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Supplementary Methods

1 Model Descriptions

Three individual-based microsimulations were used to compare patterns of

artemisinin-resistance evolution in different contexts of prevalence, treatment coverage, and

pre-existing partner-drug resistance. The three models are called (1) the ‘Imperial Model’,

developed at the MRC Centre for Global Infectious Disease Analysis, Faculty of Medicine,

Imperial College London; (2) the ‘MORU Model’, developed at the Mahidol-Oxford Research

Unit (MORU), Nuffield Department of Medicine, University of Oxford; and (3) the ‘PSU Model’,

developed at the Center for Infectious Disease Dynamics (CIDD), Department of Biology,

Pennsylvania State University. The models all run as daily time-step discrete-event simulations

of individuals (humans) who can be infected with Plasmodium falciparum malaria and

subsequently pass on their infection to other individuals in the simulation. The outputs of model

runs and downstream analysis code is publicly available as a reproducible research

compendium at https://github.com/OJWatson/art_resistance_consensus_modelling.

An overview of the comparisons between each model are detailed in Table S1. Further

methodological details of the individual models and extensions made to previously published

models are described below for each model.

2

https://github.com/OJWatson/art_resistance_consensus_modelling


Supplementary Table 1. Comparative model features

Imperial Model PSU Model MORU Model

Key
representative
publications

Original Imperial model
(Griffin et al. 2016, 2010).
Extensions made for
modelling parasite genetics
in MBE (Watson et al.
2021).

Multiple first line therapies
study in Lancet Global Health
(Nguyen et al. 2015) and
therapeutic efficacy by
genotype study bioRxiv
preprint (Nguyen et al. 2021))

Mass drug administration
study in eLife (Gao et al.
2020)

Accessibility
(Either Github or
description of
code availability
etc.)

Model code is open source
and freely available at
www.github.com/OJWatson/
magenta . In this study,
magenta version 1.3.0 was
used (Watson, Verity, and
FitzJohn 2021)

Code is open source at
https://github.com/bonilab/mal
ariaibm-MMC-WP2-partnerdru
gresistance (version 3.2)

Code is open source at
https://github.com/ATOME-MO
RU/malaria-model-v1.0-20.3.1
9.

Seasonality Yes; not used in present
analyses but implemented
through changing mosquito
abundance.

Yes; not used in present
analyses.

Yes; not used in present
analyses.

Heterogeneity in
exposure

Yes Yes Yes

Blood-stage
parasite
densities
modelled

Not explicitly. Parasite
densities are approximated
by tracking a parasite in
terms of the infection status
that the parasite causes in
the absence of
superinfection
(symptomatic,
asymptomatic, sub-patent).
These states are then used
to calculate the relative
probability of different
strains being passed on
when a human infects a
mosquito. See (Watson et
al. 2021) for further detail.

Yes No

Parameterization
for clinical
incidence

Fitted to cross-sectional
age-incidence data from 23
sites in Africa capturing
differences between active
and passive case detection
(Griffin, Ferguson, and
Ghani 2014).

Calibrated to data sets
assembled for five different
African studies measuring
age-specific clinical incidence
and EIR.  No formal model
fitting done.

We parameterised the age
dependent risk of infection
during the first 10 years of life
using data from 8 endemic
countries in sub-Saharan
Africa (Aguas et al., 2008).
Given the age-dependent
force of infection function, we
fit the model-predicted
age-dependent clinical
disease incidence against two
separate data sets from SE
Asia (one with age, one
without). Details in ((Gao et al.
2020).
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Parameterization
for severe
disease and
mortality
incidence

Severe disease model
(Griffin et al. 2015) fitted to
data from northern
Tanzania (Reyburn et al.
2005) and to severe
disease vs. prevalence
relationship from data of
multiple sites (Marsh and
Snow 1999). Mortality due
to malaria is based on
Africa-wide data from verbal
autopsy and parasite
prevalence (Rowe et al.
2006).

Mortality only. No tracking of
severe malaria.  Treatment
failures and untreated cases
are associated with 4%
mortality (age groups 0-1), 2%
mortality (age groups 2-5),
0.4% mortality (age groups
6-10), and 0.1% mortality (age
groups 11 and older); see
section 6 of supplement to
(Nguyen et al. 2015). Mortality
is zero for successfully treated
malaria cases.

Of those clinical infections, we
estimate the proportion that
results in severe disease and
hospitalisation (by age) from
data in (Marsh and Snow
1999). The (Marsh and Snow
1999) dataset also informs the
mortality rates per hospitalised
case per age group. Maximum
mortality rates  in hospitalised
children was 5% (<2 year
olds). Older children had a
greater treatment success rate
with mortality rates of less
than 0.5%.

Drug
interventions –
PK- PD Drug
action etc

Slow clearance, treatment
failure incorporated. PKPD
not explicitly incorporated in
the transmission model.
PKPD are modelled
separately and their outputs
incorporated as parameters
that determine the
probability of slow parasite
clearance or late
parasitological failure as
defined in (Slater et al.
2016).

Single compartment PK model
used, with daily parasite
killing, as a function of drug
concentrations and parasite
genotypes, for PD model.

Includes slow clearance,
treatment failure, appearance
and spread of resistance.
Parasite clearance modelled
using PD data from parasite
clearance studies, with daily
parasite killing, as a function
of initial drug concentration,
drug IC50 and parasite
genotype.

Genotype
tracking and
sensitivity to
drugs

Yes, four key resistance loci
and two copy number
variants tracked.  64 total
genotypes.

Yes, four key resistance loci
and two copy number variants
tracked.  64 total genotypes.

Yes, four key resistance loci
and two copy number variants
tracked.  64 total genotypes.

Vector control
Interventions

LLIN, IRS, Larval control
(larviciding & pupaciding),
and ivermectin.

Indirect vector control only, via
transmission parameter that
determines the daily amount
of biting.

Yes – LLIN, IRS, Larval
Control

Treatment
interventions

Treatment of clinical
disease and severe
disease, by specified drug
and diagnostic.
Mass screen and treat, IPTi,
IPTc/SMC and IPTp/IST for
separate pregnancy model

Yes, many types of drug
policies such as multiple
first-line therapies, cycling,
adaptive cycling, triple
therapy, mass drug
administration, and
private-market drug sales.

Yes treatment of clinical
disease, MDA, MSAT,
adjuctive primaquine, TME,
iPT

Treatment
seeking and drug
coverage

Explored in the sensitivity
analysis

Explored in the sensitivity
analysis

Explored in the sensitivity
analysis

Spatial dynamic
model

Present analysis run in a
single location.

Present analysis run in a
single location.

Present analysis run in a
single location.

Super-infections,
co-infections,
multiplicity of
infection

Multi-strain model that
tracks the multiplicity of
infection arising from both
superinfection and
cotransmission events, in
which a single mosquito
transmits multiple
sporozoites. Mosquitoes
pass on an assumed
geometric mean of 10
parasites during an
infectious bite, with 21%

Yes, tracked explicitly as
coinfections arising only from
superinfection events.

Yes, each human individual
can carry up to 10 different
parasite populations (one per
inoculum). Each inoculum is
considered to be a clonal
population upon emergence
from the liver, with one
parasite acquired from each
infectious bite.
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surviving to produce a liver
stage infection (21%
parameterised in (Watson
et al. 2021)).

Heterogeneity in
Exposure

Exposure varies both by
age and between
individuals.

Exposure varies both by age
(v3.0.4) and between
individuals.

Exposure varies both by age
and between individuals.

Duration of
infection

Duration of infection is
"Erlang-like" distribution
(convolution of exponential
distributions), with overall
duration calibrated to
malariatherapy data.

Not drawn from a
predetermined distribution.
The duration of infection is
determined by explicit
modelling of parasitaemia and
how drugs and the immune
system act on parasites.
Calibrated to malariatherapy
data.  Durations of infection in
the model range from 60 to
281 days.

Asymptomatic infection
duration based on
malariatherapy data and
clinical follow-up data from
endemic areas, as well as
drug efficacy data (PD). Also
estimated from a set of 8
Endemic areas from
Sub-Saharan Africa (Aguas et
al 2008).

Clinical disease
and history of
exposure

A proportion of infected
individuals go on to develop
clinical disease
(parameterised in (Griffin,
Ferguson, and Ghani
2014)). Immunity to clinical
disease develops with
exposure and age, and also
has a maternally acquired
component.

A proportion of infected
individuals go on to develop
clinical disease. Immunity to
clinical disease develops with
exposure and age, and also
has a maternally acquired
component.

Proportion developing clinical
disease depending on
cumulative immunity from
prior exposures and immunity
level (indicator of recent
exposure).

Decay of natural
immunity

Exponential decay of
naturally acquired immunity
(parameterised in (Griffin,
Ferguson, and Ghani
2014)).

Exponential decay of naturally
acquired immunity.

Exponential decay of naturally
acquired immunity as
estimated in (Aguas et al.
2008)

Infectiousness
and gametocyte
models

Human infectiousness to
mosquitos is dependent on
the infection status of the
human (clinical,
asymptomatic, sub-patent)
and if asymptomatic also
determined by their
immunity determining their
probability of being
detected by microscopy
(parameterised in (Griffin,
Ferguson, and Ghani
2014)).

Human infectiousness to
mosquitos is a function of
asexual parasite density, with
a time lag built in to model the
fact that infectious
gametocytemia lags asexual
parasitaemia..

