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Materials and Methods 

Data retrieval and processing 

RNA-seq raw counts for primary TNBC samples and their matched distant metastases were 

downloaded from NCBI Gene Expression Omnibus (GEO) via accession number GSE110590. 
Primary tumors from seven patients clinically classified as basal TNBC subtype were selected 

with their matched distant metastases to brain (7 samples), lung (6 samples), liver (5 samples), 

lymph node (2 samples), adrenal gland (2 samples), and skin (2 samples) (Table S1). To allow 

rigorous comparison of the profiles, we retrieved RNA-Seq data (raw gene counts) of primary 

tumor and adjacent normal tissue for these specific tissues as well as breast from GDC legacy 

(TCGA 2015) which had an identical processing of sequencing reads and expression 

quantification pipeline with TNBC dataset (reads were aligned to the hg19 genome using 
MapSplice, and gene values were quantitated with RSEM)(1), using the TCGAbiolinks R 

package(2), yielding a total of 1108 primary tumor and 183 paired-adjacent-normal (NT) 

samples. Primary tumor samples with consensus purity scores lower than 80% were filtered out. 

GTEx samples were downloaded directly from the Genotype-Tissue Expression (GTEx) project 

database (http://www.gtexportal.org/home/datasets) on July 11, 2019 (Version7) to add healthy 

tissue data to our study, for a total of 3362 samples for 6 different tissues. The adjacent-normal 

tissue data for skin cutaneous melanoma (SKCM), diffuse large B-cell lymphoma (DLBC), and 

adrenocortical carcinoma (ACC) were not available, nor was healthy data for lymph node from 
the GTEx dataset. We filtered the healthy tissue and tumor samples to include only female 

subjects to eliminate potential gender effects from our analysis. Finally, all datasets were 

merged, and the counts were converted to FPKM using the DESeq2 package in R followed by 

TPM (transcripts per million) normalization. Uniform alignment and expression quantification 

analysis pipeline is not sufficient and that an explicit correction for batch effects is essential to 

ensure that samples from different studies are comparable(3, 4). Comparability between 

different conditions in our dataset was examined by using relative log expression (RLE) 

analysis(5).  Choosing datasets with identical  sequencing reads processing pipelines alone was 
not sufficient, and that further batch effects needed to be removed to bring expression 

abundance levels from different data sources into comparable ranges. Subsequently, batch 

adjustment was performed using ComBat from the SVAseq R package(6–8) on log-transformed 

quantile-normalized TPM data(4). ComBat is a flexible method based on empirical Bayes 

regression to reduce heterogeneity from multiple datasets while preserving the biological signals 

in the data even when the experimental design across the datasets is unbalanced(3). This 

procedure reduced the variations between datasets as can be observed in the RLE values, 
which were largely indistinguishable between conditions and typically lower than one. We also 

used metastatic SKCM cohort from TCGA, including 103 primary and 368 metastatic tumor 

samples which are all from one dataset to prove the independency of the results to batch 

correction method. 

 



 3 

 

Gene expression-based analyses and statistical methods 

Hybrid hierarchical k-means clustering (HHK). 

For HHK(9) of expression data, we used the function hkmeans in the R package factoextra(10) 
using  default parameters (distance: Euclidean, hierarchical clustering method: Ward.D2, k-

means algorithm: Hartigan-Wong) and the number of clusters was estimated using silhouette in 

R. The silhouette coefficient(11), a measure of how similar an object is to its own cluster 
compared to other clusters, was used for cutting (coloring) the dendrogram. 

Dimensionality reduction. 

Dimensionality reduction was performed using two methods: UMAP and principal component 
analysis (PCA). For Uniform Manifold Approximation and Projection (UMAP)(12)  we used 

‘umap’ and ‘prcomp’ (with the ‘center’ option set to TRUE) functions in R on log2-transformed 

TPM values (RNA-seq). 

Deconvolution.  

The deconvolution workflow was performed using the R package DeconRNASeq (13). This 
algorithm performs a non-negative quadratic programming for estimating the globally optimized 

mixing proportions of distinctive tissue types. Here we used two distinct cancer types as 

reference: the median expression levels of the samples for primary tumors of the origin tissue 

and the primary tumors of the metastatic tissues, and differentially expressed genes of two 

distinct cancer types with LFC≥1 and padj≤0.01 were used as the gene expression signature of 

the references. Accordingly, the result of this procedure is the estimated proportion of the 

“destination tissue_TP contribution” to the metastatic tumors. A value of 1 represents the 

maximum proportion of “destination tissue_TP contribution”, and 0 the minimum proportion of 
“destination tissue_TP contribution”, meaning maximum and minimum similarity to destination 

tissue_TP and breast_TP, respectively. High-purity tumor samples for melanoma cancer 

analysis were extracted using consensus purity estimate (CPE) scores(14) for TCGA primary 

solid tumor samples (CPE>0.80 or IHC>0.80). 

Differential expression (DE) analysis.  

Differences in sample preparation and batch effects can have substantial consequences on DE 

results. Therefore, we used batch-adjusted gene expression values for pairs of the three 
conditions for metastatic tumors in each tissue type, where low-count genes were removed 

beforehand. Differential expression analysis was then conducted using the R package ‘limma’ 

for metastatic tumors with at least 3 samples versus basal TNBC primary tumors. A gene was 

considered as differentially expressed if its Benjamini-Hochberg corrected p-value < 0.01 and 

had >2-fold expression change. 
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Gene set analysis.  

