
Classification: Biological Sciences; Evolution 
 

 
Supplemental Text and Figures 

 
Homeostasis Limits Keratinocyte Evolution 

 
Ryan O. Schenck1,2, Eunjung Kim1, Rafael R. Bravo1, Jeffrey West1, Simon Leedham2, Darryl Shibata3,† , 

and Alexander R.A. Anderson1,†,* 
 

Affiliations: 
1 Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 

33612, USA 
2 Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX37BN, UK 

3 Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, 

California 90033, USA 

* Indicates the author to whom correspondence and material requests should be addressed.	

† These authors share senior authorship. 

 

Corresponding Author Contact: Alexander.Anderson@moffitt.org 

 

Keywords: Somatic Evolution, Keratinocyte Biology, Mathematical Modelling, Carcinogenesis 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Diffusion of the growth factor 
The single microenvironmental factor governing keratinocyte apoptosis and proliferation is defined by a partial 

differential equation that dictates how our diffusible behaves throughout the system over time. Similar to Kim et al. 

(1) & Basanta et al. (2), due to the interactions between discrete, on lattice cells, and the continuous growth factor 

variable we describe the discretized version of the equation. Over time our growth factor diffuses from an imposed, 

unchanging source (𝐸!, Table S1) along the basal layer with a diffusion rate (𝜓, Table S1), representative of fibroblast 

production from the dermis, is consumed by keratinocytes (𝐾) at a consumption rate (𝛾, Table S1), and decays 

naturally (𝜆, Table S1). The spatial and temporal dynamics of this microenvironmental factor in its discretized form, 

using a first order Euler method, on a three-dimensional lattice is defined as the following difference equation:  

 
[𝐸(𝜂, 𝑡 + 𝛿𝑡)] − [𝐸(𝜂, 𝑡)]

𝛿𝑡 	= 𝜓Δ![𝐸(𝜂, 𝑡)] 	− 𝛾[𝐸(𝜂, 𝑡)]𝐾" 	− 𝜆[𝐸(𝜂, 𝑡)]	, (1) 

 

where  𝜂 ≡ (𝜂" , 𝜂#, 𝜂$),  𝛿𝑡 denotes the time step, 𝐾%	 is set to 1 if the lattice point 𝜂 is occupied by a keratinocyte and 

0 otherwise. The Δ& denotes the central difference approximation of the Laplacian operator in three-dimensional space: 

Δ!𝑓5𝜂#, 𝜂$, 𝜂%6 ≡
𝑓5𝜂# + ℎ, 𝜂$, 𝜂%6 + 𝑓5𝜂# − ℎ, 𝜂$, 𝜂%6

ℎ& + 

𝑓5𝜂#, 𝜂$ + ℎ, 𝜂%6 + 𝑓5𝜂#, 𝜂$ − ℎ, 𝜂%6
ℎ& + 

𝑓5𝜂#, 𝜂$, 𝜂% + ℎ6 + 𝑓5𝜂#, 𝜂$𝜂% − ℎ6
ℎ& − 

6𝑓5𝜂#, 𝜂$, 𝜂%6
ℎ&

(2) 

 

 

where ℎ is the grid size. Boundary conditions on the top (𝜂$ = 𝑍, 𝑍: height) are no-flux 1'(
'$
2
$)*

= 04	and on the 

bottom (𝜂$ = 0) are Dirichlet (𝐸5𝜂" , 𝜂#, 06 = 𝐸!), while periodic boundary conditions are present on the left & right 

and front & back (𝐸(0, 𝜂#, 𝜂$)=	𝐸(𝑋, 𝜂#, 𝜂$) & 𝐸(𝜂" , 0, 𝜂$)=	𝐸(𝜂" , 𝑌, 𝜂$)). Each time step we solve equation (1) until 

steady state reached (<100 iterations). A steady state value of the growth factor is used to determine keratinocyte birth 

and death in the model. 