Infectiousness depends on
lagged development of sexual
stage parasites and seasonal
transmission equation from
fitting to incidence data. It is
informed by parasite density in
an indirect way: clinical
individuals are assumed to
have a higher mean
infectiousness compared to
asymptomatic individuals as
they carry higher parasite
density loads.

Entomological
models

Vector control interventions
modelled through altering
the life expectancy of a
mosquito, altering the rate
of anthrophagy. (described
and parameterised in
(Griffin et al. 2016)).

11-day lag built in so that FOI
today depends on the biting
done by mosquitoes 11 days
ago.  No other entomological
features built in.

Full IBM component to
mosquito dynamics. For this
exercise we use a simplified
version where only infectious
mosquitoes are tracked
individually. .

Recombination
model

Multiple parasites taken up
by mosquito to form n
oocysts, which undergo
recombination to yield up to
4xn genotypes of
sporozoites in the mosquito.
No interrupted feeding by

Recombination can occur in a
mosquito bite on a multi-clonal
host.  Parasites are taken up
by the mosquito in proportion
to their parasite density. A full
recombination table is built for
all possible forces of infection
resulting from this host’s

No recombination.  No
interrupted feeding.
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single mosquito on multiple
humans.

contribution to the next
generation of infectious
sporozoites, according to the
normal rules of Mendelian
genetics. No interrupted
feeding allowed in present
analyses.

Mutation model Back mutation present.
Mutation can occur during
treatment and in the
absence of treatment. 1
rate for both calibrated
during the calibration
exercise.

No back mutation.  Mutation
can occur during treatment
only when the mutation
confers a resistance benefit to
the current treatment.

No back mutation. Mutation
can occur during treatment
(higher rate), and in the
absence of treatment (lower
rate). The higher rate was
calibrated during the
calibration exercise.

Stochasticity All model components are
stochastic and described by
defined probability
distributions in (Watson et
al. 2021). The only non
stochastic elements are the
following three delay terms
(delay from mosquito
oocyst formation to
rupturing, delay from liver
stage infection to clinical
infection, and delay from
clinical infection onset to
gametocytogenesis), which
are modelled as fixed
durations.

All model components are
stochastic and described by
defined probability
distributions defined in
(Nguyen et al. 2015) and
(Nguyen et al. 2021). The only
non stochastic elements are
the delay from mosquito
oocyst formation to rupturing,
which is modelled as a fixed
duration.

All model components are
stochastic and described by
defined probability
distributions defined in (Gao et
al. 2020).

PfPR range
models
calibrated
against.

Calibrated for prevalence
ranges >= 1%, spanning
EIR ranges from 0.5 - 200
(Griffin et al. 2010).

Immunity-symptom
relationship calibrated to data
sets where PfPR > 5%, across
an EIR range of 10 to 200
(Nguyen et al. 2015).

Calibrated based on 8 data
sets with PfPR2-10 minimum of
2% (Aguas et al. 2008).
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2 Model Specific Extensions

Imperial Model

The base model has been extensively described in (Watson et al. 2021). Briefly, it is an

individual based, discrete time, stochastic model, with individual mosquitoes explicitly modelled,

originally developed for characterising the impact of transmission intensity on neutral genetic

diversity.

In overview, the transmission model considers people to exist in one of six infection states:

susceptible (S), clinical disease (D), clinically diseased and receiving treatment (T),

asymptomatic infection (A), protective state of prophylaxis (P), and subpatent infection (U).

Individuals are born into the susceptible class and possess a level of maternal immunity that

decays exponentially over the first 6 months. The model uses a fixed day time step, with

individuals each day experiencing a force of infection that depends on their level of immunity,

individual-level biting rate, and the number of infectious mosquitoes. If an individual is bitten by

an infectious mosquito and infected, they then progress through a 12-day latent period either

developing clinical disease or an asymptomatic infection dependent on their level of acquired

immunity from previous infections. Individuals that develop clinical symptoms have a fixed

probability of seeking treatment (the treatment coverage). If the treated individual is successfully

treated, they then enter a protective state of prophylaxis, before returning to being susceptible,

with the duration of prophylaxis dependent on the half life of the antimalarial. Individuals that did

not receive treatment initially progress to an asymptomatic infection, followed by a subpatent

infection before eventually clearing infection fully and returning to susceptible. All infected

individuals that are not in the prophylactic state or the clinically diseased state are also

susceptible to superinfection.

The adult stage of mosquito development is also modelled individually, with adult mosquitoes

beginning life susceptible to infection. Mosquitoes seek a blood meal on the same day they are

born and every 3 days after that until they die. Infected mosquitoes pass through a latent

infection stage that lasts 10 days before becoming onwardly infectious to humans.
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Parasites are modelled as discrete populations that result from an infection event associated

with a mosquito or a human. There is no assumed maximum number of parasites, with

individuals assumed to clear strains on the day that they would have moved from a subpatent

infection to susceptible for the strain considered, i.e. each acquired strain follows an assumed

trajectory in parasitaemia representative of a normal infection cycle. Acquired strains thus move

“infection state” independently of the human’s infection state. For example, a given individual is

infected on day 0 and develops an asymptomatic infection. The individual is scheduled to

become a subpatent infection on day 200, but they were bitten on day 150 and developed

clinical symptoms and moved to state D. When this happens, the parasite density of the strain

acquired on day 0 does not change and this strain will become a subpatent strain on day 200.

After the parasite has moved to become a subpatent strain, the day at which the strain would

have been cleared, i.e. the individual would have moved from state U to S if they had not been

superinfected on day 150, is drawn and assigned to the parasite. This tracking of parasites

allows for the relative parasitemias of each acquired strain to be calculated.

Each asexual parasite is represented by a genetic barcode, which is a series of 0s and 1s

related to specific genetic markers. During the human to mosquito infection, multiple asexual

parasites are sampled from the infected human, which result in the formation of multiple of

oocysts that each yield up to 4 genetically different sporozoites resulting from recombination.

During the mosquito to human infection, multiple sporozoites are onwardly transmitted. Full

details of human, mosquito and parasite model components are detailed in the supplement of

(Watson et al. 2021), which was used to model neutral genetic patterns

Below, we detail the extensions made for simulating antimalarial resistance.

Parasite genetic barcode extensions for modelling resistance

In order to model antimalarial resistance, we have adapted the parasite barcode used in Watson

et al. for the simulation of resistance (Watson et al. 2021). In the new formulation, each position

in the barcode represents either the absence (barcode position is equal to 0) or presence

(barcode position is equal to 1) of a resistance mutation associated with resistance to a

particular drug. For example, Supplementary Table 2 shows how a barcode with three loci can

be used to represent resistance to DHA-PPQ and ASMQ.

8

https://paperpile.com/c/Kv95u4/rZ4o
https://paperpile.com/c/Kv95u4/rZ4o


Supplementary Table 2. Example barcode alterations to model antimalarial resistance

Artemisinin
Resistance

Piperaquine
Resistance

Mefloquine
Resistance

Phenotype

0 0 0 Wild type parasite. Fully susceptible.

1 0 0 Resistant to artemisinin

0 1 0 Resistant to PPQ

0 0 1 Resistant to MQ

1 1 0 Resistant to DHA-PPQ

1 0 1 Resistant to ASMQ

0 1 1 Resistant to PPQ and MQ

1 1 1 Multidrug resistant to DHA-PPQ and ASMQ

Barcodes are used to track populations of parasites that are introduced from an infectious

mosquito bite. We assume loci are genetically unlinked ( genes known to confer resistance to

the five first-line ACTs recommended by the WHO each occurring on different chromosomes)

and consequently segregate independently during recombination.

Fitness Costs

Antimalarial resistance is assumed to introduce a fitness cost to resistant parasites compared to

wild type parasites. Fitness costs are associated with each resistance locus and are assumed to

be multiplicative. The fitness cost manifests as a reduction in parasite density that is assumed to

reduce the probability of the resistant parasite being passed on to a mosquito. This can be

expressed mathematically as follows. Let describe the vector of barcode loci𝑏 =  𝑏
1
, 𝑏

2
, …, 𝑏

𝑚[ ]
for a barcode of length . For example, the ASMQ resistant strain in Supplementary Table 2 is𝑚

represented by the vector If is the resistance cost associated with barcode locus ,1,  0,  1[ ]. ν
𝑗

𝑗

then the comparative fitness cost due to resistance, , for the given parasite is simply:𝑟

𝑟 =
𝑖=𝑗

𝑚

∏(1 − 𝑏
𝑗
𝑣

𝑗
)

Consequently, in this study the wild type allele at each locus is assumed to confer no fitness

costs, with equal to 1 if locus is wild-type, and thus for the wild type parasite(1 − 𝑏
𝑗
𝑣

𝑗
) 𝑗 𝑟 = 1
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in Supplementary Table 2. In this analysis, each resistance locus is assumed to have a fitness

cost equal to 0.0005, i.e. . As a result, the relative fitness of a genotype with𝑣
𝑖...𝑚

= 0. 0005 𝑘

resistance mutations, in the absence of any drugs present in the blood, is (1 −  0. 005)𝑘.