Gene set analysis (GSA) was performed using a MATLAB implementation 
(https://github.com/JonathanRob/GeneSetAnalysisMatlab) of the R package ‘Piano’(15), with 

different gene set collections retrieved from the Molecular Signatures Database (MSigBD) 

version 7.1, including hallmark, KEGG and GO molecular function. The other gene set 

collections used were metabolite and subsystem gene set collections extracted from the human 

genome-scale metabolic model, Human-GEM(16). The GSA approach we used in this study 
enables the incorporation of log fold-change directionality (increase or decrease) information for 

evaluating the significance of gene set enrichment. The enriched gene sets were filtered by padj 

< 0.01 for both “non-directional” gene set p-values (p.non.dir) and  “distinct directional” p-values 

(p.dist.dir).  

Adjustment of p values.  

All adjusted p values (padj) reported in the study were adjusted to control for the false discovery 

rate (FDR) using the Benjamini-Hochberg procedure. Statistical significance in this study was 

defined as padj < 0.01. 

Metabolic network generation and analysis 

Condition-specific metabolic model reconstruction and structural comparison.  

For each tissue or tumor type, the median TPM value expression of each gene among all 

samples was calculated and used as input to the updated tINIT (task-driven integrative network 

inference for tissues) algorithm(17) on the Human-GEM GitHub repository 

(https://github.com/SysBioChalmers/Human-GEM)(16), with an expression threshold of 1 TPM. 

The resulting 33 models were analyzed by comparing their structure (reaction content) using a 

binary reaction inclusion matrix with rows and columns corresponding to reactions and tINIT-

models, respectively. A value of one indicates inclusion of a reaction in a model, while zero 

corresponds to reactions absent from a model. To compare reaction content of the models we 

performed UMAP of the reaction inclusion matrix in two dimensions, based on the Hamming 
distance as the distance metric. Further comparison of reaction content in models was 

conducted by calculating the pairwise Jaccard distances between the columns of the binary 

reaction inclusion matrix using “dist.binary” function in R. The results were visualized as a 

clustered heatmap and colored by Jaccard similarity. In addition, to identify specific reactions for 

each condition we utilized “make_comb_mat” function (with the mode option set to “distinct”) 

from R package ComplexHeatmap(18) to make a combination matrix for UpSet plots.  

Gene essentiality analysis.  

Gene essentiality prediction was performed based on the impact of each gene deletion on 
biomass production in each model. A gene was considered as “essential” for a model if its 

deletion changed the biomass reaction flux to zero when performing flux balance analysis (FBA). 

We then excluded the genes which showed essentiality in all the healthy- and cancer- specific 
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models and the remaining genes were visualized in a heatmap, where a value of 1 corresponded 

to an essential gene in each model.  

Construction of enzyme-constrained metabolic models and analysis  

The tissue- and tumor type- specific metabolic models generated by the tINIT algorithm were 
converted to enzyme-constrained models using the GECKO (enhancement of a GEM with 

Enzymatic Constraints using Kinetic and Omics data) framework(19) with applied modifications 

based on Human-GEM(16). Metabolite uptakes were constrained based on nutrients available 
in Ham’s media (20). Flux variability analysis (FVA) was conducted on the enzyme-constrained 

tumor-specific metabolic models using the “comparativeFVA” function on the GECKO GitHub 

repository (https://github.com/SysBioChalmers/GECKO). Since reversible reactions are split 

into pairs of irreversible reactions in enzyme-constrained models, flux through each of these 

reactions was maximized while its reaction pair was constrained to zero to avoid infinite flux 

variability caused by an artificial flux cycle. Maximum fluxes of both the directions of each 

reaction were summed to obtain the flux variability (capacity) of the corresponding reversible 

reaction. Finally, we identified the differentially changed reaction capacities (DRC) for each of 
the TNBC metastatic tumors and the primary tumors of their metastatic organs, versus TNBC 

primary tumors, then plotted them together to visualize common metabolic features.  
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Supplementary figures 

Figure S1. Assessment of comparability between different conditions in combined dataset. A 

Density and relative log expression (RLE) plots for the gene expression TPM values B Density 

and RLE plots for the batch-adjusted gene expression TPM values. RLE analysis 

showed choosing datasets with identical  sequencing reads processing pipelines alone was not 
sufficient, and that further batch effects needed to be removed to bring expression abundance 

levels from different data sources into comparable ranges. Each color shows a specific dataset. 

Purple, coral, and green represent samples coming from GSE110590, TCGA and GTEx 

datasets, respectively. 
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Figure S2. Relative log expression (RLE) plots for the gene expression TPM values in combined 

datasets of TNBC metastatic and primary tumors, and liver, lung, and brain primary tumors and 

healthy tissues, separately. A Before batch correction. B After batch correction.  
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 Figure S3. Silhouette plot. Silhouette coefficient illustrates how close each point in one cluster 

is to points in the neighboring clusters. A high value indicates that the object is well matched to 

its own cluster and poorly matched to the neighboring clusters.   
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Figure S4. Deconvolution analysis of TNBC-TM samples using median expression levels of 

breast-TPs and TPs of the destination tissues as references by choosing different thresholds. A 

