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Materials and Methods

Data retrieval and processing

RNA-seq raw counts for primary TNBC samples and their matched distant metastases were
downloaded from NCBI Gene Expression Omnibus (GEO) via accession number GSE110590.
Primary tumors from seven patients clinically classified as basal TNBC subtype were selected
with their matched distant metastases to brain (7 samples), lung (6 samples), liver (5 samples),
lymph node (2 samples), adrenal gland (2 samples), and skin (2 samples) (Table S1). To allow
rigorous comparison of the profiles, we retrieved RNA-Seq data (raw gene counts) of primary
tumor and adjacent normal tissue for these specific tissues as well as breast from GDC legacy
(TCGA 2015) which had an identical processing of sequencing reads and expression
quantification pipeline with TNBC dataset (reads were aligned to the hg19 genome using
MapSplice, and gene values were quantitated with RSEM)(1), using the TCGAbiolinks R
package(2), yielding a total of 1108 primary tumor and 183 paired-adjacent-normal (NT)
samples. Primary tumor samples with consensus purity scores lower than 80% were filtered out.
GTEx samples were downloaded directly from the Genotype-Tissue Expression (GTEX) project
database (http://www.gtexportal.org/home/datasets) on July 11, 2019 (Version7) to add healthy
tissue data to our study, for a total of 3362 samples for 6 different tissues. The adjacent-normal
tissue data for skin cutaneous melanoma (SKCM), diffuse large B-cell lymphoma (DLBC), and
adrenocortical carcinoma (ACC) were not available, nor was healthy data for lymph node from
the GTEx dataset. We filtered the healthy tissue and tumor samples to include only female
subjects to eliminate potential gender effects from our analysis. Finally, all datasets were
merged, and the counts were converted to FPKM using the DESeq2 package in R followed by
TPM (transcripts per million) normalization. Uniform alignment and expression quantification
analysis pipeline is not sufficient and that an explicit correction for batch effects is essential to
ensure that samples from different studies are comparable(3, 4). Comparability between
different conditions in our dataset was examined by using relative log expression (RLE)
analysis(5). Choosing datasets with identical sequencing reads processing pipelines alone was
not sufficient, and that further batch effects needed to be removed to bring expression
abundance levels from different data sources into comparable ranges. Subsequently, batch
adjustment was performed using ComBat from the SVAseq R package(6—8) on log-transformed
quantile-normalized TPM data(4). ComBat is a flexible method based on empirical Bayes
regression to reduce heterogeneity from multiple datasets while preserving the biological signals
in the data even when the experimental design across the datasets is unbalanced(3). This
procedure reduced the variations between datasets as can be observed in the RLE values,
which were largely indistinguishable between conditions and typically lower than one. We also
used metastatic SKCM cohort from TCGA, including 103 primary and 368 metastatic tumor
samples which are all from one dataset to prove the independency of the results to batch

correction method.



Gene expression-based analyses and statistical methods
Hybrid hierarchical k-means clustering (HHK).

For HHK(9) of expression data, we used the function hkmeans in the R package factoextra(10)
using default parameters (distance: Euclidean, hierarchical clustering method: Ward.D2, k-
means algorithm: Hartigan-Wong) and the number of clusters was estimated using silhouette in
R. The silhouette coefficient(11), a measure of how similar an object is to its own cluster

compared to other clusters, was used for cutting (coloring) the dendrogram.

Dimensionality reduction.

Dimensionality reduction was performed using two methods: UMAP and principal component
analysis (PCA). For Uniform Manifold Approximation and Projection (UMAP)(12) we used
‘umap’ and ‘prcomp’ (with the ‘center’ option set to TRUE) functions in R on logz-transformed
TPM values (RNA-seq).

Deconvolution.

The deconvolution workflow was performed using the R package DeconRNASeq (13). This
algorithm performs a non-negative quadratic programming for estimating the globally optimized
mixing proportions of distinctive tissue types. Here we used two distinct cancer types as
reference: the median expression levels of the samples for primary tumors of the origin tissue
and the primary tumors of the metastatic tissues, and differentially expressed genes of two
distinct cancer types with LFC=1 and paqj<0.01 were used as the gene expression signature of
the references. Accordingly, the result of this procedure is the estimated proportion of the
“destination tissue_TP contribution” to the metastatic tumors. A value of 1 represents the
maximum proportion of “destination tissue_TP contribution”, and 0 the minimum proportion of
“destination tissue_TP contribution”, meaning maximum and minimum similarity to destination
tissue_TP and breast TP, respectively. High-purity tumor samples for melanoma cancer
analysis were extracted using consensus purity estimate (CPE) scores(14) for TCGA primary
solid tumor samples (CPE>0.80 or IHC>0.80).

Differential expression (DE) analysis.