The number of oocysts generated from each mosquito bite on an infectious human is drawn

from a zero-truncated negative binomial distribution with mean = 2.5 and shape = 1. The

selection of which parasite strains from the infected individual contributed to the oocysts is given

by the relative probability that a given strain will be chosen in an individual with 𝑛

gametocytogenic parasite strains, and is given by:

𝑐𝑟 = 𝑐
1
𝑟

1
,  𝑐

2
𝑟

2
, …𝑐

𝑛
𝑟

𝑛[ ]
is the fitness cost associated with parasite strain and is the contribution of parasite to𝑟

𝑖
𝑖 𝑐

𝑖
𝑖

onward infection, which will be either or depending on the infection status of strain𝑐
𝑇
,  𝑐

𝐷
,  𝑐

𝐴
𝑐

𝑈
𝑖

denoted here as . As in the original model, and are constants, and is dependent𝑋
𝑖

𝑐
𝑇
,  𝑐

𝐷
𝑐

𝑈
 𝑐

𝐴

on an individual’s immunity. The probability that an infected individual infects a mosquito is still

determined by the set of parameters determining the onward contribution to transmission,

, which are based on the infection status and immunity of the individual, denoted𝑐
𝑇
,  𝑐

𝐷
,  𝑐

𝐴
, 𝑐

𝑈{ }
here as . However, if the strains responsible for the human’s current infection state, i.e. all𝑌

strains that match the human’s infection state, are resistant then the probability of onward

transmission is determined by the highest onward contribution of these strains, which is given

by:

𝑚𝑎𝑥 𝑐𝑟
𝑖
 : 𝑋

𝑖
= 𝑌{ }

In this way, fitness costs both affect the relative probability that a resistant strain is transmitted

compared to a wild type strain in a mixed infection, while also reducing the probability that

transmission occurs in individuals where the highest parasite density strain is resistant.

Clinical and Treatment Outcomes

With the addition of resistance, the treatment efficacy now varies and is determined both by the

genotype of the parasite strains, the parasite density of each strain and the drug used to treat
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the infection. The probability that any given strain is cleared by drug can be expressed as𝑧

, where is an adapted conversion of binary to decimal integers and is given by:𝑒𝑧
β 𝑏( )

β(𝑏)

β 𝑏( ) =
𝑗=1

𝑚

∑ 𝑏
𝑗
. 2𝑗−1( ) − 1 

Using the same representation of a parasite genotype as in Supplementary Table 2 the efficacy

of drug can be expressed by the vector for simulations in which the𝑧 𝑒𝑧 =  𝑒𝑧
1
, 𝑒𝑧

2
, …,  𝑒𝑧

2𝑚⎡⎣ ⎤⎦
number of loci being modelled is equal to . represents the efficacy of the drug against the𝑚 𝑒𝑧

1

wild type parasite, i.e. the barcode vector represented by a vector of length filled with zeros.𝑏 𝑚

Importantly, reflects the probability that the drug will clear a parasite that has led to a𝑒𝑧

symptomatic infection, i.e. the parasite strain is at a sufficiently high parasite density to trigger

symptoms and seek treatment. This is equivalent to the probability of successfully clearing a

symptomatic infection such that the infection does not recrudesce and lead to a 28-day

treatment failure.

In this analysis, we used the drug efficacy by genotype table parameterised in (Nguyen et al.

2021), which was used by each group to parameterise the efficacy of each drug on each

resistance genotype. 64 genotypes are included by allowing for variation at the K76T locus in

pfcrt, the N86Y and Y184F loci in pfmdr1, the C580Y locus in pfkelch13, copy-number variation

(CNV) of pfmdr1, and CNV of the plasmepsin-2,3 genes. CNV is only separated into ‘single

copy’ or ‘multiple copies’. See Section 3 - Treatment efficacy on specific genotypes for more

information about this. In the Imperial model, the efficacy of each drug determines the

probability of a 28-day parasitological failure, with the probability of late parasitological failure for

each parasite genotype modelled shown in Supplementary Table 3.

Parasites from previous infections are assumed to be at a lower parasite density than the

infecting strain that triggered the clinical infection (and hence why the individual is seeking

treatment) and will be more likely to be cleared by the drug. In the model, the infection state of

each strain, , as well as the day the strain was acquired, , and the time the strain will move𝑋
𝑖

𝑡
0

out of the infection state, , is tracked. This information is used to define the probability that𝑡
1

strain will recrudesce after treatment, , which is given by:𝑖 𝑃 𝑅𝑒𝑐𝑟𝑢𝑑𝑒𝑠𝑐𝑒( )
𝑖
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where is the current time. assumes that parasites below ~200p/µl (state U)𝑡
𝑐

𝑃 𝑅𝑒𝑐𝑟𝑢𝑑𝑒𝑠𝑐𝑒( )
𝑖

will always be cleared regardless of the parasite phenotype. also assumes that𝑃 𝑅𝑒𝑐𝑟𝑢𝑑𝑒𝑠𝑐𝑒( )
𝑖

the probability that an asymptomatic parasite above ~200p/µl (state A) will recrudesce is linearly

related to the age of the infection and is at its highest when it first enters state A.

The probability that a treated infection will be successfully cleared by drug , , is𝑧 𝑃(𝐶𝑙𝑒𝑎𝑟𝑒𝑑)

equal to one minus the highest probability of a strain recrudescing, which is given by:

𝑃 𝐶𝑙𝑒𝑎𝑟𝑒𝑑( ) =  1 − 𝑚𝑎𝑥 {𝑃 𝑅𝑒𝑐𝑟𝑢𝑑𝑒𝑠𝑐𝑒( )
𝑖
 : 0 ≤𝑖≤𝑛}

This assumes that the multiplicity of infection does not directly affect the probability that an

individual will be cleared, i.e. only one Bernoulli trial with probability is used to𝑃(𝐶𝑙𝑒𝑎𝑟𝑒𝑑)

determine if all parasite strains were cleared.

If an individual fails treatment, it is assumed that they will recrudesce to yield a late

parasitological failure (LPF) and move into state A after the prophylactic period of the drug has

finished. Whether each parasite strain in a multiply infected individual recrudesces during a LPF

is dependent on . Bernoulli trials are conducted for each parasite strain except𝑃 𝑅𝑒𝑐𝑟𝑢𝑑𝑒𝑠𝑐𝑒( )
𝑖

for one random strain for which , which ensures that one of the𝑃 𝑅𝑒𝑐𝑟𝑢𝑑𝑒𝑠𝑐𝑒( )
𝑖

= 𝑃(𝐶𝑙𝑒𝑎𝑟𝑒𝑑)

most likely strains to recrudesce did actually recrudesce and cause a LPF.

If an individual successfully clears all parasites, they will either move directly into a state P or

they will remain in the treated compartment for a longer duration resulting from slow parasite

clearance (SPC). SPC is assumed to always occur if any of the pre-treatment strains that

contributed to the clinical disease were resistant to any component of the drug. The duration of

SPC was set equal to 10 days based on previous modelling studies estimating parasite

clearance rates associated with SPC (Slater et al. 2016). During SPC it is assumed that all
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parasite strains not resistant to the drug given have cleared and will thus not contribute to

onward infection during SPC.

Lastly, individuals in state P can be reinfected before returning to state S, depending on the

genotype of the infecting strain, how recently they were treated and the ACT used, reflecting the

different half-lives of available partner drugs. For all drugs the probability of reinfection in state P

increases as the partner drug wanes. As described in (Bretscher et al. 2019), we use the

gamma distribution, , where and are the shape and rate parameter respectively ofΓ(α
𝑖
,  β

𝑖
) α

𝑖
β

𝑖

the Gamma distribution, for drug , to describe the probability of reinfection in individuals treated𝑖

with AL and ASAQ. We use and for the shape parameters for AL andα
𝐴𝐿

= 93. 5 α
𝐴𝑆𝐴𝑄

=  16. 8

ASAQ. These values represent the mean posterior estimate for the shape parameter in

(Bretscher et al. 2019), which were estimates across a number of trial sites in Africa. We use

and for the rate parameters, which yield mean durations of protectionβ
𝐴𝐿

= 5. 22 β
𝐴𝑆𝐴𝑄

=  0. 94

equal to 17.9 days and 17.8 days respectively. These durations are longer than the posterior

mean duration of protection estimated in (Bretscher et al. 2019) and more closely reflect study

sites in (Bretscher et al. 2019) with the longest times to reinfection for AL and ASAQ. This was

chosen because the mean duration was estimated across study sites with known resistance

markers and subsequently we chose to match to relationships in sites that were assumed to

have the least amount of partner drug resistance for each drug. For DHA-PPQ, we assume the

probability of reinfection is described by a Weibull survival curve, with scale and shape equal to

28.1 and 4.4 respectively, as estimated in (Okell et al. 2014) , with a mean duration of protection

equal to 25 days. The described periods of prophylaxis are used to define the per-day

probability of an individual being reinfected if the parasites introduced during an infectious bite

are not resistant to the partner drug. However, if any of the introduced parasites are resistant to

the partner drug, we assume a shorter period of prophylaxis. For AL and ASAQ, we use

and , resulting in mean durations of protection equal to 8.7 days andβ
𝐴𝐿

= 10. 75 β
𝐴𝑆𝐴𝑄

=  1. 45

11.6 days respectively. These shorter durations were chosen to match to prophylactic profiles in

sites in (Bretscher et al. 2019) with the shortest durations of protection due to the presence of

partner drug resistance. For DHA-PPQ, we used a larger scale parameter of 59 for the Weibull

survival curve, approximately halving the mean duration of protection to 12.4 days.
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In order to simulate individual level variation in drug clearance and prophylaxis we first fit a Hill

function to relate the assumed exponential clearance of the partner drug to the described period

of prophylaxis for each drug on both wild type and resistant parasites. For each drug, we

assume the mean drug lifetime is equal to * mean duration of prophylaxis of each drug𝑙𝑛(2)

against wild-type parasites (17.9, 17.8 and 25 days for AL, ASAQ and DHA-PPQ respectively

from earlier prophylaxis fitting). When an individual moves from being treated to being in a state

of prophylaxis, we draw the time at which they will become fully susceptible again from an

exponential distribution with mean equal to the mean duration of prophylaxis for each drug.