DEGs with LFC≥2 (left) and DEGs with LFC≥3.3 (right) used as signature genes. Reducing the 

number of signature genes used in the deconvolution analysis led to an increase in similarity 

between each of metastatic tumor profiles (maroon) and TP profile of their destination tissue. B 
Pearson correlation of purity scores of TNBC metastatic tumors and their similarities to primary 

tumors of their metastatic sites. 
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 Figure S5. Intermediate state of SKCM-TMs between SKCM-TPs and TPs of the metastatic 

organs. A RLE plot of TPM values in combined dataset before batch correction (top) and after 

batch correction (bottom). B PCA plots for each group including TPs of tissue of destination and 

SKCM-TM and SKCM-TP. C Deconvolution analysis of SKCM-TMs using median expression 
levels of SKCM-TPs and TPs of the destination tissues as references. 
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Figure S6. Deconvolution analysis of SKCM-TM samples using more significant signature 

genes. DEGs with LFC≥2 (left) and DEGs with LFC≥3.3 (right) were used as signature genes. 
A Reducing the number of signature genes used in the deconvolution analysis increased the 

similarity between each of metastatic tumor profiles (maroon) and the TP profile of their 

destination tissue. B Pearson correlation between purity scores of SKCM metastatic tumors of 

lymph node axilla and their similarities to primary tumors of their host tissues using all samples 
(left) (R=-0.13, p=0.21), and samples with higher purity than 80% which was used in this study 

(right) (R=-0.02, p=0.86). 
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 Figure S7. Gene set analysis of TNBC-TMs versus breast-TPs shows organ dependent 

divergence of TNBC-TMs from their original primary tumors. A Directional gene set analysis 

(GSA) of DE analysis results for TNBC metastases in lung, liver, and brain versus paired- breast-

TPs. KEGG gene set collection was used, and sets with <10 genes were excluded. The more 

significant (lower value) of the two directional p-values for each gene set is shown in the heatmap 
as a log10-transformed value. The value is also “signed”, meaning that gene sets with a more 

significant decrease than increase (padj,dist-dir-down < padj,dist-dir-up) are negative (enriched in breast-

TPs; blue); otherwise, they are positive (enriched in TNBC-TMs; red). Only gene sets with a 
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padj,dist-dir less than 0.01 in at least one metastatic tumor are shown. B Non-directional GSA 

results for three comparisons. The “p.non.directional” value for each gene set is filtered based 

on non.dir p-values less than 0.01, and shown in the heatmap as a log10-transformed p-value. 

c. Directional GSA using GO molecular function collection for three comparisons.  The more 

significant (lower value) of the two directional p-values for each gene set is shown in the heatmap 

as a log10-transformed value. Only 30 gene sets with lowest padj,dist-dir among all directionality 

types are shown. The most significant molecular functions which enriched consistently in TNBC-
TMs are associated with receptors, transmembrane transporters, and channels.   
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 Figure S8. Correlation of significant DEGs to differentiate TNBC-TMs from their origin. A 

Significantly changed genes in gene sets associated with the epithelial-mesenchymal transition 

(EMT), glycolysis, and oxidative phosphorylation are shown in the heat maps, colored by log2FC 

of the genes in TNBC metastases compared with breast-TPs. B Significantly changed genes in 
gene set associated with pancreas beta cells are shown in the heat maps, colored by log2FC of 

the genes in TNBC metastases compared with breast-TPs. 
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Figure S9. Divergence of SKCM metastatic tumors from skin-TPs based on metabolic 

signatures. Deconvolution analysis of the SKCM -TM samples using median expression levels 

of metabolism associated genes in skin-TPs and TPs of the tissue of destination as references. 

The result of the analysis is the fraction of similarity of each TM sample (maroon) to the TPs of 

the tissue of its destination based on only their metabolic genes. 
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 Figure S10. Visualization of differences in generated metabolic models for each condition using 

UMAP plot. Each point is a metabolic model which is colored and shaped based on tissue type 

and condition, respectively.   
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 Figure S11. Metabolic signatures of TNBC-TMs in different tissues. A Shown are subsystems 

associated with metastatic specific reactions extracted from GEMs. B metabolic subsystems of 

common reactions between TNBC-TM models and breast-TP model as retained signatures. 
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Figure S12. Graphical representation of the flux analysis pipeline. The pipeline was used to 

construct and analysis of ecGEMs for breast-TP, TNBC-TMs and their associated primary 
tumors. Flux variability analysis reveals metabolic reprogramming of TNBC metastases in 

distinct tissues. Comparison of FVA results of TNBC metastases in distinct tissues and their 

associated primary tumors are plotted based on log2-transformed fold changes (LFC) in reaction 

capacities of ecGEMs. Finally reactions with LFC >1 in at least one condition were plotted. 

Fluxes were simulated by maximizing biomass production while specifying only which 

metabolites were present in Ham’s medium. The composition of medium was retrieved from 

Robinson et al (20). “TNBC-TM in distant tissues” stands for metastatic tumors originated from 
TNBC but colonized in a distant destination tissue while “Distant tissue_TP” stands for primary 

tumors of distant destination tissues. 
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 Figure S13. Flux variability analysis reveals metabolic reprogramming of TNBC metastases in 

distinct tissues. Comparison of FVA results of TNBC metastases in distinct tissues and their 

associated primary tumors are plotted based on log2-transformed fold changes in reaction 
capacities of GEMs specific to brain-TM, liver-TM, brain-TP and liver-TP  versus breast-TP. 