 
Keratinocyte dynamics model 

Cell death can occur in one of two ways at each time step for each cell (cell time step is equal to 1 day), either through 

apoptosis or random turnover. First, the cell is dependent upon growth factor concentration to prevent a cell from 

undergoing apoptosis. The level at which apoptosis can occur by chance (𝛼, Table S1), is a model specific parameter 

and translates to a cell undergoing apoptosis when a randomly selected number 𝑐+ ∈ 𝑈(0,1) is less than 

𝑃,-./0_(	(𝐾%) = 	 11 −
((%,/)
+
4
6
, (i.e., if 𝑐+ < 11 − [𝐸]% ∗

7
+
4
6
, the keratinocyte 𝐾% at a lattice point 𝜂 dies). The 

exponentiation to the fifth power provides the appropriate distribution of keratinocyte deaths to prevent a completely 

flat epidermis surface and one that is highly irregular. While slightly arbitrary, five	was	chosen	to	balance	an	almost	

completely	flat	surface	of	the	epidermis	(𝜌 > 5)	and	one	that	is	thicker	with	a	lower	density	of	keratinocytes	

due	to	the	probability	of	death	being	more	even	across	the	concentrations	of	our	growth		(𝜌=1).	If a cell survives 



in low growth factor concentrations or is not in an area with sufficiently low growth factor it is then subject to random 

death representative of an intrinsic probability of death (𝑃,-./0_8	(𝐾%) = 𝜃) where death will occur if a randomly 

selected number from (0,1), 𝑐9	,is less than 𝜃	(i.e., if 𝑐9 < 𝜃, 𝑐9 ∈ 𝑈(0,1), then death occurs). 

Provided a cell does not die within a given time step it is capable of moving to an empty lattice position in its 6 

immediate nearest neighbors i.e. the von Neumann neighborhood (𝑁(",#,$): = {(𝑥, 𝑦, 𝑧 + ℎ), (𝑥, 𝑦, 𝑧 − ℎ), (𝑥 +

ℎ, 𝑦, 𝑧), (𝑥 − ℎ, 𝑦, 𝑧), (𝑥, 𝑦 − ℎ, 𝑧), (𝑥, 𝑦 + ℎ, 𝑧)}) . This location is determined by assessing if any empty lattice 

positions exist within the cell's neighborhood. If multiple spaces are empty, one is chosen randomly. The model 

specific parameter dictating the probability of movement (𝑃;<:-5𝐾%6 = 𝜌, Table S1) governs the cells ability to move 

into that empty space so that when a randomly selected number 𝑐= from (0,1) is greater than 𝜌, then the cell moves 

into that empty position (i.e., if 𝑐= ∈ 𝑈(0,1) ≥ 𝜌, the cell will move into a randomly selected empty 

neighborhood, 𝑁(",#,$): ). 

Cells divide based on the underlying growth factor concentrations (𝑃>8?/05𝐾%6 	= 𝜉[𝐸]%), where 𝜉 is the proliferation 

scale factor (Table S1). This results in a stem–like population of cells dependent on the underlying growth factor 

concentration. A cell (𝐾% at 𝜂) may divide into two identical daughter cells (𝐷7,@) if a randomly selected number 

𝑐A5𝑐A ∈ 𝑈(0,1)6 is less than 𝜉[𝐸]%	regardless of there being an empty position. One daughter cell occupies the 

position of the parent cell (location of 𝐷7 = 𝜂",#,$) while the other daughter cell (𝐷@)	occupies one of five locations, 

being above or on one of the four orthogonal neighbors of the parent cell. This location is governed by 𝜔, the division 

location probability, whereby the second daughter cell is placed in a position according to 

 

Location of	𝐷&(𝑐'	, 𝜔) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝜂#,$,%)*, 𝑖𝑓		0 ≤ 	 𝑐' ≤ 𝜔,

𝜂#)*,$,%,		𝑖𝑓		𝜔 ≤ 	 𝑐' ≤ 𝜔 +
1 − 𝜔
4 ,

𝜂#+*,$,%,		𝑖𝑓		𝜔 +
1 − 𝜔
4 ≤ 	 𝑐' ≤ 𝜔 +

2(1 − 𝜔)
4 ,

𝜂#,$)*,%,		𝑖𝑓		𝜔 +
2(1 − 𝜔)

4 ≤ 	 𝑐' ≤ 𝜔 +
3(1 − 𝜔)

4

𝜂#,$+*,%,		𝑖𝑓		𝜔 +
3(1 − 𝜔)

4 ≤ 	 𝑐' ≤ 1,

, (3) 

 

 

where 𝜂"#$ is the coordinates of the parent cell's lattice position, ℎ is the grid size, and 𝑐B is a randomly selected 

number from (0,1) (i.e., 𝑐B ∈ 𝑈(0,1). Boundary conditions for cells are the same as those for our diffusible growth 

factor, being periodic on the left & right and front & back to enable spatial competition, no-flux on the bottom (𝜂$ =

0), and Dirichlet (Cell (𝜂" , 𝜂#, 𝑍) = 0 ) on the top. 