Differences in sample preparation and batch effects can have substantial consequences on DE
results. Therefore, we used batch-adjusted gene expression values for pairs of the three
conditions for metastatic tumors in each tissue type, where low-count genes were removed
beforehand. Differential expression analysis was then conducted using the R package ‘limma’
for metastatic tumors with at least 3 samples versus basal TNBC primary tumors. A gene was
considered as differentially expressed if its Benjamini-Hochberg corrected p-value < 0.01 and

had >2-fold expression change.



Gene set analysis.

Gene set analysis (GSA) was performed using a MATLAB implementation
(https://github.com/JonathanRob/GeneSetAnalysisMatlab) of the R package ‘Piano’(15), with
different gene set collections retrieved from the Molecular Signatures Database (MSigBD)
version 7.1, including hallmark, KEGG and GO molecular function. The other gene set
collections used were metabolite and subsystem gene set collections extracted from the human
genome-scale metabolic model, Human-GEM(16). The GSA approach we used in this study
enables the incorporation of log fold-change directionality (increase or decrease) information for
evaluating the significance of gene set enrichment. The enriched gene sets were filtered by pagj
< 0.01 for both “non-directional” gene set p-values (p.non.dir) and “distinct directional” p-values
(p.dist.dir).

Adjustment of p values.

All adjusted p values (padj) reported in the study were adjusted to control for the false discovery
rate (FDR) using the Benjamini-Hochberg procedure. Statistical significance in this study was
defined as pagj < 0.01.

Metabolic network generation and analysis
Condition-specific metabolic model reconstruction and structural comparison.

For each tissue or tumor type, the median TPM value expression of each gene among all
samples was calculated and used as input to the updated tINIT (task-driven integrative network
inference for tissues) algorithm(17) on the Human-GEM GitHub repository
(https://github.com/SysBioChalmers/Human-GEM)(16), with an expression threshold of 1 TPM.
The resulting 33 models were analyzed by comparing their structure (reaction content) using a
binary reaction inclusion matrix with rows and columns corresponding to reactions and tINIT-
models, respectively. A value of one indicates inclusion of a reaction in a model, while zero
corresponds to reactions absent from a model. To compare reaction content of the models we
performed UMAP of the reaction inclusion matrix in two dimensions, based on the Hamming
distance as the distance metric. Further comparison of reaction content in models was
conducted by calculating the pairwise Jaccard distances between the columns of the binary
reaction inclusion matrix using “dist.binary” function in R. The results were visualized as a
clustered heatmap and colored by Jaccard similarity. In addition, to identify specific reactions for
each condition we utilized “make_comb_mat” function (with the mode option set to “distinct”)

from R package ComplexHeatmap(18) to make a combination matrix for UpSet plots.

Gene essentiality analysis.

Gene essentiality prediction was performed based on the impact of each gene deletion on
biomass production in each model. A gene was considered as “essential” for a model if its
deletion changed the biomass reaction flux to zero when performing flux balance analysis (FBA).

We then excluded the genes which showed essentiality in all the healthy- and cancer- specific



models and the remaining genes were visualized in a heatmap, where a value of 1 corresponded

to an essential gene in each model.

Construction of enzyme-constrained metabolic models and analysis

The tissue- and tumor type- specific metabolic models generated by the tINIT algorithm were
converted to enzyme-constrained models using the GECKO (enhancement of a GEM with
Enzymatic Constraints using Kinetic and Omics data) framework(19) with applied modifications
based on Human-GEM(16). Metabolite uptakes were constrained based on nutrients available
in Ham'’s media (20). Flux variability analysis (FVA) was conducted on the enzyme-constrained
tumor-specific metabolic models using the “comparativeFVA” function on the GECKO GitHub
repository (https://github.com/SysBioChalmers/GECKO). Since reversible reactions are split
into pairs of irreversible reactions in enzyme-constrained models, flux through each of these
reactions was maximized while its reaction pair was constrained to zero to avoid infinite flux
variability caused by an artificial flux cycle. Maximum fluxes of both the directions of each
reaction were summed to obtain the flux variability (capacity) of the corresponding reversible
reaction. Finally, we identified the differentially changed reaction capacities (DRC) for each of
the TNBC metastatic tumors and the primary tumors of their metastatic organs, versus TNBC

primary tumors, then plotted them together to visualize common metabolic features.
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Figure S1. Assessment of comparability between different conditions in combined dataset. A

Density and relative log expression (RLE) plots for the gene expression TPM values B Density

RLE analysis

and RLE plots for the batch-adjusted gene expression TPM values.

showed choosing datasets with identical sequencing reads processing pipelines alone was not

sufficient, and that further batch effects needed to be removed to bring expression abundance

levels from different data sources into comparable ranges. Each color shows a specific dataset.