Shown are reactions with LFC >1 in at least one condition.  
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2H2O[c]+Tryptophanyl−Glycyl−Valine[c] <=>glycine[c]+tryptophan[c] +valine[c]

glutamate[s]<=>
serine[s] <=>
folate[s] <=>

thymidine[s]<=>
hypoxanthine[s]<=>

choline[s] <=>
cysteine[s] <=>
linoleate[s] <=>
riboflavin[s]<=>
thiamin[s]<=>
histidine[s]<=>
retinoate[s]<=>
pyridoxine[s]<=>

gamma−tocopherol[s]<=>
isoleucine[s] <=>
leucine[s] <=>
tyrosine[s] <=>

Pi[s] <=>
phenylalanine[s] <=>

O2[s] <=>
lysine[s] <=>

alpha−tocopherol[s]<=>
arginine[s] <=>

LFC

Flux-Capacity comparisons

Liver TP vs Breast TP
Liver TMvsBreast TP

Flux-Capacity comparisons
BrainTM vs BreastTP
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 Figure S14. Flux variability analysis reveals metabolic reprogramming of TNBC metastases in 
lung (left) and skin (right) tissues. Comparison of FVA results of TNBC metastases in distinct 

tissues and their associated primary tumors are plotted based on log2-transformed fold changes 

in reaction capacities of GEMs specific to lung-TM and skin-TM, lung-TP and skin-TP versus 

breast-TP. Shown are reactions with log2FC >1 in at least one condition.   

Flux-Capacity comparisons
LungTP (Ad) vs Breast TP
LungTM vs Breast TP
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linolenate[s] <=>

inositol[s] <=>
Fe2+[s] <=>

glycine[s] <=>
Tryptophanyl−Valyl−Aspartate[s] =>

H+[s] + Tryptophanyl−Valyl−Aspartate[s] <=> H+[c] + Tryptophanyl−Valyl−Aspartate[c]
aspartate[s] + H+[s] + K+[c] + 3 Na+[s] => aspartate[c] + H+[c] + K+[s] + 3 Na+[c]

aspartate[s] + Na+[s] + proline[c] => aspartate[c] + Na+[c] + proline[s]
aspartate[s] + Na+[s] => aspartate[c] + Na+[c]

adenosine[c] + inosine[s] <=> adenosine[s] + inosine[c]
asparagine[s] <=>

glucose[s] <=>
proline[s] <=>

tryptophan[s] <=>
D−alanine[c] <=> alanine[c]

Pi[r] <=> Pi[c]
glucose−6−phosphate[c] <=> glucose−6−phosphate[r]

urea[c] <=> urea[s]
CO2[c] <=> CO2[s]

citrulline[c] + H+[c] + ornithine[m] => citrulline[m] + H+[m] + ornithine[c]
ADP[c] + dGTP[c] <=> ATP[c] + dGDP[c]

ADP[c] + UTP[c] <=> ATP[c] + UDP[c]
dADP[m] + dTTP[m] <=> dATP[m] + dTDP[m]

dADP[c] + dTTP[c] <=> dATP[c] + dTDP[c]
ADP[m] + dTTP[m] <=> ATP[m] + dTDP[m]

ADP[c] + dTTP[c] <=> ATP[c] + dTDP[c]
dADP[m] + dTTP[c] => dADP[c] + dTTP[m]
dCDP[m] + dTTP[c] => dCDP[c] + dTTP[m]
dGDP[m] + dTTP[c] => dGDP[c] + dTTP[m]
dTDP[m] + dTTP[c] => dTDP[c] + dTTP[m]
dTTP[c] + dUDP[m] => dTTP[m] + dUDP[c]

dGDP[c] + H+[c] + PEP[c] => dGTP[c] + pyruvate[c]
dTDP[c] + H+[c] + PEP[c] <=> dTTP[c] + pyruvate[c]

citrulline[m] <=> citrulline[c]
urea[c] <=> urea[m]

arginine[m] + H2O[m] => ornithine[m] + urea[m]
H+[c] + ornithine[m] => H+[m] + ornithine[c]

O2[c] <=> O2[s]
O2[c] + 2 tyrosine[c] => 2 L−dopa[c]

H2O[c] <=> H2O[m]
L−dopa[s] =>

threonine[s] <=>
H+[s] + Isolecyl−Tryptophanyl−Tyrosine[s] <=> H+[c] + Isolecyl−Tryptophanyl−Tyrosine[c]

leucine[s] <=>
2 H2O[c] + Methionyl−Tryptophanyl−Phenylalanine[c] <=> methionine[c] + phenylalanine[c] + tryptophan[c]

Methionyl−Tryptophanyl−Phenylalanine[s] =>
H+[s] + Methionyl−Tryptophanyl−Phenylalanine[s] <=> H+[c] + Methionyl−Tryptophanyl−Phenylalanine[c]

2 H2O[c] + Threonyl−Tyrosyl−Methionine[c] <=> methionine[c] + threonine[c] + tyrosine[c]
H+[s] + Threonyl−Tyrosyl−Methionine[s] <=> H+[c] + Threonyl−Tyrosyl−Methionine[c]

H+[s] + Tryptophanyl−Threonyl−Isoleucine[s] <=> H+[c] + Tryptophanyl−Threonyl−Isoleucine[c]
2 H2O[c] + Tryptophanyl−Threonyl−Isoleucine[c] <=> isoleucine[c] + threonine[c] + tryptophan[c]