During this prophylactic period, we assume the individual’s drug concentration decays

exponentially such that they have fully eliminated the partner drug when returning to state S,

with their drug concentration on each day used to calculate the probability of early reinfection

using the earlier fitted Hill functions.
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MORU Model

The base model has been extensively described in (Gao et al. 2020). Briefly, it is an individual

based, discrete time, spatially explicit, stochastic model, with mosquito population dynamics as

well as human population movement. The spatial features have been turned off for the purposes

of the analyses presented here.

Population

As mentioned in the original model publication, since the vast majority of bites (at least for the

vector species considered here) occur overnight, we are solely concerned with night time

mosquito biting patterns and human behaviour. In general we would consider that daily

population flows between villages are best characterised by a modified gravity model, but given

that the models presented here were calibrated for different geographical settings and have

different spatial resolutions and inherent human and mosquito mobility formulations, we chose

to remove the human movement component of our model. Thus, to ensure that potential

discrepancies between model predictions presented here are not driven by the significant

differences in the mobility and spatial resolution components of the models, we assumed a

closed population of 100,000 individuals, which in our framework is equivalent to discriminating

a single village containing all humans and mosquitoes as described below.

Transmission

Transmission within a village follows a quasi-homogeneous process whereby each mosquito is

equally likely to bite any individual. Given that people can move freely within their village whilst

mosquitoes are actively seeking and biting, we can reasonably assume that all humans in a

given village can potentially be bitten by any one mosquito in that village.

Malaria transmission is spatially heterogeneous (Erhart et al. 2005; Cui et al. 2012; Gryseels et

al. 2015) as manifested by significantly different disease incidence rates within countries, but

entomological data to inform the distribution of mosquito densities at scale is lacking. Due to this

lack of mosquito abundance data and the fact that each model was calibrated for different

settings where mosquito bionomics are likely to vary, and thus to minimise potential divergence

across models, we assumed that humans and mosquitoes are enclosed in a single village of

100,000 individuals.
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Immunity and Symptoms

Each human agent is assigned two properties in relation to immunity, namely Cumulative

Number of Exposures (cml) and Immunity Level (lvl). Both properties are set to 0 for newborns.

The likelihood of clinical symptoms brought on by a single infection is given by:

𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙
𝑝𝑟𝑜𝑏

𝑛

= 𝑒𝑥𝑝(− 0. 15(𝑚𝑜𝑖
𝑛

− 1))  
0.1𝑒𝑥𝑝(−0.1𝑐𝑚𝑙

𝑛
−1) +𝑒𝑥𝑝(−0.9𝑐𝑚𝑙

𝑛
)

𝑙𝑣𝑙
𝑛

0.5

where moi, cml and lvl denote the multiplicity of infection, cumulative exposure to malaria, and

immunity level properties of the human agent, respectively. Although we only increase the

immunity level if individuals resolve their infection (presumably due to increased antibody killing

activity), the cumulative exposure is updated with each infectious bite received. Thus,

individuals can accrue some immunity with superinfections. One level of clinical immunity is

gained by a human agent every time his infection list is emptied. Immunity loss starts 40 days

after one level of immunity is gained. Immunity is lost at a rate of 60 days-1. Therefore, each

human agent at immune level one is clinically immune for an average of 100 days. A loss in

immunity prompts a reduction in immunity level and not the immune status per se.

Non-clinical (asymptomatic) untreated infections are assumed to last an average of 160 days,

following data from the malaria therapy experiments (Collins and Jeffery 1999).

Interventions

The base model includes a range of possible malaria control interventions, from Insecticide

Treated Nets (ITNs/LLINs) to more extreme and logistically complex ones like Targeted Malaria

Elimination (TME). For this model comparison exercise, we decided to remove all control

interventions except baseline clinical malaria management. This is the foundation of any malaria

control program as it can be parameterised to reflect the percentage of clinical infections that

receive appropriate treatment (antimalarial drugs). The choice of drugs dispensed is made

explicit in each of the presented results.
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Genotype to phenotype map

In our base model, each infection is treated as an individual entity with its own life cycle within

the blood system of a human agent, and its drug-resistance profile is a product of the genetic

information in the six alleles conferring resistance to the drugs considered here.

Genotype-specific drug efficacies are described in Section 3 - Treatment efficacy on specific

genotypes.

Within host dynamics

PK/PD

We use a simple 1-compartment pharmacokinetic (PK) model that assumes drug concentration

drops below a predefined minimum inhibitory concentration (MIC) following an exponentially

distributed rate. The MIC defines the point in time after treatment at which the drugs

administered are no longer able to counteract parasite growth, i.e. the day after which the

infection can only be cleared by immunity. Our PK compartment does not reflect drug

concentration, but rather a drug action status defining the potential parasite clearance by drug

action. If the drug action status is ON, i.e. drug concentration is above the MIC, drug killing

effects for each drug considered are implemented as a daily probability of clearance that results

in the expected treatment failure rate at day 28 for each combination of drug given and parasite

genotype. We assumed the mean times to reach MIC are 25 days for amodiaquine, 14 days for

lumefantrine, and 30 days for piperaquine. Artemisinin-derivatives are assumed to only be

present at the day of dosing.

Parasite killing rates depend on the person’s transmission status (s), with parasite clearance in

not yet infectious people generally slower than that in individuals carrying gametocytes.

Clearance of parasites with drug resistance phenotype h by drug d then follows:

𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒
𝑠ℎ𝑑

∼ 𝐵(𝑁
𝑠ℎ𝑑

, 𝑐
𝑠ℎ𝑑

) 

where cshd is an element of a 3-dimensional matrix C of size |S|*|H|*|D| and B denotes a

binomial distribution. determines the number of parasite sub-populations affected by cshd,𝑁
𝑠ℎ𝑑
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thus a human host is only declared cleared from infection once every parasite sub-population

has been cleared from their bloodstream. The parameter values in cshd have been calibrated to

produce the expected treatment failure rates in Section 3, as per the common genotype-specific

drug efficacies table, given the drug PK described above.

Mutation

Per parasite subpopulation, we consider a daily probability of mutation at any of the alleles

conferring resistance to either artemisinin or the partner drugs. These mutations are considered

independent events meaning they may happen on separate days or on the same day, and there

is no precedence between the two events. A base mutation rate of 10-9 is used in the absence of

drug pressure. That rate is five orders of magnitude higher when drugs are present in the blood

system (Pongtavornpinyo et al. 2009). Note that the “mutation rate” here (as in all models that

do not have explicit classes for within-host parasite dynamics) refers to both the probability of

mutation and the probability of within-host fixation of the new mutant. Probability of within-host

fixation is higher under drug pressure than in the absence of drug pressure.

Clone selection

Our base model allows for co-infection with a large number of clones (defined as parasite

populations originating from different inocula, regardless of genotype). In the version used here,

we simplify within-host dynamics by imposing a set of rules to determine the likelihood of fixation

of different parasite clones under different drug pressure contexts. Given the assumed

differences in parasite fitness according to genotype, we determine that: i) in the presence of

combination therapy, double resistant parasites are likely to fix if present, followed by single

resistant genotypes. Thus, if the parasite population is a mix of single mutants and wild-type

parasites, the single mutant parasites will eventually outcompete the wild-type parasites under

drug pressure, will form the bulk of mature gametocytes, and subsequently be transmitted to

mosquitoes upon a bite. If there is a mix of double mutants with any other genotype

subpopulation, the double mutant population will fix. ii) when there are no drugs in the

bloodstream, a random draw decides which parasite subpopulation will be transmitted to the

mosquito. This effect tries to account for infections where the drug-resistance allele emerges at
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different infection time points, infections where drugs were given at subtherapeutic levels, and

infections with a greater multiplicity of infection, and is re-evaluated over the course of the

infection, upon a new mosquito bite. Importantly, transmissibility of different clones to

mosquitoes is obviously dependent on relative parasite frequencies of different clones, which

are a direct result of the dynamic processes described above. Using an expanded version of an

in-house within-host P. falciparum model (Saralamba et al. 2011), we determined that there is a

critical time window for the fixation of resistant parasite populations (Supplementary Figure 14)

Independently of when the resistance clones emerge (middle panel), fixation seems to always

occur at day 5-7 (right-side panel) post drug treatment. This finding allowed us to set a six-day

lag for the higher mutation rate to be applied. This means that for the first six days after

treatment is initiated, the base mutation rate is used; if after six days there is still drug present in

the blood, the higher mutation rate is applied. Once there is no drug left in the blood, the

mutation rate reverts to the base rate if the infection has not yet been cleared. We thus are able

to reproduce the complex within host dynamics generated by far more complex models by

modulating the use of the mutation rates and asserting fixed allelic dominance functions that

determine which parasite clones will fix under different drug pressure scenarios. We do not

model back mutation events.
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PSU Model

Model characteristics are described in detail in (Nguyen et al. 2015, 2021), and summarized

below with changes noted.