TCGA and GTEx

Purple, coral, and green represent samples coming from GSE110590

datasets, respectively.
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Figure S2. Relative log expression (RLE) plots for the gene expression TPM values in combined
datasets of TNBC metastatic and primary tumors, and liver, lung, and brain primary tumors and
healthy tissues, separately. A Before batch correction. B After batch correction.
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Figure S3. Silhouette plot. Silhouette coefficient illustrates how close each point in one cluster
is to points in the neighboring clusters. A high value indicates that the object is well matched to
its own cluster and poorly matched to the neighboring clusters.
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Figure S4. Deconvolution analysis of TNBC-TM samples using median expression levels of

breast-TPs and TPs of the destination tissues as references by choosing different thresholds. A
DEGs with LFC=2 (left) and DEGs with LFC=3.3 (right) used as signature genes. Reducing the

number of signature genes used in the deconvolution analysis led to an increase in similarity

between each of metastatic tumor profiles (maroon) and TP profile of their destination tissue. B

Pearson correlation of purity scores of TNBC metastatic tumors and their similarities to primary

tumors of their metastatic sites.
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Figure S5. Intermediate state of SKCM-TMs between SKCM-TPs and TPs of the metastatic
organs. A RLE plot of TPM values in combined dataset before batch correction (top) and after
batch correction (bottom). B PCA plots for each group including TPs of tissue of destination and
SKCM-TM and SKCM-TP. C Deconvolution analysis of SKCM-TMs using median expression
levels of SKCM-TPs and TPs of the destination tissues as references.
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Figure S6. Deconvolution analysis of SKCM-TM samples using more significant signature
genes. DEGs with LFC=2 (left) and DEGs with LFC=3.3 (right) were used as signature genes.
A Reducing the number of signature genes used in the deconvolution analysis increased the
similarity between each of metastatic tumor profiles (maroon) and the TP profile of their
destination tissue. B Pearson correlation between purity scores of SKCM metastatic tumors of
lymph node axilla and their similarities to primary tumors of their host tissues using all samples
(left) (R=-0.13, p=0.21), and samples with higher purity than 80% which was used in this study
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Figure S7. Gene set analysis of TNBC-TMs versus breast-TPs shows organ dependent
divergence of TNBC-TMs from their original primary tumors. A Directional gene set analysis
(GSA) of DE analysis results for TNBC metastases in lung, liver, and brain versus paired- breast-
TPs. KEGG gene set collection was used, and sets with <10 genes were excluded. The more
significant (lower value) of the two directional p-values for each gene set is shown in the heatmap
as a log10-transformed value. The value is also “signed”, meaning that gene sets with a more
significant decrease than increase (padi dist-dir-down < Padjdist-dir-up) are negative (enriched in breast-

TPs; blue); otherwise, they are positive (enriched in TNBC-TMs; red). Only gene sets with a
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Padjdistdir less than 0.01 in at least one metastatic tumor are shown. B Non-directional GSA
results for three comparisons. The “p.non.directional” value for each gene set is filtered based
on non.dir p-values less than 0.01, and shown in the heatmap as a log10-transformed p-value.
c. Directional GSA using GO molecular function collection for three comparisons. The more
significant (lower value) of the two directional p-values for each gene set is shown in the heatmap
as a log10-transformed value. Only 30 gene sets with lowest padjdist-dir among all directionality
types are shown. The most significant molecular functions which enriched consistently in TNBC-

TMs are associated with receptors, transmembrane transporters, and channels.
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Figure S8. Correlation of significant DEGs to differentiate TNBC-TMs from their origin. A
Significantly changed genes in gene sets associated with the epithelial-mesenchymal transition
(EMT), glycolysis, and oxidative phosphorylation are shown in the heat maps, colored by log2FC
of the genes in TNBC metastases compared with breast-TPs. B Significantly changed genes in
gene set associated with pancreas beta cells are shown in the heat maps, colored by log2FC of
the genes in TNBC metastases compared with breast-TPs.
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Figure S9. Divergence of SKCM metastatic tumors from skin-TPs based on metabolic
signatures. Deconvolution analysis of the SKCM -TM samples using median expression levels
of metabolism associated genes in skin-TPs and TPs of the tissue of destination as references.
The result of the analysis is the fraction of similarity of each TM sample (maroon) to the TPs of

the tissue of its destination based on only their metabolic genes.
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Figure $10. Visualization of differences in generated metabolic models for each condition using
UMAP plot. Each point is a metabolic model which is colored and shaped based on tissue type
and condition, respectively.
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Figure S11. Metabolic signatures of TNBC-TMs in different tissues. A Shown are subsystems

associated with metastatic specific reactions extracted from GEMs. B metabolic subsystems of

common reactions between TNBC-TM models and breast-TP model as retained signatures.