Threonyl−Tyrosyl−Methionine[s] =>
Tryptophanyl−Threonyl−Isoleucine[s] =>

2 H2O[c] + Isolecyl−Tryptophanyl−Tyrosine[c] <=> isoleucine[c] + tryptophan[c] + tyrosine[c]
H+[s] + Leucyl−Alanyl−Arginine[s] <=> H+[c] + Leucyl−Alanyl−Arginine[c]

2 H2O[c] + Leucyl−Alanyl−Arginine[c] <=> alanine[c] + arginine[c] + leucine[c]
O2[s] <=>

cysteine[s] <=>
riboflavin[s] <=>
pyridoxine[s] <=>
retinoate[s] <=>

nicotinamide[s] <=>
Pi[s] <=>

glutamate[s] <=>
arginine[s] <=>

methionine[s] <=>
isoleucine[s] <=>
tyrosine[s] <=>
serine[s] <=>

thymidine[s] <=>
phenylalanine[s] <=>

choline[s] <=>
gamma−tocopherol[s] <=>

LFC

Flux-Capacity comparisons
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Skin TM vs Breast TP
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Tryptophanyl−Valyl−Aspartate[s] =>

H+[s] + Tryptophanyl−Valyl−Aspartate[s] <=> H+[c] + Tryptophanyl−Valyl−Aspartate[c]
aspartate[s] + H+[s] + K+[c] + 3 Na+[s] => aspartate[c] + H+[c] + K+[s] + 3 Na+[c]

aspartate[s] + Na+[s] + proline[c] => aspartate[c] + Na+[c] + proline[s]
aspartate[s] + Na+[s] => aspartate[c] + Na+[c]

valine[s] <=>
linolenate[s] <=>

inositol[s] <=>
glutamine[s] <=>
glucose[s] <=>
proline[s] <=>

tryptophan[s] <=>
glucose−6−phosphate[c] <=> glucose−6−phosphate[r]

urea[c] <=> urea[s]
11−cis−retinal[c] + H+[c] + NADPH[c] <=> 11−cis−retinol[c] + NADP+[c]

CO2[c] <=> CO2[s]
2 H2O[c] + Tryptophanyl−Histidyl−Methionine[c] <=> histidine[c] + methionine[c] + tryptophan[c]
H+[s] + Tryptophanyl−Histidyl−Methionine[s] <=> H+[c] + Tryptophanyl−Histidyl−Methionine[c]

Tryptophanyl−Histidyl−Methionine[s] =>
threonine[s] <=>
glutamate[s] <=>

hypoxanthine[s] <=>
choline[s] <=>
cysteine[s] <=>
linoleate[s] <=>
tyrosine[s] <=>
riboflavin[s] <=>

O2[s] <=>
leucine[s] <=>
arginine[s] <=>

isoleucine[s] <=>
alpha−tocopherol[s] <=>

gamma−tocopherol[s] <=>
retinoate[s] <=>

phenylalanine[s] <=>
histidine[s] <=>

methionine[s] <=>
Pi[s] <=>

LFC
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 Figure S15. Flux variability analysis reveals metabolic reprogramming of TNBC metastases in 

lymph node (left) and adrenal gland (right) tissues. Comparison of FVA results of TNBC 

metastases in distinct tissues and their associated primary tumors are plotted based on log2-

transformed fold changes in reaction capacities of GEMs specific to lymph node-TM, adrenal 

gland-TM, lymph node-TP, adrenal gland (ACC)-TP and versus breast-TP. Shown are reactions 
with log2FC >1 in at least one condition.  
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inositol[s] <=>
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aspartate[s] + Na+[s] + proline[c] => aspartate[c] + Na+[c] + proline[s]
tryptophan[s] <=>
asparagine[s] <=>

Fe2+[s] <=>
glutamine[s] <=>

adenosine[c] + inosine[s] <=> adenosine[s] + inosine[c]
D−xylulose−5−phosphate[c] <=> ribulose−5−phosphate[c]

glucose−6−phosphate[c] <=> glucose−6−phosphate[r]
2 ribulose−5−phosphate[c] <=> 2 D−xylulose−5−phosphate[c]

urea[c] <=> urea[s]
valine[s] <=>

glucose−6−phosphate[c] + Pi[r] => glucose−6−phosphate[r] + Pi[c]
Pi[r] <=> Pi[c]

beta−D−glucose−6−phosphate[c] <=> fructose−6−phosphate[c]
ADP[c] + dATP[c] <=> ATP[c] + dADP[c]

ornithine[s] =>
arginine[c] + H2O[c] => ornithine[c] + urea[c]

citrulline[m] <=> citrulline[c]
citrulline[c] + H+[c] + ornithine[m] => citrulline[m] + H+[m] + ornithine[c]
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urea[c] <=> urea[m]
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2 H2O[c] + Tryptophanyl−Methionyl−Valine[c] <=> methionine[c] + tryptophan[c] + valine[c]
Tryptophanyl−Methionyl−Valine[s] =>

H+[s] + Tryptophanyl−Methionyl−Valine[s] <=> H+[c] + Tryptophanyl−Methionyl−Valine[c]
2 H2O[c] + Prolyl−Tryptophanyl−Threonine[c] <=> proline[c] + threonine[c] + tryptophan[c]