 

NOTCH1 Advantage 

Upon induction of a mutation within NOTCH1, a fitness advantage is given to that cell and its progeny, if any. The 

fitness advantage gained through a NOTCH1 mutation is non-proliferative and allows the cell to remain within the 

basal layer longer than it would have otherwise. This is accomplished utilizing a blocking probability, 𝑓<, which is 

independent for each cell regardless of clonal lineage. This indirectly impacts cell division at the basal layer, since 



successful division requires displacement of neighboring cells towards the corneal layer. We assessed a range of 𝑓< 

values up to 𝑓C = 1.0, where the tissue height is a quarter of its parameterized height. 

 

TP53 Advantages 

The total population size of a typical simulation over time for our homeostatic, spatial model can be defined by an 

ordinary differential equation model that describes population growth dynamics over time in a space limited condition. 

The equation is 

 
𝑑𝑁
𝑑𝑡

= 𝑟𝑁 J1 −
𝑁
Κ
L , (9) 

 

where 𝑁 is the number of keratinocytes, 𝑟 indicates a growth rate, 𝐾 stands for a carrying capacity representing space 

limitation.  Equation (9) allows us to approximate the same initializing conditions within the spatial model (3D-HCA) 

by initializing the model with the total number of cells in the simulated domain. Upon initialization the population 

reduces to the carrying capacity over time. In order to incorporate death from UV-damage we introduce a new 

component: 

 
𝑑𝑁
𝑑𝑡

= 𝑟𝑁 J1 −
𝑁
Κ
L − 𝜃,𝟏,(𝑡)𝑁, (10) 

 

where the proportion of cells, 𝜃D, at time, 𝑡, is killed by sun exposure. The indicator function defined as, 

 

𝟏,(𝑡) = P 1,			𝑖𝑓	𝑡 ∈ 𝑆,
0,			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (11) 

 

The set of sun days, 𝑆 = {𝑡, 𝑡 ∈ ℤ, 𝑡 ≤ 365} because 𝑆 ⊂ 𝑌 (the total days in a year), where UV damage occurs depends 

on the number of days chosen to repeat each year and the spacing of those days. We see that at realistic values for 𝜃D 

the ODE model is able to approximate our spatial simulations well, while a larger set of sun days and higher 𝜃D result 

in complete, or nearly complete, loss of tissue (Figure S7 and S8). In addition, the spatial model (3D-HCA) follows a 

logistic growth after a delayed period. This delayed period is exacerbated by higher values of 𝜃D and/or by less spacing 

in the number of sun days. This is the result of cells settling upon large death, creating a sparse tissue (in the absence 

of a TP53 mutant), the cells settle, partially, towards the basal layer prior to re-establishing homeostasis (Figure S7 

and S8). 

Here we assess a range of values for 𝜃D and sun day sets, 𝑆. The number of sun days varies for each individual as does 

the number of spacings between sun exposure days. We attempt to address both of these variables with regard to 

homeostasis. We assessed a number of sun days throughout the year (7, 20, and 100) and the spacing of those sun 

days (1 day to evenly spaced throughout the year). We can see that the fewer the number of sun days the least amount 

of tissue is lost (Figures S7 and S8). Likewise, the more spaced out these sun days are the closer to homeostasis the 

tissue remains (Figure S8). This is true for both the ODE and spatial models. 