17



. Condition-specific Flux Variability Analysis  Differential Reaction Capacity

GENE 2 ecGEMS
SENEilr & LFCr= log,(Model RC) - log,(Model RC)
H QO
GENE Zlh S ® ,\@ H TNBC_TM in distant tissues vs Breast_TP
GENES " GQO(\@G(\‘E; N M Distant tissue_TP vs Breast_TP
; Y e 2
o SRy LFC
S ‘é ni 001 10_-5_0 5 10 , glutamine[s] <>
s r2| 1.02 — at i
5 r3| 0.13 — f artatels - profinec « Naaélrs)]a?t)ate[c] +Na{c] + prolinefs]
Gene expression-based r4| 0.63 - _
Human-GEM model extraction = \aspa.rtate[s] + Na+[s] => aspartate[c] + Na+[c]
s £ E prolinejs] <=>
ripel E | o9 - ===
2> § r2| 0.02 § —
Gecke § mfom g ===
m r4d| 0.23 > ——
= —— | » aspartate[s| <=
Incorporation pf n [
enzyme constraints &. 1l 095 o
g r2| 1.02 ==
= r3| 0.65 —
I{ B4l & 4| oss ==
. - ‘g _ glutamatels] <=>
a e — lysine[s] <=>

Figure S12. Graphical representation of the flux analysis pipeline. The pipeline was used to
construct and analysis of ecGEMs for breast-TP, TNBC-TMs and their associated primary
tumors. Flux variability analysis reveals metabolic reprogramming of TNBC metastases in
distinct tissues. Comparison of FVA results of TNBC metastases in distinct tissues and their
associated primary tumors are plotted based on logz-transformed fold changes (LFC) in reaction
capacities of ecGEMs. Finally reactions with LFC >1 in at least one condition were plotted.
Fluxes were simulated by maximizing biomass production while specifying only which
metabolites were present in Ham’s medium. The composition of medium was retrieved from
Robinson et al (20). “TNBC-TM in distant tissues” stands for metastatic tumors originated from
TNBC but colonized in a distant destination tissue while “Distant tissue_TP” stands for primary
tumors of distant destination tissues.

18



Flux-Capacity comparisons

W Liver TP vs Breast TP
Liver TMvsBreast TP

inositolfs] <=>
Fe2+[s] <=>
glutamine[s] <=>
glucoses] <=>-

Tryptophanyl-Valyl-Aspartate[s]=>{

Hs] Valyl-Aspartatels] <=>H+(c] Valyl-Aspartatelc]
aspartate[s] +Na+[s] =>aspartate[c] +Na+[c]
aspartate[s] +H+[s] +K+[c] +3 Na+[s] =>aspartate[c] +H+[c] +K+[s] +3 Na+[c]
aspartate[s] +Na+[s] +proline[c] =>aspartate[c] +Na+[c] +proline[s]
adenosine[c] +inosinels] <=>adenosinels] +inosinelc]
proline[s] <=>
D-xylulose~5-phosphate[c] <=>ribulose-5-phosphatelc]
2ribulose~5-phosphate[c] <=>2D-xylulose-5-phosphate[c]
ureald] <=>ureals]
J4Pilr] =>glucose6 Pilc]
argininelc] +H20[¢] =>omithine[c] +urealc]
ADP[c] +dATP[c] <=>ATP[c]+dADP[c]
citrulline[m] <=>citrullinelc]
citrullinelc] +H-+[c] +omithine[m] =>citrulline[m] +H-+[m] +ornithinelc]
arginine[m] +H20[m] =>ornithine[m] +urea[m]
H+{c] +ornithine[m] =>H-+[m] +ornithine[c]
urea[c] <=>urea[m]
H20[c] <=>H20[m]

glucose-6-

o
° A

|
8
&
«
.
S

2H20[c}+Phenylalanyl~Tryptophanyl-Leucinelc] <=>leucinelc} ] ]
H+{s] +Tryptophanyl-Glycyl-Valine[s] <=>H+[c]+ Tryptophanyl-Clycyl-Valine[c]
Valyl-Prolyl-Tryptophan(s]=>

Phenylalanyl-Tryptophanyl-Leucine[s]=>-

2H20[c]+Valyl-Prolyl-Tryptophan(c] <=>proline[c]+tryptophan[c] +valine[c]
Tryptophanyl-Clycyl-Valine[s]=>