Prolyl−Tryptophanyl−Threonine[s] =>
Tryptophanyl−Isoleucyl−Lysine[s] =>

H+[s] + Tryptophanyl−Isoleucyl−Lysine[s] <=> H+[c] + Tryptophanyl−Isoleucyl−Lysine[c]
2 H2O[c] + Tryptophanyl−Isoleucyl−Lysine[c] <=> isoleucine[c] + lysine[c] + tryptophan[c]

inosine[c] <=> inosine[s]
H+[s] + Methionyl−Histidyl−Lysine[s] <=> H+[c] + Methionyl−Histidyl−Lysine[c]

2 H2O[c] + Methionyl−Histidyl−Lysine[c] <=> histidine[c] + lysine[c] + methionine[c]
threonine[s] <=>

serine[s] <=>
thymidine[s] <=>

phenylalanine[s] <=>
folate[s] <=>

choline[s] <=>
linoleate[s] <=>
thiamin[s] <=>

retinoate[s] <=>
arginine[s] <=>

isoleucine[s] <=>
methionine[s] <=>

Pi[s] <=>
histidine[s] <=>

O2[s] <=>
lysine[s] <=>

leucine[s] <=>
nicotinamide[s] <=>

alpha−tocopherol[s] <=>
pyridoxine[s] <=>

gamma−tocopherol[s] <=>
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glycine[s] <=>

Tryptophanyl−Valyl−Aspartate[s] =>
H+[s] + Tryptophanyl−Valyl−Aspartate[s] <=> H+[c] + Tryptophanyl−Valyl−Aspartate[c]
aspartate[s] + H+[s] + K+[c] + 3 Na+[s] => aspartate[c] + H+[c] + K+[s] + 3 Na+[c]

aspartate[s] + Na+[s] + proline[c] => aspartate[c] + Na+[c] + proline[s]
aspartate[s] + Na+[s] => aspartate[c] + Na+[c]

valine[s] <=>
H2O[s] <=>

inositol[s] <=>
glucose[s] <=>

adenosine[c] + inosine[s] <=> adenosine[s] + inosine[c]
proline[s] <=>

urea[c] <=> urea[s]
tryptophan[s] <=>
glutamine[s] <=>

arginine[c] + H2O[c] => ornithine[c] + urea[c]
ornithine[s] =>

citrulline[m] <=> citrulline[c]
GSSG[c] + H+[c] + NADPH[c] => 2 GSH[c] + NADP+[c]

citrulline[c] + H+[c] + ornithine[m] => citrulline[m] + H+[m] + ornithine[c]
2 GSH[c] + H2O2[c] => GSSG[c] + 2 H2O[c]

O2[c] <=> O2[s]
dADP[m] + dTTP[m] <=> dATP[m] + dTDP[m]

dADP[c] + dTTP[c] <=> dATP[c] + dTDP[c]
ADP[c] + UTP[c] <=> ATP[c] + UDP[c]

ADP[m] + dTTP[m] <=> ATP[m] + dTDP[m]
dTDP[m] + dTTP[c] => dTDP[c] + dTTP[m]
ADP[c] + dTTP[c] <=> ATP[c] + dTDP[c]

dADP[m] + dTTP[c] => dADP[c] + dTTP[m]
dGDP[m] + dTTP[c] => dGDP[c] + dTTP[m]
dCDP[m] + dTTP[c] => dCDP[c] + dTTP[m]
dTTP[c] + dUDP[m] => dTTP[m] + dUDP[c]

dGDP[c] + H+[c] + PEP[c] => dGTP[c] + pyruvate[c]
dADP[c] + H+[c] + PEP[c] => dATP[c] + pyruvate[c]
H+[c] + PEP[c] + UDP[c] => pyruvate[c] + UTP[c]

2 H2O2[c] => 2 H2O[c] + O2[c]
CO2[c] <=> CO2[s]
urea[c] <=> urea[m]
H2O[c] <=> H2O[m]

glucose[c] <=> glucose[s]
2 H2O[c] + Tryptophanyl−Methionyl−Arginine[c] <=> arginine[c] + methionine[c] + tryptophan[c]
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Lysyl−Valyl−Tryptophan[s] =>
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H+[s] + Arginyl−Histidyl−Threonine[s] <=> H+[c] + Arginyl−Histidyl−Threonine[c]
Methionyl−Glutaminyl−Tyrosine[s] =>

2 H2O[c] + Isolecyl−Seryl−Arginine[c] <=> arginine[c] + isoleucine[c] + serine[c]
Arginyl−Histidyl−Threonine[s] =>
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2 H2O[c] + Arginyl−Histidyl−Threonine[c] <=> arginine[c] + histidine[c] + threonine[c]

isoleucine[s] <=>
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thymidine[s] <=>
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histidine[s] <=>
leucine[s] <=>
arginine[s] <=>
retinoate[s] <=>

alpha−tocopherol[s] <=>
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pyridoxine[s] <=>
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threonine[s] <=>
methionine[s] <=>

serine[s] <=>
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glutamate[s] <=>
hypoxanthine[s] <=>

riboflavin[s] <=>
thiamin[s] <=>
lysine[s] <=>

LFC

Flux-Capacity comparisons
Adrenal gland TP vs Breast TP
Adrenal gland TM vs Breast TP

Lymph node TP vs Breast TP
Lymph node TM vs Breast TP

Flux-Capacity comparisons



 22 

 
Figure S16. Abundant metabolic pathways. Heatmap of reactions which are specific for each of 

cancer types. A value of one (black) represents reactions which are included in TM and/or TP 

specific GEMs and is not included in healthy and NT GEMs. Their associated metabolic 

pathways are shown in the barplot (right) by different colors and each color represents a 
subsystem. 
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Table S1. 

