry
proportions or principal components. Np,b is the number of comparisons where the population
labels does not match (between) and Np,w is the number of comparisons where population labels
match for population p (within).
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S4 Reparameterization tricks

End-to-end learning is a desired trait in deep learning models as it enables joint training of model
parameters through backpropagation. However with the network architectures of variational au-
toencoders, the sampling steps of the latent variables are not letting information flow end-to-end as
they are non-differentiable. The reparameterization trick is a simple approach to express a random
variable as deterministic using the introduction of an auxiliary variable as defined in the SGVB esti-
mator [Kingma and Welling, 2013]. In this way, the stochastic process of sampling is removed from
the computation graph and we can therefore efficiently estimate gradients and perform end-to-end
learning of our network parameters, (ϕ, θ), through Monte Carlo samples of the latent variables to
approximate the ELBO in Equation S1.

A D-dimensional sample from a multivariate Gaussian distribution, z, can be expressed using
the introduction of auxiliary noise variable ϵ, with ϵd ∼ N (0, 1), for d = 1, . . . , D:

zd = µd + σdϵd. (S22)

Similarly, the reparameterization trick for the Gumbel-Softmax distribution is an approach for
providing differentiable samples that approximate samples from a categorical distribution. It is
an extension of the Gumbel-Max trick [Maddison et al., 2014] for sampling from a categorical
distribution, where the softmax function is used as a continuous differentiable approximation to the
arg max function. The Gumbel-Softmax distribution was derived simultaneously in two independent
studies [Jang et al., 2016, Maddison et al., 2016]. A C-dimensional one-hot encoded categorical
sample y can be approximated as sample ỹ from the Gumbel-Softmax distribution, and it is defined
as follows for its entry c:

ỹc =
exp((log(πc) + gc)/τ)∑C

c′=1 exp((log(πc′) + gc′)/τ)
. (S23)

Here gc, . . . , gC are i.i.d. samples from Gumbel(0, 1) (auxiliary variables) and πc is the prob-
ability of haplotype cluster c. The temperature parameter, τ , is governing the smoothness of the
distribution such that when τ approaches 0, samples become identical to samples from the cate-
gorical distribution. We have provided examples of the Gumbel-Softmax distribution in the next
section to provide the reader with a better intuition of it. Note that ỹ ∈ [0, 1]C unlike y, and the
functions µθ, σθ, µϕ, σϕ parameterized by the neural networks are therefore redefined as mapping
to or from a continuous space in the practical implementation.

4



S5 Gumbel-Softmax sampling

Figure S1: Two examples of approximate sampling from different categorical distributions using
the Gumbel-Softmax distribution. First column displays the two categorical distributions with
the two examples distinguishable by color, and the next three columns display random samplings
from the distributions for different temperatures. The random sampling is performed using the
reparameterization trick as described in Equation S23 with τ = 10, 1, 0.1. a) A discrete uniform
distribution, b) a categorical distribution with decreasing probabilities. Here it can be seen that
as τ approaches 0, the sample from the Gumbel-Softmax distribution will converge to a categorical
sample, while as τ approaches ∞, it will converge towards a uniform sample.
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S6 Network architectures

In all models, the architectures for the networks of HaploNet were defined as follows:

• πϕ(x): L-H-ReLU-BN-C
• µϕ(x, y), σ

2
ϕ(x, y): (L+ C)-H-ReLU-BN-D

• µθ(y), σ
2
θ(y): C-D

• πθ(z): D-H-ReLU-BN-L

with a hidden layer of 256 units (H = 256), ReLU being a ReLU activation layer, and BN a batch
normalization layer.

Simulations

• Dimensions: L = 1024, D = 64, C = 32
• Batch size: 128
• Epochs: 200

1000 Genomes Project (AFR, AMR, EAS, EUR, SAS) [1000 Genomes
Project Consortium et al., 2015]

• Dimensions: L = 1024 1, D = 64, C = 32
• Batch size: 128
• Epochs: 200

UK Biobank [Bycroft et al., 2018]

• Dimensions: L = 256, D = 64, C = 32
• Batch size: 8192
• Epochs: 100

1L = 512 and L = 2048 were used for evaluating the effect of window size for the EUR super population, while
L = 256 was used for the EUR super population when only using sites on the high density genotype chip.
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S7 Supplementary figures and tables