{5] +Phenylalanyi-Tryptophanyl-Leucinels] <=>H-+{c]+Phenylalanyl~Tryptophanyl-Leucinelc]
2H20Ic]+Tryptophanyl-Glycyl-Valine[c] <=>glycine[c]+tryptophan[c] +valine[c]
glutamate[s] <=>

serine[s] <=>

folate[s] <=>-

thymidine[s] <=>-

hypoxanthine[s] <=>

choline[s] <=>-

aysteine[s] <=>-

linoleate(s]

riboflavin[s] <=>-

thiamin[s] <=>

histidine[s] <=>

retinoate[s] <=>

pyridoxine[s] <=>-

gamma-tocopherol[s] <=>-

isoleucine[s]

leucine[s] <=>

tyrosine[s] <=>-

Pils] <=>

phenylalanine[s] <=>

02[s] <=>

lysine[s] <=>

alpha-tocopherol[s] <=>-

H+|

arginine[s] <=>-

il
T

Flux-Capacity comparisons
[l Brain T™ vs BreastTP

[
°Aa

|
]
b
«
=
S

[ Brain TP vs Breast TP inositolls] <=>{

glutamine[s] <=>{

Fe2+[s] <=>1

glycinefs] <=>]

yptophanyl-Valyl-Aspartatels] =>1

Hls] + lyl-Aspartatefs] <=>H+(c] +Tryptophanyl-Valyl-Aspartatelc]

aspartatels] +H+[s] +K+[c] +3 Na+[s] =>aspartatelc] +H+[c] +K+[s] +3 Na+[c]
aspartate[s] +Na+[s] +proline[c] =>aspartate[c] +Na+[c] +proline[s]
aspartate[s] +Na+[s] =>aspartate[c] +Na+[c]

proline[s] <=>1

valine[s] <=>1

ureald] <=>ureals] {
I I 6

g ]<=>gl phosphatel

argininelc] +H20]c] =>omnithinelc] +urealc]

ornithine[s] =>{

citrullinelm] <=>citrullinelc]

citrulline[c] +H+[c] +omithine[m] =>citrulline[m] +H+[m] +omithine[c]

H+[c] +omithine[m] =>H+[m] +ornithine[c]

urealc] <=>urea[m]{

arginine[m] +H20[m] =>ornithine[m] +urea[m]

H20[d] <=>H20[m]

2H20]cJ+ Tryptophanyl-Isoleucyl-Tryptophanic] <=>isoleucinelc] +2 tryptophanic]

Hels] Isoleucyl <=>H+d Isoleticyt !
Tryptophanyl-Isoleucyl-Tryptophan(s]=>{
He(s] +Aspartyl-Methionyl-Aspartate[s] <=>H+[c] +Aspartyl-Methionyl-Aspartatelc]

Aspartyl-Methionyl-Aspartatels] =>1
2H20[c]+Aspartyl-Methionyl-Aspartatelc] <= i

] ]
Prolyl-Lysyl—Proline[s] =>{
[c]+cysteinelc] +histidine[c]
Aspartyl-Histidyl-Cysteine[s] =>{

2H20]c] + Tryptophanyl-Valyl-Aspartate[c] partate[d] +tryptophanic] +valine[c]
H+[s] +Aspartyl-Histidyl-Cysteine[s] <=>H-+[c]+Aspartyl-Histidyl-Cysteine[c]
2H20[c]+Argtyrvallc]  <=>arginine[c]+tyrosine[c] +valine[c]
Tyrosyl-Valyl-Methionine[s] =>{

H[s] +Tyrosyl-Valyl <=>H+[d +Tyrosyl-Valyl-Methionine[c]
2H20[c]+Tyrosyl-Valyl ] < J+tyrosinelc] +valinelc]
He[s] +Argtyvalls] <=>H+[c]+Argtynvallc]

tyrosine[s] <=>{

H+{s] +Prolyl-Lysyl—Proline[s] <=>H-+[c]+Prolyl-Lysyl-Proline(c]
2H20[c]+Prolyl-Lysyl—Prolinelc] <=>lysinelc] +2 prolinelc]

aspartate[s] <=:

02fs] <=>1

inosine[c] <=>inosine[s]{

hypoxanthinels] <=>{

cysteinels] <=>{

nicotinamides] <=>{

gamma-tocopherol[s] <=>{

alpha—tocopherolfs] <=>]

histidine[s] <=>-

9~cis—retinoatels] =>1

isoleucinels] <=>{

methionine[s] <=>{

arginine[s] <=>{

retinoatels] <=>1

9-cis—retinoatelc] <=>retinoate[c]

9-cis~retinoatelc] <=>9-cis-retinoate[sH

glutamate[s] <=>4
phenylalaninefs] <=>]
linoleate[s] <=>{
thiaminfs] <=>{
lysine[s] <=>1

2H20[cl+Aspartyl-Histidyl~Cysteinelc] P

Il
e

Figure S13. Flux variability analysis reveals metabolic reprogramming of TNBC metastases in

distinct tissues. Comparison of FVA results of TNBC metastases in distinct tissues and their

associated primary tumors are plotted based on logztransformed fold changes in reaction

capacities of GEMs specific to brain-TM, liver-TM, brain-TP and liver-TP versus breast-TP.