 



 

Model Parameterization 

Parameter values for the spatial model were selected based on iterative redundancy analysis (RDA) using R(3) (vegan 

package(4)), where constraining variables are the emergent properties measured as a necessary component of 

homeostasis: 

 Primary Constraining Variables: 

1. Mean Tissue height 

2. Mean Loss/replacement rate within the basal layer 

Secondary Constraining Variables: 

1. Mean Overall tissue turnover time 

2. Mean cell age 

3. Mean Basal cell density 

During the first iteration of parameterization variables are set randomly choosing values between zero and one for 

20,000 two-year simulations. Diffusible parameters (𝜓, 𝛾, 𝜆), where values were examined between zero and 1/6, were 

not subject to this iterative process. For the diffusion coefficient (𝜓), values greater than 1/6 (for 3D, 0.25 in 2D) 

results in numerically unstable solutions for a given lattice point because it fails to satisfy Courant-Friedrichs-Lewy 

condition that guarantees convergence of a forward-time central-space finite difference method (𝜓 E/
0!
≤ 7

F
 (3D)). After 

each model run we collect the constraining variable data and in conjunction with the model parameters, we then 

perform RDA. Variance explained by each parameter are used to determine the influence of each parameter on the 

constraining variables. Refinement of the model parameters is then performed based on the variance explained and 

the linearity of that parameter on the constraining variables. In this way we are able to constrain the variable range 

iteratively by reducing the number of simulations to 5,000 (two-year simulations) while converging on parameter 

values. Iterations are repeated until target values are reached for each of the constraining variables of homeostasis 

where the combination of parameter values yields homeostasis. The secondary constraining variables served as a 

sanity check rather than a strict parameterization. 

A pseudo-code for the parameterization process is as follows: 

Function 1: Execute Simulations given parameter ranges: 

For n simulations 

1. Randomly select parameter values from provided ranges. 

2. Run 2-year simulation of model. 

3. Collect and calculate constraining variable values. 

Function 2: RDA Analysis 

While homeostasis is not reached: 

1. Execute function 1 above (20,000 initially, 5,000 after). 

2. Perform RDA and analyze parameter influence. 

3. Further constrain ranges. 

4. Repeat Step 1. 
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(Dm,n) distribution for the three biopsy simulation sizes. Minimum critical values (Dα) needed to reject the null
hypothesis is illustrated by the red dashed line.
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(Dm,n) distribution for the three biopsy simulation sizes. Minimum critical values (Dα) needed to reject the null
hypothesis is illustrated by the red dashed line.
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Fig. S7. Logistic growth model is able to capture spatial dynamics to aid in evaluating TP53 sun
days and dynamics. Here we define various sun day spacings, S, and the proportion of cells killed during sun
days, θs. Black line in each plot shows the ODE logistic growth model and the colored lines are for the spatial
model (Methods). The first three plots on the left show severe and infrequent or, simply frequent perturbations.
Whereas, for the right three plots, we see less severe perturbations through parameter combinations.
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Fig. S8. TP53 parameter evaluation using a space limited ordinary differential equation (ODE).
Evaluation of the number of sun days and θs values using the ODE model. In (A) we see the homeostatic measure
dH as a response to sun day spacing and θs repeating yearly. For each black point with a green border the population
sizes over time is given for the ODE (B) and the spatial 3D-HCA model (C). For (B) and (C) the colored lines
are colored for where they fall within (A). (D) shows the same information, but for different numbers of sun days.
The available spacing of these sun days for (A) and (D) differ due to how many days are available to space the sun
days throughout the year.



3D-HCA Model Parameters
Parameter Role

α Level at which apoptosis can occur by chance.
θ Random probability of death.
ξ Scaling factor to control proliferation rate.
% Probability of moving into an empty position.
ω Probability governing direction of division.

Growth Factor Diffusible Parameters
Parameter Role

Ec Influx of GF at basal layer
ψ Rate of GF diffusion from basal layer.
λ Rate of GF decay.
γ Rate of GF consumption by keratinocytes.

Table S1. Model Parameters. Parameters are separated into the cellular automata parameters and those
belonging to the diffusible growth factor (GF).



Movie S1. Neutral Model Simulation (video S1.EpidermisNeutral.mp4). A 0.4mm2 58 year neutral
simulation. The initial and ending conditions are displayed on the upper corners of the panel. Each color represents
a completely independent population (e.g. a population differing from its parent by at least one mutation). Time
steps are shown and each frame represents a 6 month change.
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