Population

A population of 100,000 individuals is modelled. Individuals can be uninfected, or infected with

one or more clones of Plasmodium falciparum; each clone is its own genotype. In

low-transmission regions, the vast majority of infections are single-clonal, while in

high-transmission regions mult-clonal infections are common. The model’s distribution of clones

per person is calibrated to data in (Owusu-Agyei et al. 2002) from a high-transmission region of

northern Ghana. Mosquito bites occur on individual hosts in the model determined by each

person’s ‘biting attractiveness’ parameter. Biting attractiveness is assigned at birth in the model,

and is drawn from a gamma distribution with a coefficient of variation of 2.0 (Smith et al. 2005).

An extrinsic incubation period of 11 days is modelled, and new infections are generated every

day in the model based on genotypes that were sampled by mosquitoes 11 days ago. Genotype

distributions drawn 11 days ago are adjusted to account for recombination occurring in hosts

with multi-clonal infections, with a standard recombination table. In other words, a 64 x 64 x 64

table is maintained showing the probability that genotype A recombining with genotype B would

form genotype C. The within-host frequencies of genotypes A and B give the probability of

sampling both genotype A and B, and the value in the table gives the probability that the

offspring is genotype C. A final genotype distribution -- based on the frequencies of currently

circulating genotypes, and the probabilities that their offspring after recombination are “genotype

C” -- is used to determine onward infection to new hosts.

Parasitaemia and Immunity

Each clone in each host has its own blood-stage parasite density variable which influences

transmission probability to mosquitoes, according to (Ross, Killeen, and Smith 2006).

Gametocyte density is assumed to be proportional to asexual density, and gametocyte

dynamics are not modeled separately; however a ‘delayed version’ of the asexual-density

variable is used to determine onward transmission as rises and falls in gametocyte densities
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mostly follow those in asexual densities. Parasitaemia in hosts goes up after an infectious bite

that results in symptoms, with peak parasite density at the point of fever/presentation drawn

randomly to be between 2000 parasite/μl and 200,000 parasite/μl (uniform distribution on

log10-scale, between 3.3 and 5.3). An infectious bite that does not result in symptoms will start

with a mean parasitaemia given by , where x is drawn from a normal distribution with mean 310𝑥

and standard deviation 0.5. This gives a mean starting parasitaemia level of 1000/μl with 95% of

draws giving a parasite density between 100/μl and 10,000/μl for asymptomatic individuals.

Duration of Infection

Asymptomatic infections are cleared according to a host’s immune level M, which is simply a

relative indicator between 0.0 and 1.0 of minimum and maximum clearance rates by the

immune system.  Daily clearance rates by the immune system occur at the rate:

and are calibrated (as explained in supplement section 1 of (Nguyen et al. 2015)) to several

other well-known data sets and approaches ((Filipe et al. 2007; Molineaux and Gramiccia 1980;

Maire et al. 2006; Eyles and Young 1951)). Infections are a minimum of 60 days long and a

maximum of 281 days long.

Symptomatic Infection

Upon an infectious bite, a host will progress to a case of symptomatic febrile malaria with

probability

𝑃
𝑐𝑙𝑖𝑛

 =  0.99

1 + ( 𝑀 / 0.4 )4

and with probability 1 - Pclin the parasites from the new bite will expand to a parasite density

between 100/μl and 10,000/μl and establish as an asymptomatic infection. M in the above

equation refers to the host’s current level of immunity. This calibration was done to several

clinical-incidence-by-age data sets from Africa (section 11 of supplement, (Nguyen et al. 2015))
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PK/PD

A 1-compartment pharmacokinetic (PK) model is used with basic exponential decay modelling

drug clearance. Half-lives used are 9 days for amodiaquine, 4.5 days for lumefantrine, and 28

days for piperaquine. Half-lives for artemisinin derivatives are not modelled as they are very

short-lived and the simulation has a one-day time-step. Artemisinin-derivatives are simply

“present” in the blood on the day of dosing, absent the day after dosing (if no other dose is

taken), and are modelled to have a daily pmax = 0.999 on drug-sensitive parasites, which

translates to a daily killing rate of p=0.9982 for an average drug concentration (C=1.0). Daily

dose for patients is allowed to vary between patients and between dosing days. The day-1

artemisinin concentration C for a patient is drawn from a Normal(1.0, σ=0.4) and subsequent

dosing days (i.e. days 2 and 3) can have C adjusted up or down (relative to day 1) by a draw

from Uniform(-0.2,0.2). When C=0.9, p=0.9886. When C=0.8, p=0.8331. These numbers were

calibrated in Nguyen et al (2021) to obtain a 3-day artesunate monotherapy efficacy of 68.9%.

Fitness costs

All single-resistant parasites are assumed to have a daily fitness cost c1 = 0.0005, which

translates to an annual fitness cost of 0.167, i.e. a relative fitness of 0.833. Each resistance

mutation (i.e. non-wild-type) adds an additional and equal fitness cost, and fitness costs are

multiplicative and independent. In other words, the relative fitness of a genotype with k

resistance mutations, in the absence of any drugs present in the blood, is (1 - c1)k.
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3 Treatment efficacy on specific genotypes

All three models (PSU, MORU, Imperial) use the same locus-based drug-resistance model and

genotype-specific drug efficacies. 64 genotypes are included by allowing for variation at the

K76T locus in pfcrt, the N86Y and Y184F loci in pfmdr1, the C580Y locus in pfkelch13,

copy-number variation (CNV) of pfmdr1, and CNV of the plasmepsin-2,3 genes. CNV is only

separated into ‘single copy’ or ‘multiple copies’. With 4 drugs used in the simulation --

artemisinin derivatives, lumefantrine, amodiaquine, piperaquine -- a total 64 x 4 = 256

drug-genotype interactions need to be modelled as an individual can be infected with any

genotype and treated with any combination therapy. The monotherapy parameters need to be

input into the simulation as well in case an individual is bitten and infected during a time window

when only one residual drug is present in the blood. Each of the 256 drug-genotype

combinations is parameterized by a pmax value (maximum killing rate) and an EC50 value

(concentration at which killing power is reduced by half). These values are calibrated in a

single-compartment PK/PD model to obtain efficacies that match the clinical trial literature, with

some inference and imputation on what genotypes would have been circulating at the time each

clinical trial was run. In the table below, a total of 64 x 3 = 192 efficacies are presented for three

ACTs and 64 genotypes. See Supplementary Appendix 2 in (Nguyen et al. 2021) for full details

as well as 28-day on calculation of treatment efficacies of each ACT modelled against each

genotype in Supplementary Table 3.

In Supplementary Table 3 (below), the 6-character genotype code (e.g. KNY1C1) is, from left to

right: K76T, N86Y, Y184F, CNV of pfmdr1, C580Y, CNV of plasmepsin-2,3 genes. To highlight

the contribution of specific alleles towards treatment efficacies, we constructed a random forest

model (Breiman 2001) using all the data in the drug by genotype table (i.e. no test/train split or

cross validation as we were focussed on a maximally predictive model for our dataset only) to

predict treatment efficacy based on the presence/absence of specific alleles. The importance of

each allele in the random forest based on the mean decrease in the Gini index is shown in

Supplementary Figure 15 with the predictions of the random forest. The overall performance of

the random forest models is summarised using the mean absolute error, root mean squared

error and the correlation (R2), also shown in Supplementary Figure 15.
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Supplementary Table 3: ACT 28-day probability of parasite clearance

Genotype DHAPPQ ASAQ AL

KNY1C1 0.972486 0.962073 0.915158
TNY1C1 0.972486 0.947158 0.929358
KYY1C1 0.972486 0.905281 0.953453
TYY1C1 0.972486 0.891124 0.964582
KNF1C1 0.972486 0.976982 0.889945
TNF1C1 0.972486 0.958879 0.908054
KYF1C1 0.972486 0.930465 0.915158
TYF1C1 0.972486 0.917383 0.929358
KNY2C1 0.972486 0.962073 0.858645
TNY2C1 0.972486 0.947158 0.869483
KYY2C1 0.972486 0.905281 0.896817
TYY2C1 0.972486 0.891124 0.915158
KNF2C1 0.972486 0.976982 0.830015
TNF2C1 0.972486 0.958879 0.844322
KYF2C1 0.972486 0.930465 0.858645
TYF2C1 0.972486 0.917383 0.869483
KNY1Y1 0.928664 0.895737 0.795336
TNY1Y1 0.928664 0.864359 0.828863
KYY1Y1 0.928664 0.771709 0.877727
TYY1Y1 0.928664 0.735268 0.907645
KNF1Y1 0.928664 0.948359 0.723351
TNF1Y1 0.928664 0.892625 0.753201
KYF1Y1 0.928664 0.824725 0.795336
TYF1Y1 0.928664 0.794297 0.828863
KNY2Y1 0.928664 0.895737 0.646288
TNY2Y1 0.928664 0.864359 0.684442
KYY2Y1 0.928664 0.771709 0.75155
TYY2Y1 0.928664 0.735268 0.795336
KNF2Y1 0.928664 0.948359 0.570356
TNF2Y1 0.928664 0.892625 0.604481
KYF2Y1 0.928664 0.824725 0.646288
TYF2Y1 0.928664 0.794297 0.684442
KNY1C2 0.768484 0.962073 0.915158
TNY1C2 0.768484 0.947158 0.929358
KYY1C2 0.768484 0.905281 0.953453
TYY1C2 0.768484 0.891124 0.964582
KNF1C2 0.768484 0.976982 0.889945
TNF1C2 0.768484 0.958879 0.908054
KYF1C2 0.768484 0.930465 0.915158
TYF1C2 0.768484 0.917383 0.929358
KNY2C2 0.768484 0.962073 0.858645
TNY2C2 0.768484 0.947158 0.869483
KYY2C2 0.768484 0.905281 0.896817
TYY2C2 0.768484 0.891124 0.915158
KNF2C2 0.768484 0.976982 0.830015
TNF2C2 0.768484 0.958879 0.844322
KYF2C2 0.768484 0.930465 0.858645
TYF2C2 0.768484 0.917383 0.869483
KNY1Y2 0.414973 0.895737 0.795336
TNY1Y2 0.414973 0.864359 0.828863
KYY1Y2 0.414973 0.771709 0.877727
TYY1Y2 0.414973 0.735268 0.907645
KNF1Y2 0.414973 0.948359 0.723351
TNF1Y2 0.414973 0.892625 0.753201
KYF1Y2 0.414973 0.824725 0.795336
TYF1Y2 0.414973 0.794297 0.828863
KNY2Y2 0.414973 0.895737 0.646288
TNY2Y2 0.414973 0.864359 0.684442
KYY2Y2 0.414973 0.771709 0.75155
TYY2Y2 0.414973 0.735268 0.795336
KNF2Y2 0.414973 0.948359 0.570356
TNF2Y2 0.414973 0.892625 0.604481
KYF2Y2 0.414973 0.824725 0.646288
TYF2Y2 0.414973 0.794297 0.684442
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4 Sensitivity Analyses and  Outcome Measures