Shown are reactions with LFC >1 in at least one condition.
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Figure S14. Flux variability analysis reveals metabolic reprogramming of TNBC metastases in

lung (left) and skin (right) tissues. Comparison of FVA results of TNBC metastases in distinct

tissues and their associated primary tumors are plotted based on logz-transformed fold

changes

in reaction capacities of GEMs specific to lung-TM and skin-TM, lung-TP and skin-TP versus

breast-TP. Shown are reactions with log2FC >1 in at least one condition.
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Hals] + Methionyl-Histidyl-Lysine[s] <=> H+[c] + Methionyl-Histidyl-Lysine[c] 2 H20]c] + Lysyl-Valyl-Tryptophan[c] <=> lysine(c] + +valine[c]

2 H20[c] + Methionyl-Histidyl-Lysine{c] <=> histidine[c] + lysine[c] + methionine[c] H+[s] + Methionyl yl-Tyrosine[s] <=> H+{c] + Methionyl-Glutaminyl-Tyrosine[c]
threonine(s] <=> H+{s] + Isolecy! yl-Arginine[s] <=> H+[c] + Isolecy! I i

Lysyl-Valyl-Tryptophan[s] =>
H20[c] + Methionyl-Glutaminyl-Tyrosine{c] <=> + inelc] + tyrosine[c]
Hes] + Arginyl-Histidyl~Threonine[s] <=> H+[c] + Arginyl-Histidyl-Threonine[c]

Methionyl-Glutaminyl-Tyrosine[s] =>

serinels] <=>
thymidine(s] <=>
phenylalanine[s] <=>

2 H20[c] + Isolecyl I-Arginine(c] <=> + + serine[c]
Arginyl-Histidyl-Threonine[s] =>
linoleate(s] <=> Isolecyl-Seryl-Arginine[s] =>

thiamin[s] <=> 2 H20[c] + Arginyl-Histidyl-T! i <= + histidi +
retinoate[s] <=> isoleucine(s] <=>
arginine[s] <=> inosine[c] <=> inosine[s]
isoleucine[s] <=> choline[s] <=>

methionine[s] He(s] + Lysyl-Valyl-Tr <=>H+{c] + Lysyl-Valy!

Pifs] <=> ymidine[s] <=>
histidine{s] <=> =
02[s] <=> =
_ ) Iysinefs] <=> =
Flux-Capacity comparisons leucinefs] <=> i ::;
Lymph node TP vs Breast TP nicotinamidefs] <>
alpha-tocopherol[s] <=> Iph: pag
B Lymph node TM vs Breast TP pyridoxinels] <= 1 pig
gamma-tocopherol(s] <= ° Py -
i <=>
<~
Flux-Capacity comparisons i <=>
Adrenal gland TP vs Breast TP yrosinels] e
[l Adrenal gland TM vs Breast TP ate[s] <=>
PES
<>
thiamin[s] <=>
lysine[s] <=>

Figure S15. Flux variability analysis reveals metabolic reprogramming of TNBC metastases in
lymph node (left) and adrenal gland (right) tissues. Comparison of FVA results of TNBC
metastases in distinct tissues and their associated primary tumors are plotted based on loga-
transformed fold changes in reaction capacities of GEMs specific to lymph node-TM, adrenal
gland-TM, lymph node-TP, adrenal gland (ACC)-TP and versus breast-TP. Shown are reactions
with log2FC >1 in at least one condition.

21



o

SERFEEE
setadsdadadana gl
S=S33355K3>>000%
ITIIITTITIOTTITCOON
L ([ [ [P TTT]

ason~oaTmows.,
OGO
IS S-S OOONNND RO
5,548

T
sy

Tumor Sp.
0
288821

Number of reactions
o0 Q0o

Shc

HE

tyrosine and tryptophan biosynthesis

o0

2

K]

m o
03 8 .mm 5 £
oG = =2 &
282 8s¢ S86sEs
ELES o2 BI2208
.0 Q ~0nOH /T
FEonoReULRessty
o= BECHESE O
2358330 2c2 Do RS E
ESSECCOoESDEEESTEA
SRS E e s 58S
CSS IR SEE SECODE
222593388805585 3
SHoalSZaaaadrre=s
AOHE H EEEE s
M III-II-IIIIII—I

itm

£
Trre
oCTH—

0. o0,
559

GLYVALr

P

o)

)

=20
0ON 2SO,
ORO— OBSE
OITHO TVLR E .
ON—OOS 8T

)
05 OO O e 0 =00 O o
& 3 HWM

OF.