S7.1 Simulations in msprime

Four different simulation scenarios have been modelled using msprime [Kelleher and Lohse, 2020]
for a sequence length of 1.0 × 109. Chromosomes of 100 diploid samples have been sampled from
each of the five populations. A uniform recombination rate of 1.0 × 10−9 has been assumed in all
simulations as well as a mutation rate of 2.36 × 10−8. The following population split times (in
generations) have been used:

• Simulation 1: {t1 = 100, t2 = 60, t3 = 40, t4 = 20}, all population sizes: 10000.
• Simulation 2: {t1 = 200, t2 = 120, t3 = 80, t4 = 40}, all population sizes: 10000.
• Simulation 3: {t1 = 1000, t2 = 600, t3 = 400, t4 = 200}, all population sizes: 10000.
• Simulation 4: {t1 = 1000, t2 = 600, t3 = 400, t4 = 200}, all population sizes: 50000.

S7.1.1 Comparisons

HaploNet ADMIXTURE (LD-pruned)

Simulation 1 22.54466 7.86155 (8.40691)
Simulation 2 5.84812 3.79932 (4.37785)
Simulation 3 1106.03398 63.96098 (86.78266)
Simulation 4 311.18541 16.28952 (17.86109)

Table S1: Mean between-population distance relative to the mean within-population distance of
estimated ancestry proportions for the simulated scenarios. A higher value means a higher signal-
to-noise ratio, thus more separable populations. The measures of ADMIXTURE from the LD pruned
datasets are also reported for the used K in each super population. (LD pruning performed in
PLINK: --indep-pairwise 50 10 0.5)

HaploNet ChromoPainter PLINK (LD-pruned)

Simulation 1 3.79448 12.68871 3.48961 (3.69830)
Simulation 2 7.53089 20.36589 7.60278 (8.15770)
Simulation 3 26.66899 26.14253 32.51606 (37.17452)
Simulation 4 16.92876 N/A 17.06983 (18.57127)

Table S2: Mean between-population distance relative to the mean within-population distance of
the inferred principal components for the simulated scenarios. Four principal components have
been used in all cases. A higher value means a higher signal-to-noise ratio, thus more separable
populations. The measures of the inferred principal components from the LD pruned datasets
using PLINK is reported in parentheses (LD pruning performed in PLINK: --indep-pairwise 50

10 0.5). ChromoPainter was terminated in simulation 4 due to excessive memory requirements
and estimated computational runtime.
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Figure S2: Estimated ancestry proportions in the different simulation scenarios using HaploNet

(left column) and ADMIXTURE [Alexander et al., 2009] (right column).
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Figure S3: Inferred population structure in Simulation 1 based on PCA using PLINK (left column),
HaploNet (middle column), and ChromoPainter (right column). First row displays PC1 plotted
against PC2, while the second row shows PC3 against PC4.

Figure S4: Inferred population structure in Simulation 2 based on PCA using PLINK (left column),
HaploNet (middle column), and ChromoPainter (right column). First row displays PC1 plotted
against PC2, while the second row shows PC3 against PC4.
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Figure S5: Inferred population structure in Simulation 3 based on PCA using PLINK (left column),
HaploNet (middle column), and ChromoPainter (right column). First row displays PC1 plotted
against PC2, while the second row shows PC3 against PC4.

Figure S6: Inferred population structure in Simulation 4 based on PCA using PLINK (left column)
and HaploNet (right column)). First row displays PC1 plotted against PC2, while the second row
shows PC3 against PC4. ChromoPainter was terminated in simulation 4 due to excessive memory
requirements and estimated computational runtime.
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S7.2 1000 Genomes Project

S7.2.1 Comparisons

K=2 K=3 K=4 K=5

AFR

HaploNet 5.72604 7.38230 7.30438 7.01651
ADMIXTURE (LD-pruned) 4.05180 5.45061 6.13836 4.87877 (5.84965)

AMR

HaploNet 3.02893 2.64753 2.61632 -
ADMIXTURE (LD-pruned) 2.80201 2.13841 2.28056 (2.58715) -

EAS

HaploNet 8.98795 8.21613 8.05040 -
ADMIXTURE (LD-pruned) 7.41574 5.98761 3.21532 (3.31927) -