The main analysis consisted of simulating 100 realisations of 100,000 individuals living in a

particular transmission setting (PfPR=1%, 5%, 10%, 20%), with varying access to antimalarial

drugs if febrile (coverage=20%, 40%, 60%). One primary ACT was used as first-line therapy

(DHA-PPQ, ASAQ, AL) and five different allele frequencies of pre-existing partner drug

resistance (0.0, 0.01, 0.10, 0.25, 0.50) at time = 0 were explored, resulting in 18,000 simulations

by each model. For each scenario, models are run until a steady-state prevalence is achieved

prior to evaluating resistance evolution over a 40-year period. For our sensitivity analyses, we

chose one transmission setting (PfPR = 20%) and one treatment coverage level (40%) and

conducted 50 realisations of 100,000 individuals, with each sensitivity analysis scanning across

seven parameter values (yielding 10,500 simulations per sensitivity analysis by each model) to

characterise the impact of the following drivers of resistance.

4.1 Resistant genotypes’ fitness costs

The default daily fitness cost of resistance, , was assumed to be equal to 0.0005. The fitness of𝑐

the wild-type parasite KNY1C1 is defined as , and the fitness of a resistant strain is defined1. 0

as . In the sensitivity analysis, we explored increasing and decreasing by 10%, 20%1. 0 −  𝑐 𝑐

and 30%. If a model has multiple fitness costs (for example affecting within-host parasite

densities and/or onward probability of transmission) all fitness costs will be increased or

reduced by the same amount.

4.2 Genotype-specific drug efficacies

To explore the impact of drug efficacies, we altered our assumptions about the default efficacy

of each ACT on each parasite genotype. We explored increasing and decreasing the efficacy of

each drug by 15%, 10% and 5%. In the PSU model, this was modelled by varying the EC50

values by 5%, 10%, and 15%, generating 6 new drug efficacy by genotype tables. These tables

were used directly by the Imperial model giving altered probabilities of 28-day treatment failure.

Lastly, the MORU model varied the killing rate by 5%, 10% and 15%.
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4.3 Duration of infection of asymptomatic carriage

To characterise the role of asymptomatic infections, we varied the duration of asymptomatic

infections in the third sensitivity analysis. Asymptomatic infections, resulting from both drug

treatment failure and infections that did not result in a clinical case of infection, were increased

or decreased by 10%, 20%, 30%. In the Imperial model this was included by altering the

duration of asymptomatic infections, while leaving the duration of the following sub-patent

infection the same. In the MORU model, the mean duration of an untreated malaria infection

was altered.

4.4 Probability of progressing to symptoms after an infectious bite

The rate at which new infections seek treatment will affect the selective pressure on antimalarial

resistance. To explore this, we increased or decreased the probability that an individual will

develop a clinical infection, i.e. an infection that is sufficiently severe in order to require

treatment, by 5%, 10% and 15%. These changes alter only the probability of developing

symptoms and not the probability that an individual will seek treatment, which remains fixed at

40% (treatment coverage). In all models, this change was implemented by altering both the

maximum and minimum probability of developing symptoms dependent on the individual’s

immunity.

As in the main analysis, the main reported metric is the allele frequency of 580Y (a proxy for

artemisinin resistance). Allele frequency was calculated as the weighted number of

parasite-positive individuals carrying the 580Y allele / total number of parasite-positive

individuals. The weights for each person describe the fraction of their clonal populations

carrying 580Y, e.g. an individual host with five clonal infections two of which carry 580Y would

be given a weight of 0.4.
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5 Impact of altering relationship between genotypes and drug efficacy

The analyses presented throughout have assumed the same relationship between parasite

genotype and drug treatment efficacy, i.e. we have used the same drug by genotype efficacy

table (Supplementary Table 3). The individual values in this table are sourced from (Nguyen et

al. 2021), which sourced estimates where available from previous drug efficacy studies with

known parasite genotypes. In this analysis, model based inference had to also be leveraged to

infer a number of the individual values for which no drug efficacy study was found in the

literature, which may result in a number of the values in the drug by genotype efficacy table

being off and not representing the true value. In response, we conducted a separate set of

analyses to quantify the impact of uncertainty in the relationships between the modelled drug by

genotype efficacies.

5.1 Uncertainty in estimates of drug efficacy by genotype

We generated 10 additional DxG tables by randomly drawing new EC50 values for each drug

component from a normal distribution with mean equal to the default EC50 value and standard

deviation = 0.1, i.e. 10%. The resultant 10 drug by genotype efficacy tables are shown in

Supplementary Figure 16. Each drug by efficacy table was subsequently used to conduct the

following simulations (Supplementary Figure 17), reporting as before the summary times to 0.25

580Y:

● 10% PfPR
● 40% treatment coverage
● 5 pre-existing partner drug frequencies (0, 0.01, 0.1, 025, 0.5)
● AL, ASAQ, DHAPPQ each explored
● 20 simulation repetitions per setting

5.2 Comparable drug efficacy by genotype across ACT

The simulations explored above (5.1 Uncertainty in estimates of drug efficacy by genotype)

were chosen to explore the impact of uncertainty in drug efficacies to be explored. We also

explored an alternative approach to characterise what impact the genetic landscape, i.e. the

different mutational routes for maximum resistance to form, has on selection speed. To achieve

this, we scaled the EC50 of lumefantrine and amodiaquine such that the most resistant

genotype to AL and ASAQ had comparable treatment failure to the most resistant DHA-PPQ
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genotype. In this way, the genetic relationship between different combinations of genotypes was

maintained but the overall treatment efficacy decreased. This resulted in one new drug by

genotype efficacy table (Supplementary Figure 18), which was used to explore the order in

which 580Y was selected, i.e. whether 580Y or partner drug resistance was selected first

(Supplementary Figure 19).

Lastly, this analysis also allowed us to interrogate further which model components were driving

the difference in emergence times between the models, notably the faster emergence time in

the PSU model (Figure 2). In Supplementary Figure 19, selection of partner drug resistance in

the PSU model was observed to be quicker than selection of other resistance genotypes in

other drug scenarios that had comparable treatment efficacy (e.g. the KNY0Y1 genotype in the

AL scenario). In this analysis, selection was proportional to both the treatment efficacy and the

half life of the partner drug, explaining why in the PSU model selection for PPQ resistance

occurred at a rate quicker than for 580Y in the AL scenario. This model feature is specific to the

PSU model, with the Imperial model displaying comparable selection speeds for PPQ resistance

in the DHA-PPQ scenario and for the KNY0Y1 genotype in the AL scenario.
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Supplementary Figures