S T = SO T =S x cocs =6

e TToNSTIIT %
HEE EN

dL @pou ydwA]
NL UNS
[LN 1ses.ig

[LH 1ses.ig
LH JoAn
[LH Bunq
ILH "D [eusipy
ILH UMs
[LH (posodxa) ug
[LH erepbAwe ureig
[IH sndweooddiy ureig
[LH snweeyjodAy ueig
ILH Nenueisgns urelg
1H Xau09 urelg
1H wnjjegaieo urelg
1H elbueneseq ureig
%_ bun
PY) d.L buni
dliseaig
dl uMsS
1 JOAI
0S) d1 bun
INL puejb [eusipy
L 1A
00V) d1 Dleuaipy
AL uleig
dl ureig
(vOHg) d1 iseaig

9d0d) d.L Pue|b [eusipy

Figure S16. Abundant metabolic pathways. Heatmap of reactions which are specific for each of

cancer types. A value of one (black) represents reactions which are included in TM and/or TP

specific GEMs and is not included in healthy and NT GEMs. Their associated metabolic

pathways are shown in the barplot (right) by different colors and each color represents a

subsystem.

22



Table S1.

Clinical History of the Selected Patients from dataset GSE110590. This subset includes patients
with basal TNBC primary tumor and their matched distant metastases to different tissues).
Samples with low quality were excluded. (1 = no treatment exposure; 2 = post-treatment sample;

3 = post-treatment and post-radiation)

ER Status PR Status HER2 Estrogen-  Her2 Other
(0= (0= Status (0 = Timeto Overall directed directed biologic
negative; 1 negative; 1 negative; 1 Ageat Stageat relapse Survival therapy therapies therapies
Patient  Race = positive) = positive) = positive) Diagnosis Diagnosis (months) (months) Chemotherapy received received received received Patient Primary Liver Lung Brain LN Adrenal Skin
Al Caucasian 0 0 0 64 T4N2M1 0 15 Taxol Al 3 2 1 1 1
. docetaxel, 5-fluorouracil, .
African L N pamidronat
A5 . 0 0 0 65 T4ANOMO 23 26 epirubicin, cyclophosphamide, A5 3 2
American e

capecitabine

AT doxorubicin/cyclophosphamide,

A7 N 0 0 0 57 T2N2MO 17 24 paclitaxel, capectiabine, A7 2 2 2 3
American .
carboplatin
doxorubicin/cyclophosphamide,
All Caucasian 0 0 0 46 T2NOMO 35 56 paclitaxel, gemcitabine, Ispinesib All 1 2 2 3

carboplatin

doxorubicin/cyclophosphamide,
A15 Caucasian 0 0 0 59 T4ANOMO 8 12 paclitaxel, carboplatin, lapatinib cetuximab ~ A15 3 2 2 2
capecitabine, bevacizumab

doxorubicin/cyclophosphamide,

- P bevacizuma
. paclitaxel, gemcitabine,
A20 Caucasian 0 0 0 63 T2N2MO 22 38 . o1 b, A20 1 2 2 2 2 2
carboplatin, capecitabine,
. R denosumab
vinorelbine
bevacizuma
b, anti-
doxorubicin/cyclophosphamide, !
Heeletis death

A23  Caucasian 0 0 0 49 T4AN2MO 17 37 paclitaxel, carboplatin, A23 1 3 2

L L receptor 5
capecitabine, gemcitabine . N
investigativ

e therapy
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Table S2.

List of some currently investigated inhibitors for the suggested drug targets presented in Fig.

5B. NA was used for those drugs which have been found from literature, but their drug bank
IDs were not found.

Drug Target Pathway Drug name Drug Bank ID References
IDO1; Kynurenine pathway/ e Epacadostat : 8211;;; (21-26)
Indoleamine 2.3- tryptophan metabolism | e Linrodostat (BMS-986205) « DB12827
dioxygenase 1 * Indoximod (D-1MT) o DB15439
¢ Navoximod (GDC-0919; NLG-919) « DB09061
¢ Cannabidiol . NA
¢ EOS-200271
IDO2; Kynurenine pathway/ | o Indoximod (D-1MT) : 3?12827 (21, 27-30)
Indoleamine 2,3- tryptophan metabolism e 680C91
dioxygenase 2
TDO2; Kynurenine pathway/ e 680C91 * 3214986 (23, 24,
N [ )
Tryptophan 2,3- tryptophan metabolism | ¢ Navoximod (GDC-0919; NLG-919) « DB00500 31-34)
dioxygenase * Tolmetin (MCN-2559) « DB00779
¢ Nalidixic acid (NSC-82174)
KYNU; Kynurenine pathway/ e m-Hydroxyhippuric acid : ng;ggg (35-37)
L-kynureninase tryptophan metabolism | ¢ 3,6,9,12,15-Pentaoxaheptadecane
KMO; Kynurenine pathway/ | ¢ Ro-61-8048 * sﬁ (23, 38-43)
. [ )
Kynurenine 3- tryptophan metabolism e UPF648 . NA
CHDI-340246
monooxygenase ¢ }
GOT2; Tryptophan metabolism | e Pyridoxal phosphate : gggg;;g (44, 45)
Aspartate o 4'-Deoxy-4'-Acetylyamino-
aminotransferase Pyridoxal-5'-Phosphate
QPRT; Nicotinate and ¢ Phthalic acid o DB02746 (23, 46)
quinolinate nicotinamide metabolism/
phosphoribosyltran tryptophan metabolism
sferase
NADSY_N']; Nicotinate and ¢ Glutamic acid * DB00142 (47, 48)
Glutamine- nicotinamide metabolism/
dependent NAD(+) tryptophan metabolism
synthetase
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Table S2. continued.