Clinical History of the Selected Patients from dataset GSE110590. This subset includes patients 

with basal TNBC primary tumor and their matched distant metastases to different tissues). 

Samples with low quality were excluded. (1 = no treatment exposure; 2 = post-treatment sample; 

3 = post-treatment and post-radiation) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Patient Race

ER Status 
(0 = 

negative; 1 
= positive)

PR Status 
(0 = 

negative; 1 
= positive)

HER2 
Status (0 = 
negative; 1 
= positive)

Age at 
Diagnosis

Stage at 
Diagnosis

Time to 
relapse 

(months)

Overall 
Survival 
(months) Chemotherapy received

Estrogen-
directed 
therapy 
received

Her2 
directed 

therapies 
received

Other 
biologic 

therapies 
received Patient Primary Liver Lung Brain LN Adrenal Skin

A1 Caucasian 0 0 0 64 T4N2M1 0 1,5 Taxol A1 3 2 1 1 1

A5
African 

American
0 0 0 65 T4N0M0 23 26

docetaxel, 5-fluorouracil, 
epirubicin, cyclophosphamide, 

capecitabine

pamidronat
e

A5 3 2

A7
African 

American
0 0 0 57 T2N2M0 17 24

doxorubicin/cyclophosphamide,  
  paclitaxel, capectiabine, 

carboplatin
A7 2 2 2 3

A11 Caucasian 0 0 0 46 T2N0M0 35 56
doxorubicin/cyclophosphamide,  

  paclitaxel, gemcitabine, 
carboplatin

Ispinesib A11 1 2 2 3

A15 Caucasian 0 0 0 59 T4N0M0 8 12
doxorubicin/cyclophosphamide,  

  paclitaxel, carboplatin, 
capecitabine, bevacizumab

lapatinib cetuximab A15 3 2 2 2

A20 Caucasian 0 0 0 63 T2N2M0 22 38

doxorubicin/cyclophosphamide, 
 paclitaxel, gemcitabine, 

carboplatin, capecitabine, 
vinorelbine

bevacizuma
b, 

denosumab
A20 1 2 2 2 2 2

A23 Caucasian 0 0 0 49 T4N2M0 17 37
doxorubicin/cyclophosphamide,  

  paclitaxel, carboplatin, 
capecitabine, gemcitabine

bevacizuma
b, anti-
death 

receptor 5 
investigativ
e therapy

A23 1 3 2

Clinical History of the Selected Patients from Dataset  GSE110590 (This subset includes patients with basal TNBC  primary tumor and their their matched distant 
metastases to different tissues). Samples with low quality are excluded (1 = no treatment exposure; 2 = post-

treatment sample; 3 = post-treatment and
post-radiation)
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Table S2. 
List of some currently investigated inhibitors for the suggested drug targets presented in Fig. 
5B. NA was used for those drugs which have been found from literature, but their drug bank 
IDs were not found. 
 

Drug Target Pathway Drug name Drug Bank ID References 

IDO1; 

Indoleamine 2,3-
dioxygenase 1 

Kynurenine pathway/ 
tryptophan metabolism 

• Epacadostat 
• Linrodostat (BMS-986205) 
• Indoximod (D-1MT) 
• Navoximod (GDC-0919; NLG-919) 
• Cannabidiol 
• EOS-200271 

• DB11717 
• DB14986 
• DB12827 
• DB15439 
• DB09061 
• NA 

(21–26) 

IDO2; 

Indoleamine 2,3-
dioxygenase 2 

Kynurenine pathway/ 
tryptophan metabolism 

• Indoximod (D-1MT) 
• 680C91 

• DB12827 
• NA 

(21, 27–30) 

 

TDO2; 

Tryptophan 2,3-
dioxygenase 

Kynurenine pathway/ 
tryptophan metabolism 

• 680C91 
• Navoximod (GDC-0919; NLG-919) 
• Tolmetin (MCN-2559) 
• Nalidixic acid (NSC-82174) 

• NA 
• DB14986 
• DB00500 
• DB00779 

(23, 24, 
31–34) 

KYNU; 

L-kynureninase 

 Kynurenine pathway/ 
tryptophan metabolism 

• m-Hydroxyhippuric acid 
• 3,6,9,12,15-Pentaoxaheptadecane 

• DB07069 
• DB02343 

(35–37) 

KMO;  

Kynurenine 3-
monooxygenase 

 Kynurenine pathway/ 
tryptophan metabolism 

• Ro-61–8048 
• UPF648 
• CHDI-340246 

• NA 
• NA 
• NA 

(23, 38–43) 

GOT2; 

Aspartate 
aminotransferase 

Tryptophan metabolism • Pyridoxal phosphate  
• 4'-Deoxy-4'-Acetylyamino-

Pyridoxal-5'-Phosphate  

• DB00114 
• DB02783 

(44, 45) 

QPRT; 

quinolinate 
phosphoribosyltran

sferase 

Nicotinate and 
nicotinamide metabolism/ 

tryptophan metabolism 

• Phthalic acid 

 

• DB02746 (23, 46) 

 

 

NADSYN1; 
Glutamine-

dependent NAD(+) 
synthetase 

Nicotinate and 
nicotinamide metabolism/ 

tryptophan metabolism 

• Glutamic acid • DB00142 (47, 48) 
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Table S2. continued. 
 