Supplementary Figure 1. Stages of drug resistance development. Drug resistance development is
often typified by three phases describing the speed at which resistance increases; Emergence,
Establishment and Fixation. Prior to emergence, mutations must first arise that confer drug resistance.
Due to the rarity of these events and the low effective population size of mutant strains during emergence,
this stage may vary in its length due to stochastic effects. After mutant strains have persisted through a
number of transmission cycles, the spread of resistance occurs leading to the rapid increase in mutation
frequency during establishment, during which stochastic effects are minimised. Following establishment,
the increase in resistance mutations occurs approximately linearly at the beginning of fixation, before
slowing until they reach fixation. An example of ten stochastic repetitions from our study for one scenario
are shown with the median resistance frequency increase shown in bold. The timing of emergence
(frequency 0 - 0.01), establishment (frequency 0.01 - 0.25) and fixation (frequency 0.25 - 1.00) are shown
with two headed arrows.
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Supplementary Figure 2. Alignment exercise for 7 years till 0.01 580Y frequency. Scaled density for
model times to 0.01 frequency of 580Y as part of model alignment exercise. We aligned the three models’
de novo mutation rates forcing the models to reach 0.01 allele frequency of 580Y (i.e. early artemisinin
resistance emergence) after seven years exactly under a specified set of conditions: 100,000 individuals
in a transmission setting with all-ages PfPR=10% and 40% coverage with DHA-PPQ as a first-line
therapy.
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Supplementary Figure 3: Demonstration of equivalent emergence times for artemisinin resistance
and loci not under selection. Distribution of times till different drug resistance frequency milestones
(0.01, 0.1, 0.25 frequency) for each locus considered in a scenario in which DHA-PPQ is the first-line
therapy. All clones are the wild-type genotype at the beginning of the simulation, with the same mutation
rate (shown in rows) assumed for each locus. The two loci under selection by DHA-PPQ (pfk13-580Y and
pfpm2-CNV) are shown in gold and the other loci, which confer no fitness cost or resistance advantage in
the scenarios considered, are shown in black. An approximately equivalent time until 0.01 resistance
frequency is observed for all loci, indicating that the time to emergence (0.01) is driven largely by the
mutation rate chosen rather than the impacts of selection on arising mutations. For larger drug resistance
milestones (0.1, 0.25) the resistance phenotype associated with pfk13-580Y and pfpm2-CNV results in
shorter times till 0.1 and 0.25 frequency, indicating that these times are driven by the resistance
phenotype rather than the mutation rate chosen.
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Supplementary Figure 4: Impact of starting partner drug resistance frequency on selection
coefficients of 580Y. Median selection coefficients are shown, calculated using time taken for artemisinin
resistance to increase from a) 1% to 10% ( ) and b) 10% to 25% ( ). Line type and shape of𝑠

0.01− 0.1
𝑠

0.1− 0.25

point show the assumed treatment coverage and the colour indicates the different transmission models
used. Each column shows a different parasite prevalence and each row is a different assumed first-line
ACT. For the simplest drug resistance mechanism (DHA-PPQ) the selection coefficients are notably flatter
with respect to partner drug resistance in b) reflecting the constant rate of selection once resistance has
reached the exponential stage of growth and is unaffected by stochastic fluctuations during the
emergence of resistance. These dynamics are less pronounced for AL and ASAQ, which display
increased selection coefficients with increasing partner drug resistance.
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Supplementary Figure 5: Comparison between model selection coefficients. The selection
coefficients are shown for each model and first-line drug, calculated using time taken for artemisinin
resistance to increase from 10% to 25% ( ). The scaled density shown reflects the overall selection𝑠

0.1− 0.25

coefficient across all scenarios considered (malaria prevalence, starting partner drug resistance and
treatment coverage), with the median selection indicated with a vertical dashed line.
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Supplementary Figure 6: Mutational Pathways towards multidrug resistance. The difference
between 580Y and partner drug resistance genotype frequencies is shown over time for scenarios with no
starting partner drug resistance, 10% PfPR and 40% treatment coverage. Positive values indicate that the
partner drug resistance emerged quickest, whereas negative values suggest that 580Y emerges faster. In
DHA-PPQ, partner drug resistance emerges before 580Y, with the trajectory of each simulation returning
to 0 towards the end of the 40 year period, indicating that 580Y is being selected on a background of PPQ
resistance. For AL, the opposite pattern emerges, with 580Y mutations being selected first. Lastly, for
ASAQ, it appears that either mutation route is likely (partner drug or artemisinin resistance first). Each plot
shows 100 simulation realisations, with the median trajectory shown in red.
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Supplementary Figure 7: Time (years) to artemisinin resistance establishment. The time for 580Y to
reach 0.25 frequency is shown for each model and first line therapy. The points shown are jittered to ease
representation of the variance in times observed for each starting partner drug resistance frequency (0,
0.01, 0.1, 0.25, 0.5). The parasite prevalence (PfPR) is shown by the colour of the points revealing
greater variance in emergence times at lower parasite prevalence. The approximate log linear relationship
is indicated by the black line. For times greater than 40 years, a survival model was used to generate the
times till 0.25 580Y.
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Supplementary Figure 8: Number or years until 580Y allele frequency to increase from 0.00 to 0.25 in
regions depending on assumed fitness cost of resistance. The box (median and interquartile range) and
whisker (95% quantile range from 50 simulation realisations) plots presented are censored boxplots, with
simulations only being run for 40 years. Values greater than 40 years contribute to the median, quartiles
and 95% ranges if calculable.
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Supplementary Figure 9: Number or years until 580Y allele frequency to increase from 0.00 to 0.25 in
regions depending on assumed drug efficacy. The box (median and interquartile range) and whisker
(95% quantile range from 50 simulation realisations) plots presented are censored boxplots, with
simulations only being run for 40 years. Values greater than 40 years contribute to the median, quartiles
and 95% ranges if calculable.
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Supplementary Figure 10: Number or years until 580Y allele frequency to increase from 0.00 to 0.25 in
regions depending on assumed infectious period. The box (median and interquartile range) and whisker
(95% quantile range from 50 simulation realisations) plots presented are censored boxplots, with
simulations only being run for 40 years. Values greater than 40 years contribute to the median, quartiles
and 95% ranges if calculable.
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Supplementary Figure 11: Number or years until 580Y allele frequency to increase from 0.00 to 0.25 in
regions depending on assumed probability of developing clinical symptoms. The box (median and
interquartile range) and whisker (95% quantile range from 50 simulation realisations) plots presented are
censored boxplots, with simulations only being run for 40 years. Values greater than 40 years contribute
to the median, quartiles and 95% ranges if calculable.
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Supplementary Figure 12: Comparison of selection speed for AL and ASAQ under reduced
cotransmission of sporozoites. The effect of reducing the frequency of cotransmission events (multiple
sporozoites being transmitted from one feeding event) on the speed of selection in the Imperial model is
shown for each drug strategy and drug resistance milestone. Reducing cotransmission increases
selection due to the reduction in interclone competition manifested by a reduction in the probability that an
emergent resistant parasite will be sampled when a polyclonally infected individual is bitten by a
mosquito.
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Supplementary Figure 13: Clonal interference differences dependent on mutation assumptions.
The proportion of each strain is shown over time for one stochastic repetition of a) the PSU model and b)
the Imperial model. The mean probability of treatment failure after 28-days for each strain is shown,
indicating the increasing treatment failure over time as wildtype parasite strains (less resistant = blue) are
replaced with resistant strains (more resistant = red). For treatment with AL and ASAQ, the increased
complexity of the fitness landscape resulting from increased loci associated with partner drug resistance
increases clonal interference between resistant strains. The assumed absence of mutations leading to
less fit clones in the PSU model results in fewer clones being generated in the ASAQ and AL scenario
reducing clonal interference in comparison to the Imperial model.
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Supplementary Figure 14. Within host dynamics following a clinical infection treatment. Here,
we depict the time dynamics of drug concentration (left), and parasite population frequencies (middle,
right) after treatment with DHA-PPQ. The middle panel shows how drug resistant clones (in this case,
resistant to both drugs) emerging at different points in time (each line is a different simulation) will
eventually outcompete wild-type parasites.
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Supplementary Figure 15: Contribution of resistance alleles to treatment failure from random
forest model. The predicted treatment failure from a random forest model for a) DHA-PPQ, b) AL and c)
ASAQ is shown for each of the 64 genotypes modelled. The model was trained using the
presence/absence of each allele to predict the treatment efficacy, with the presence of specific alleles
shown by the colour of the points. In d), e) and f) the importance of each allele towards the random
forest is shown for each ACT. The variable importance is most defined for d) DHA-PPQ, for which only
pfkelch13 and pfplasmepsion2,3 impact the resistance phenotype, whereas the contribution of each
allele is more complex for e) AL and f) ASAQ. In h) the model predictions for each drug are compared
against the observed 28-day treatment failure, with model performance metrics for each drug shown in i).
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Supplementary Figure 16: Altered Drug by Efficacy Table Estimates. To explore the impact of
uncertainty in the relationships between genotype and drug treatment efficacy, we explored ten additional
drug by efficacy tables (see “5 Impact of altering relationship between genotypes and drug efficacy”).
Each of the ten tables is shown with a different colour, with the 28-day treatment efficacy of each ACT
shown for each of the 64 genotypes detailed in Supplementary Table 3. Each table was generated by
drawing new estimates of the EC50 values for each drug component from a normal distribution with mean
equal to the default EC50 value and standard deviation = 0.1, i.e. 10%.
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Supplementary Figure 17: Impact of Altered Drug by Efficacy Table Estimates. Number of years until
580Y allele frequency increases from 0.00 to 0.25 is shown for each of the 10 additional drug by efficacy
tables explored (see “5.1 Uncertainty in estimates of drug efficacy by genotype” and Supplementary
Figure 16). Each row shows the results for each model (MORU, PSU and Imperial), each column shows
the results for a different starting partner drug resistance frequency (0, 0.01, 0.1, 0.25 and 0.5 from left to
right), with the colour of the box indicating the ACT used. In each of the 15 subplots, 30 box and whiskers
are shown representing the 3 ACTs used and the 10 different drug by genotype efficacy tables explored.
In each of the subplots, the box and whiskers are ordered by the median number of years for 580Y
frequency to increase from 0.00 to 0.25 (i.e. the ordering of each box and whisker can be different
between the subplots). The ordering of the results in this way shows that for a number of the drug by
genotype efficacy tables, we observe faster selection for AL compared to DHA-PPQ.
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Supplementary Figure 18: Drug by genotype efficacy values under a scenario of comparable drug
efficacies for each ACT. To explore the impact of the genetic landscape, we explored an additional drug
by efficacy table (see “5.2 Comparable drug efficacy by genotype across ACT”) in which the maximum
and minimum efficacy for AL and ASAQ was set equal to DHA-PPQ. For the resultant table, the 28-day
treatment efficacy of each ACT is shown for each of the 64 genotypes detailed in Supplementary Table 3.
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Supplementary Figure 19: Ordering of selection events when drug efficacy by genotype are
comparable across ACTs. Using a drug by genotype efficacy table (Supplementary Figure 18) with the
same minimum and maximum treatment efficacy across each ACT (see “5.2 Comparable drug efficacy by
genotype across ACT”), the observed frequency of genotypes is shown for the PSU and Imperial model,
in a scenario with no pre-existing partner drug resistance, 10% PfPR and 40% treatment coverage. In
each plot, 20 simulation replicates are shown, with the median shown with a thick line. Only genotypes
that reach at least a strain frequency of 0.05 in at least one simulation realisation are shown. These
analyses demonstrate that DHA-PPQ continues to select most quickly for the maximally resistant
genotype, reflecting the simpler mutational pathway for multidrug resistance to DHA-PPQ.
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Supplementary Tables

Supplementary Table 4. Time till 0.25 580Y frequency (TY0.25) under 40% treatment coverage and 0 starting
partner drug resistance. Median and interquartile range (square brackets) is shown. Censored times above 40 years
were inferred using a Weibull distribution to describe time-to-event values.