Drug Target Pathway Drug name Drug Bank ID References
HAAO: Nicotinate and e 2-amino-4-chloro-3- : Ri04598 (49-51)
3. nicotinamide metabolism/ hydroxybenzoic acid
hydroxyanthranilate tryptophan metabolism | e 4-Chloro-3-hydroxyanthranilate
3,4-dioxygenase
CUBN; Vitamin D metabolism/ | e Hydroxocobalamin * DB00200 (44, 52)
bil cholestrol metabolism/
cubtin lipid metabolism
LRP2; Vitamin D metabolism | s Gentamicin ggggg?g (53-55)
Low-density ¢ Urokinase
lipoprotein
receptor-related
protein 2
GGC; Vitamin D metabolism ¢ Calcitriol (DB00136) : 8288122 (56-58)
L I Ergocalciferol (DB00153)
Vitamin D-bindin o SrooLelt o DB04224
orotein g « Oleic Acid (DB04224)
CYP27B1; Vitamin D metabolism | e anastrozole (ZD-1033) * DBO1217 (59)
Cytochrome P450
Family 27
Subfamily B
Member 1
AKR1D1; Bile acid biosynthesis/ ¢ Norethisterone : ng?g; (37, 60-62)
Aldo-keto retmglams;[:b:hsm . ;mals’Fend(.ad « DB00548
reductase family 1 y * nzelaic acl o DB07447
member D1 . 5beta-d|hydrotes_tosterone « DBO7557
o 3,20-Pregnanedione
AKR1C4:; Bile acid biosynthesis/ | s Flufenamic nggig? (60, 63-67)
retinol metabolism ¢ Nabumetone
Aldo-keto pathways Fenofibrat ¢ DB01039
reductase family 1 * renotibrate e DB00717
member C1 * Norethisterone « DB00776
e Oxcarbazepine
AMACR: Bile acid biosynthesis | » Ibuprofen ng;gfg (68-70)

Alpha-methylacyl-
CoA racemase

Dexibuprofen
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Table S2. continued.

Drug Target Pathway Drug name Drug Bank ID Refg;enc
CYPA46AT; Bile acid biosynthesis | ® Zaragozic acid " A (71-74)
cholesterol 24- ¢ Soticlestat (TAK-935, OV935) *
hydroxylase
CYP7A1; Bile acid biosynthesis | * Levoketoconazole * DBOS667 (71, 75
Cholesterol 7a- * Cyclosporin A * DBO0091 7’8)
icholic aci DB05990
hydroxylase ¢ Obeticholic acid i
i id bi i e C12-pyridine bearing steroid * NA .
CYP8B1 Bile acid biosynthesis . Seviteronel (VT.464) e DB12275 (79-82)
e ketoconazole » DB01026
e exemestane » DB00990
e letrozole e DB01006
e aminobenzotriazole * NA
e 3CI-APHC * NA
EHHADH; Fatty acid oxidation Reduced nicotinamide adenine e DB00157 (44, 52)
Peroxisomal diphosphate
bifunctional enzyme
HSD17B4; Fatty acid oxidation | ® (R)-3-hydroxydecanoyl-CoA * DB03192 (37, 44
hydroxysteroid (17- ¢ Reduced nicotinamide adenine » DB00157 52,,83)7
beta) dehydrogenase diphosphate
4
GSTM1; Glutathione metabolism | ® Curcumin  DB11672 (37, 44
Glutathione S- e Chloroquine » DB00608 5284,
transferase Mu 1 e 5-fluorotryptophan e DB03314 85)
e (9S,108)-9-(S-glutathionyl)-10- » DB04187
hydroxy-9,10-
dihydrophenanthrene
e (9R,10R)-9-(S-glutathionyl)-10- » DB01834
hydroxy-9,10-
dihydrophenanthrene
e Zinc trihydroxide » DB02165
e S-(2,4-dinitrophenyl) glutathione » DB02458
HSD3B2; Steroid * Norethisterone * DBOO717 (60, 86—
3 beta- degradation, Steroid ¢ Medroxyprogesterone acetate e DB00603 88)
hydroxysteroid hormone biosynthesis | ® Trilostane » DB01108
dehydrogenase/Delta
5-->4-ijsomerase type
2

Dataset S1. Metastatic tumor-specific reactions.

Dataset S2. Common reactions between TNBC_TMs and TNBC_TPs.

Dataset S3. Cancer-specific reactions.
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