Supporting Information

The SOS response-associated peptidase (SRAP) domain of YedK catalyzes ring opening of abasic sites and reversal of its DNA-protein crosslink

Katherine A. Paulin¹, David Cortez², and Brandt F. Eichman^{1,2,*}

¹ Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232 USA

² Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232 USA

Supporting Methods

ESI-MS of YedK mutants. High resolution mass spectra were acquired using a Thermo XExactive quadrupole/orbitrap mass spectrometer equipped with an *Ion Max* heated electrospray ion source. The instrument was calibrated weekly over a mass range of m/z 195 to m/z 1922 using the manufacturer's recommended calibration procedure. The MS ion source was operated in positive ion mode using the following ESI parameters: sheath gas (N₂) 40; auxiliary gas (N₂) 10; capillary temp 320 °C; spray voltage 4.0 kV, auxiliary gas temp 200 °C. The mass analyzer was operated at a resolving power of 120,000 (set at 200 m/z). Mass spectra were acquired over a mass range of m/z 500 - 2000 with an AGC target of 3.0×10⁶ and a maximum inject time of 200 ms. Exact masses of intact proteins were calculated from the most intense ¹³C-isotopologues (M+16) of the most intense charge state envelopes using the following expression: m/z = [M + 16 (1.0034) + z(1.0073)] / z. Data collection and processing were performed using XCalibur v. 4.1 and Exactive Tune v.2.9. The mass spectrometer was interfaced with a Vanquish Horizon ultra-high performance LC system (Thermo) consisting of a binary pump, refrigerated autosampler, and a thermostated column heater. Intact proteins were chromatographically resolved at room temperature using a Waters Symmetry Shield 300TM C18 reverse phase column (3.5 µm, 2.1 × 100 mm) operating at 300 µl/min. Mobile phases consisted of 0.05% TFA (v/v) and 0.2% formic acid (v/v) in solution A (H₂O/CH₃CN, 90:10) and in solution B (2-Propanol/CH₃CN/H₂O, 50:40:10). Gradient conditions were 0–2 min, 0% B; 2–8 min, 0– 100% B; 8–10 min, 100% B; 10–10.5 min, 100–0% B; 10.5–15 min, 0% B. The injection volumes were 10 µl, and the autosampler injection valve and sample injection needle were flushed and washed with a methanol/water solution between each injection.

Supporting Figures

Figure S1. Purity and mass analysis of YedK mutant proteins. **A**. Coomassie stained SDS-PAGE gel of purified YedK proteins. **B**. ESI-MS data for purified YedK proteins. Theoretical masses were calculated without Met1. Detailed protocol is provided under *Supporting Methods*.

Figure S2. **A**. Representative denaturing PAGE gels of AP-DNA crosslinking by YedK point mutants. Bands were visualized by FAM fluorescence. **B**. Kinetics of crosslinking at different pH (mean ± SD, n=3). Reactions were performed at 18 °C. Rate constants derived from exponential fits to the curves are shown on the right and plotted in Fig. 1G.

Figure S3. A-C. Determination of saturating conditions for crosslink formation using increasing concentrations of (A) YedK, (B) YedK peptide, and (C) aoN-g probe. **D**. Binding of formaldehyde-blocked YedK to ssDNA containing a 5'-FAM label and a centrally located tetrahydrofuran (THF) abasic site analog. Binding was monitored by a change in fluorescence polarization as protein was titrated against DNA. Dissociation constants (K_d) derived from non-linear least squares fit of the data are 1.4 μ M ± 0.007 (WT), 4.5 ± 0.02 (E105Q), and 4.9 ± 0.02 (H160Q).

Figure S4. Superposition of YedK C2A trapped Schiff base (blue) and wild-type DPC (grey, PDB ID 6NUA) crystal structures.

Figure S5. YedK DPC is refractory to strand breakage by alkaline pH. AP-DNA or DPC were reacted with hydroxide and heat (Δ) in the orders shown. Lanes 1-7 show that YedK DPC abolished after boiling can be re-formed with addition of fresh YedK but not DNA or buffer. Lanes 8-11 show that YedK DPC is refractory to cleavage by sodium hydroxide. DNA bands were visualized with FAM fluorescence. A cropped version of this gel containing lanes 1-7 is shown in Fig. 5A.

Supporting Tables

YedK mutant	<i>k</i> 1 (min ⁻¹)	<i>k</i> ₂ (min ⁻¹)	Fold change (relative to WT)
WT ^b	≥ 10.3 ± 1.6		1
N75A	7.1 ± 1.5		0.7
E105A	4.1 ± 2.1	0.01 ± 0.01	0.4 0.001
E105D	6.3 ± 0.7		0.6
E105Q	1.2 ± 0.7	0.02 ± 0.02	0.1 0.002
H160A	1.1 ± 0.1		0.1
H160E	3.5 ± 1.1		0.3
H160Q	0.9 ± 0.1		0.1

Table S1. YedK mutant crosslinking rates ^a

 a Reactions were carried out at pH 6.0, 25 °C. Values are mean \pm SD (n=3) b Value for wild-type is a lower limit

Table S2. S	Seauences of o	liaodeoxvnuc	leotides used
		5	

Name	Sequence (5'→3')	Figure(s)
FAM_U_Cy5	FAM-d(CGGGCGGCGGCAUAGGGCGCGGGCCTTTTT)-Cy5	1B-G, 3E-F
FAM_U_20	FAM-d(TCTTCTGGTCUGGATGGTAGT)	5B-D
40_U	d(GGAATCTGACTCTTCTGGTCUGGATGGTAGTTAAGTCTTGT)	5B-D
FAM_U_35	FAM-d(ATGACTCTTCTGGTCUGGATGGTAGTTAAGTCTTGT)	2A-C, 2E, 4A, 4C, 5A, 5D
FAM_THF_15	FAM-d(TCTGGTC[THF]GGATGGT)	S2D
H36	d(GTCUGGA)	3B-C

Data collection		
Space group	P2 ₁	
Cell dimensions		
a, b, c (Å)	60.94 41.47 82.58	
α, β, γ (°)	90.00, 95.65, 90.00	
Resolution (Å)	50.00 - 1.83 (1.90 - 1.83)	
R _{sym}	0.076 (0.667)	
$R_{ m meas}$	0.101 (0.891)	
CC _{1/2}	0.994 (0.507)	
Avg. Ι/σΙ	11.9 (1.4)	
Completeness (%)	99.53 (96.06)	
Redundancy	2.1 (2.1)	
Wilson <i>B</i> -factor (Ų)	19.8	
Refinement		
Resolution (Å)	37.03 - 1.82 (1.87 - 1.82)	
No. reflections	37,024 (3,583)	
Rwork	0.178 (0.254)	
$R_{\rm free}{}^{\rm b}$	0.226 (0.307)	
No. atoms ^c		
Protein	3,500	
DNA	246	
Water	260	
Other	0	
Avg. <i>B</i> -factors ^{c,d} (Ų)		
Protein	26.6	
DNA	29.4	
Water	27.8	
Other	-	
R.m.s. deviations		
Bond lengths (Å)	0.011	
Bond angles (°)	1.109	

^a Statistics for the highest resolution shell are shown in parentheses.

^b *R*_{free} was determined from the 5% of reflections excluded from refinement. ^c Riding hydrogen atoms were not included in no. atoms or avg. *B*-factors. ^d Equivalent isotropic *B*-factors were calculated in conjunction with TLSderived anisotropic *B*-factors