EUR

HaploNet 12.64427 9.80112 7.86159 -
ADMIXTURE(LD-pruned) 7.74596 5.04840 1.86814 (4.36921) -

SAS

HaploNet 2.82519 2.87521 - -
ADMIXTURE (LD-pruned) 2.23994 2.06078 (2.32379) - -

Table S3: Mean between-population distance relative to the mean within-population distance of
estimated ancestry proportions for each super population of the 1000 Genomes Project. A higher
value means a higher signal-to-noise ratio, thus more separable populations, while the measures
between the different values of K are not comparable. The scores of ADMIXTURE on the LD pruned
datasets are also reported for the highest used K in each super population (LD pruning performed
in PLINK: --indep-pairwise 50 10 0.5).

HaploNet ChromoPainter PLINK (LD-pruned)

AFR (3) 4.40707 5.24017 4.25830 (4.55877)
AMR (4) 2.42171 2.37184 2.37600 (2.40783)
EAS (3) 4.36325 6.94765 3.02060 (3.42440)
EUR (3) 3.93642 6.51211 2.55128 (4.28249)
SAS (3) 1.78487 2.23910 1.78416 (1.92694)

Table S4: Clustering performances in principal component space based on signal-to-noise ratio for
each of the super populations of the 1000 Genomes Project. Only the top principal components that
capture population structure are used in each scenario which is reported in the parentheses. The
measures of inferred principal components from the LD pruned datasets using PLINK is reported in
parentheses (LD pruning performed in PLINK: --indep-pairwise 50 10 0.5).
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S7.2.2 AFR

Figure S7: Estimated ancestry proportions in the AFR super population of the 1000 Genomes
Project using HaploNet (left column) and ADMIXTURE (right column) for K = 2, 3, 4, 5.
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Figure S8: Inferred population structure in the AFR super population based on PCA using
HaploNet (left column), PLINK (middle column) and ChromoPainter (right column). First row
displays PC1 plotted against PC2, while the second row shows PC2 against PC3.
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S7.2.3 AMR

Figure S9: Estimated ancestry proportions in the AMR super population of the 1000 Genomes
Project using HaploNet (left column) and ADMIXTURE (right column) for K = 2, 3, 4.
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Figure S10: Inferred population structure in the AMR super population based on PCA using
PLINK (left column), HaploNet (middle column), and ChromoPainter (right column). First row
displays PC1 plotted against PC2, while the second row shows PC3 against PC4.
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S7.2.4 EAS

Figure S11: Estimated ancestry proportions in the EAS super population of the 1000 Genomes
Project using HaploNet (left column) and ADMIXTURE (right column) for K = 2, 3, 4.
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Figure S12: Inferred population structure in the EAS super population based on PCA using
PLINK (left column), HaploNet (middle column), and ChromoPainter (right column). First row
displays PC1 plotted against PC2, while the second row shows PC2 against PC3.
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S7.2.5 EUR

Figure S13: Estimated ancestry proportions in the EUR super population of the 1000 Genomes
Project using HaploNet (left column) and ADMIXTURE (right column) for K = 2, 3, 4.
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Figure S14: Inferred population structure in the EUR super population based on PCA using
PLINK (left column), HaploNet (middle column), and ChromoPainter (right column). First row
displays PC1 plotted against PC2, while the second row shows PC2 against PC3.
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S7.2.6 SAS

Figure S15: Estimated ancestry proportions in the SAS super population of the 1000 Genomes
Project using HaploNet (left column) and ADMIXTURE (right column) for K = 2, 3.

Figure S16: Inferred population structure in the SAS super population based on PCA using PLINK
(left column), HaploNet (middle column), and ChromoPainter (right column). First row displays
PC1 plotted against PC2, while the second row shows PC1 against PC3.
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S7.2.7 Window size in HaploNet

Figure S17: Estimated ancestry proportions in the EUR super population of the 1000 Genomes
Project using HaploNet for K = 4 with three different window sizes (L = 512, 1024, 2048).