Drug Target Pathway Drug name Drug Bank ID References 

HAAO; 

3-
hydroxyanthranilate 

3,4-dioxygenase 

Nicotinate and 
nicotinamide metabolism/ 

tryptophan metabolism 

• 2-amino-4-chloro-3-
hydroxybenzoic acid 

• 4-Chloro-3-hydroxyanthranilate 

• DB04598 
• NA (49–51) 

CUBN; 

cubilin 

Vitamin D metabolism/ 
cholestrol metabolism/ 

lipid metabolism 

• Hydroxocobalamin  • DB00200 (44, 52) 

LRP2; 

Low-density 
lipoprotein 

receptor-related 
protein 2 

Vitamin D metabolism • Gentamicin  
• Urokinase  

• DB00798 
• DB00013 

(53–55) 

GC; 

Vitamin D-binding 
protein 

 

Vitamin D metabolism • Calcitriol (DB00136) 
• Ergocalciferol (DB00153) 
• Oleic Acid (DB04224) 

 

• DB00136 
• DB00153 
• DB04224 

(56–58) 

CYP27B1; 

 Cytochrome P450 
Family 27 

Subfamily B 
Member 1 

 

Vitamin D metabolism • anastrozole (ZD-1033) • DB01217 (59) 

 

 

 

AKR1D1; 

Aldo-keto 
reductase family 1 

member D1 

 

Bile acid biosynthesis/ 
retinol metabolism 

pathways 

• Norethisterone  
• Finasteride  
• Azelaic acid  
• 5beta-dihydrotestosterone 
• 3,20-Pregnanedione 

 

• DB00717 
• DB01216 
• DB00548 
• DB07447 
• DB07557 

(37, 60–62) 

AKR1C4;  

Aldo-keto 
reductase family 1 

member C1 

 

Bile acid biosynthesis/ 
retinol metabolism 

pathways 

• Flufenamic 
• Nabumetone 
• Fenofibrate 
• Norethisterone 
• Oxcarbazepine  

• DB02266 
• DB00461 
• DB01039 
• DB00717 
• DB00776 

(60, 63–67) 
 
 

 

AMACR; 

Alpha-methylacyl-
CoA racemase 

 

Bile acid biosynthesis • Ibuprofen 
• Dexibuprofen 

• DB01050 
• DB09213 

 

(68–70) 
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Table S2. continued. 
 

Drug Target Pathway Drug name Drug Bank ID 
Referenc

es 

CYP46A1; 

cholesterol 24-
hydroxylase 

Bile acid biosynthesis • Zaragozic acid 
• Soticlestat (TAK-935, OV935) 

• NA 
• NA (71–74) 

CYP7A1; 

Cholesterol 7a-
hydroxylase 

Bile acid biosynthesis • Levoketoconazole 
• Cyclosporin A  
• Obeticholic acid  

• DB05667 
• DB00091 
• DB05990 

(71, 75–
78) 

CYP8B1 Bile acid biosynthesis • C12-pyridine bearing steroid 
• Seviteronel (VT-464) 
• ketoconazole 
• exemestane 
• letrozole 
• aminobenzotriazole 
• 3Cl-APHC 

• NA 
• DB12275 
• DB01026 
• DB00990 
• DB01006 
• NA 
• NA 

(79–82) 

EHHADH; 

Peroxisomal 
bifunctional enzyme 

Fatty acid oxidation Reduced nicotinamide adenine 
diphosphate 

• DB00157 (44, 52) 

HSD17B4; 
hydroxysteroid (17-

beta) dehydrogenase 
4 
 

Fatty acid oxidation • (R)-3-hydroxydecanoyl-CoA 
• Reduced nicotinamide adenine 

diphosphate 

• DB03192 
• DB00157 (37, 44, 

52, 83) 

GSTM1; 
Glutathione S-

transferase Mu 1 

Glutathione metabolism • Curcumin  
• Chloroquine 
• 5-fluorotryptophan 
• (9S,10S)-9-(S-glutathionyl)-10-

hydroxy-9,10-
dihydrophenanthrene 

• (9R,10R)-9-(S-glutathionyl)-10-
hydroxy-9,10-
dihydrophenanthrene 

• Zinc trihydroxide 
• S-(2,4-dinitrophenyl) glutathione 

• DB11672 
• DB00608 
• DB03314 
• DB04187 

 
 

• DB01834 
 
 
• DB02165 
• DB02458 

(37, 44, 
52, 84, 

85) 

HSD3B2; 
3 beta-

hydroxysteroid 
dehydrogenase/Delta 
5-->4-isomerase type 

2 
 

Steroid 
degradation, Steroid 

hormone biosynthesis 

• Norethisterone  
• Medroxyprogesterone acetate  
• Trilostane 

• DB00717 
• DB00603 
• DB01108 

(60, 86–
88) 

 

Dataset S1. Metastatic tumor-specific reactions. 

Dataset S2. Common reactions between TNBC_TMs and TNBC_TPs. 

Dataset S3. Cancer-specific reactions. 
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