Figure S18: Inferred population structure in the EUR super population based on PCA using
HaploNet with three different window sizes, L = 512 (first column), L = 1024 (second column) and
L = 2048 (third column). The plots display PC2 plotted against PC3.
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S7.2.8 Only categorical model in HaploNet

Figure S19: Inferred population structure in the EUR super population based on PCA using a
simplified version of HaploNet that only performs haplotype clustering. The PCA plots of the full
model (HaploNet) are shown in the left column while the PCA plots of the simplified model are
shown in the right column.

S7.2.9 Permuted SNPs (no LD) for HaploNet

Figure S20: Inferred population structure in the EUR super population based on PCA using
HaploNet on a randomly permuted haplotype matrix to break down LD structure. The plot displays
PC2 plotted against PC3.
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S7.2.10 EUR - Omni-chip sites

Figure S21: Estimated ancestry proportions in the EUR super population of the 1000 Genomes
Project using HaploNet for K = 4 based on the high density genotype chip of the Omni platform
used in the 1000 Genomes Project.

Figure S22: Inferred population structure in the EUR super population based on PCA using
HaploNet based on the high density genotype chip of the Omni platform used in the 1000 Genomes
Project. The plot displays PC1 plotted against PC2.
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S7.2.11 Robustness

Ancestry PCA

L = 512 14.47082 4.61830
L = 2048 3.78338 3.20814

Categorical model - 2.43939
Permuted SNPs - 1.30697

Omni-chip 8.48543 3.75669

L = 1024 (default) 12.64427 3.93642

Table S5: Signal-to-noise ratio measures of various changes to HaploNet hyperparameters, model
and input data for the EUR super population of the 1000 Genomes Project. The signal-to-noise
ratio refers to mean between-population distance relative to the mean within-population distance of
the estimated ancestry proportions and the principal components from PCA, respectively. Ancestry
proportions have not been estimated for two scenarios due to their poor performance using PCA.

HaploNet (C = 32) HaploNet (C = 20)

AFR (3) 4.40707 4.28274
AMR (4) 2.42171 2.07552
EAS (3) 4.36325 3.59956
EUR (3) 3.93642 3.27649
SAS (3) 1.78487 1.72795

Table S6: Clustering performances in principal component space using a different number of
clusters for the categorical latent variable, C, in HaploNet. Performance is based on signal-to-
noise ratio for each of the super populations of the 1000 Genomes Project. Only the top principal
components that capture population structure are used in each scenario which is reported in the
parentheses.
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S7.2.12 Number of principal components

Figure S23: Inferred population structure in the EUR super population based on PCA using
HaploNet (left column), PLINK (LD pruned) (middle column), and PLINK (right column). Here we
show up to the sixth principal component to showcase the absence of population structure after
PC3 for PC4, PC5 and PC6.

25



S7.2.13 Full dataset

Figure S24: Estimated ancestry proportions in the full 1000 Genomes Project using HaploNet

(top) and ADMIXTURE (bottom) for K = 14. ADMIXTURE has been performed on the LD pruned
dataset for computational reasons and has reached convergence, however, it has had problems as
seen especially for ITU.
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S7.3 UK Biobank

S7.3.1 UK Biobank filtering

Samples
• Self-reported ’White-British’ ethnicity (Data-field 21000)
• Similar genetic ancestry on basis of PCA (Data-field 22006)
• No kinship to other participants (Data-field 22021)

Sites
The sites filtering is mainly based on the SNP quality control process shared by the UK Biobank
resource (file2).

• Sites on UK Biobank Axiom Array
• Sites passing all batch QC filters
• Removed sites in long range high LD regions (list)
• Sites with minor allele frequency > 0.01
• Sites with missingness rate < 0.1

2The list of SNPs after strict LD pruning used for an analysis with PLINK is in field ’in PCA’.
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Figure S25: Ancestry proportions in the subset of unrelated self-identified ’White-British’ from
the UK Biobank using HaploNet for K = 4. Individuals have been grouped by their self-reported
country of birth.
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Figure S26: Inferred population structure in the subset of unrelated self-identified ’White-British’
from the UK Biobank based on PCA using HaploNet. Individuals are plotted by their birthplace
coordinates and colored by their inferred PC scores from PC1-PC8.
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S7.3.2 Loadings

Figure S27: Inferred loadings of SNPs for PC6 using HaploNet on the UK Biobank dataset. The
outliers span a region of 11.6 Mb on Chromosome 16 (chr16:63991874-75563746, hg19 coordinates).
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