Model ACT

Years till 0.25 580Y frequency

PfPR = 1% PfPR = 5% PfPR = 10% PfPR = 20%

MORU DHA-PPQ 51.5 [36.7, 68.5] 25.6 [21.4, 32.2] 22.6 [19.4, 25.8] 23.5 [21.8, 25.3]

PSU DHA-PPQ 19.6 [16.2, 22.3] 13.9 [11.7, 16.1] 13.4 [11.8, 15.5] 12.3 [10.6, 13.5]

Imperial DHA-PPQ 36.3 [28.0, 41.9] 27.1 [24.8, 30.7] 26.0 [24.6, 28.2] 27.5 [26.4, 28.2]

MORU ASAQ 64.5 [48.8, 80.1] 41.7 [30.5, 53.3] 28.9 [23.9, 37.7] 27.8 [25.6, 32.0]

PSU ASAQ 46.7 [38.9, 54.0] 38.8 [31.0, 44.0] 38.4 [32.8, 43.2] 36.2 [32.1, 40.6]

Imperial ASAQ 46.0 [30.1, 58.6] 38.3 [33.2, 42.0] 35.2 [32.5, 39.6] 35.1 [33.3, 36.9]

MORU AL 39.8 [28.1, 49.7] 27.2 [22.4, 34.4] 24.5 [21.0, 28.2] 29.4 [26.3, 31.4]

PSU AL 29.1 [20.3, 39.3] 24.5 [21.4, 30.8] 26.4 [23.0, 30.4] 26.8 [24.2, 30.3]

Imperial AL 37.2 [26.4, 46.2] 28.0 [24.1, 31.7] 26.6 [24.9, 28.9] 26.1 [24.9, 27.3]
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Supplementary Table 5. Times till 0.25 580Y frequency (TY0.25) under 40% treatment coverage and 1% PfPR
under different starting partner drug (PD) resistance. Median years for scenarios with 0 starting partner drug
resistance (PD0) is given before showing the mean percentage difference in TY0.25 for each starting partner drug
frequency explored. Range in square brackets reflects the interquartile range across all prevalence settings considered.
Censored times above 40 years were inferred using a Weibull distribution to describe time-to-event values.

Model ACT

Years till
0.25 580Y
frequency

Percent reduction in establishment time (or artemisinin UTL) when
comparing to PD0 scenario

Years Lost
per log10 PD

increase
TY0.25 , PD0 %TY0.25, PD0.01 %TY0.25, PD0.1 %TY0.25, PD0.25 %TY0.25, PD0.5

MORU DHA-PPQ 51.5 [36.7, 68.5] 37.2% [25.6, 49.0] 67.1% [58.3, 76.1] 75.4% [67.0, 84.2] 78.9% [70.3, 87.6] 13.4

PSU DHA-PPQ 19.6 [16.2, 22.3] 5.9% [-0.8, 13.1] 27.5% [20.8, 34.3] 32.6% [25.4, 39.6] 38.0% [31.5, 44.1] 3.6

Imperial DHA-PPQ 36.3 [28.0, 41.9] 8.4% [1.3, 16.1] 30.2% [23.6, 37.0] 36.0% [28.9, 43.2] 39.9% [33.4, 45.9] 6.6

MORU ASAQ 64.5 [48.8, 80.1] 7.9% [-3.6, 18.5] 55.8% [48.0, 64.2] 69.2% [62.4, 76.9] 78.8% [71.6, 86.0] 27.3

PSU ASAQ 46.7 [38.9, 54.0] 4.7% [-3.0, 12.7] 23.5% [16.7, 31.0] 38.8% [32.3, 45.6] 34.9% [28.9, 41.8] 9.2

Imperial ASAQ 46.0 [30.1, 58.6] 6.5% [-3.6, 16.5] 8.2% [-1.3, 17.3] 15.7% [6.4, 25.6] 18.6% [9.5, 27.2] 3.3

MORU AL 39.8 [28.1, 49.7] -3.5% [-14.7, 8.8] 44.4% [35.9, 52.8] 56.8% [48.7, 64.8] 65.2% [57.6, 72.9] 16.3

PSU AL 29.1 [20.3, 39.3] -4.2% [-15.2, 6.8] 16.4% [6.8, 26.7] 19.4% [9.6, 28.8] 31.6% [22.1, 40.9] 6

Imperial AL 37.2 [26.4, 46.2] 13.0% [4.5, 21.2] 14.9% [6.7, 23.4] 18.0% [10.3, 26.2] 22.8% [14.3, 31.0] 1.9
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Supplementary Table 6. Times till 0.25 580Y frequency (TY0.25) under 40% treatment coverage and 10% PfPR
under different starting partner drug (PD) resistance. Median years for scenarios with 0 starting partner drug
resistance (PD0) is given before showing the mean percentage difference in TY0.25 for each starting partner drug
frequency explored. Range in square brackets reflects the interquartile range across all prevalence settings considered.
Censored times above 40 years were inferred using a Weibull distribution to describe time-to-event values.

Model ACT

Years till
0.25 580Y
frequency

Percent reduction in establishment time (or artemisinin UTL) when
comparing to PD0 scenario

Years Lost
per log10 PD

increase
TY0.25 , PD0 %TY0.25, PD0.01 %TY0.25, PD0.1 %TY0.25, PD0.25 %TY0.25, PD0.5

MORU DHA-PPQ 22.6 [19.4, 25.8] 15.5% [10.1, 21.0] 37.0% [32.9, 41.4] 46.5% [42.7, 50.6] 51.0% [46.4, 55.4] 4.9

PSU DHA-PPQ 13.4 [11.8, 15.5] 2.4% [-2.4, 7.1] 9.9% [5.1, 14.9] 15.7% [11.1, 20.3] 16.4% [12.1, 20.9] 1.2

Imperial DHA-PPQ 26.0 [24.6, 28.2] 7.2% [4.3, 10.3] 22.3% [19.8, 25.1] 28.2% [25.3, 30.8] 30.2% [27.5, 32.7] 3.7

MORU ASAQ 28.9 [23.9, 37.7] 12.2% [4.5, 19.6] 41.3% [35.8, 47.0] 51.0% [45.6, 56.6] 55.7% [50.1, 61.4] 8

PSU ASAQ 38.4 [32.8, 43.2] -0.4% [-4.9, 4.2] 12.7% [8.0, 17.7] 26.6% [21.8, 31.1] 32.9% [28.6, 37.4] 7.5

Imperial ASAQ 35.2 [32.5, 39.6] 2.0% [-1.3, 5.0] 5.0% [2.1, 7.9] 8.1% [4.8, 11.1] 15.5% [12.5, 18.5] 2.5

MORU AL 24.5 [21.0, 28.2] 8.5% [2.1, 13.9] 30.0% [25.0, 34.4] 39.5% [34.6, 44.0] 46.5% [41.9, 51.2] 5.7

PSU AL 26.4 [23.0, 30.4] 2.5% [-3.6, 8.4] 14.9% [8.8, 21.0] 22.6% [16.6, 29.2] 29.6% [24.0, 35.0] 4.2

Imperial AL 26.6 [24.9, 28.9] 2.8% [-0.2, 6.3] 6.9% [4.1, 9.6] 11.1% [8.3, 14.0] 16.5% [14.0, 19.2] 2
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Supplementary Table 7. Times till 0.25 580Y frequency (TY0.25) under 40% treatment coverage and 20% PfPR
under different starting partner drug (PD) resistance. Median years for scenarios with 0 starting partner drug
resistance (PD0) is given before showing the mean percentage difference in TY0.25 for each starting partner drug
frequency explored. Range in square brackets reflects the interquartile range across all prevalence settings considered.
Censored times above 40 years were inferred using a Weibull distribution to describe time-to-event values.

Model ACT

Years till
0.25 580Y
frequency

Percent reduction in establishment time (or artemisinin UTL) when
comparing to PD0 scenario

Years Lost
per log10 PD

increase
TY0.25 , PD0 %TY0.25, PD0.01 %TY0.25, PD0.1 %TY0.25, PD0.25 %TY0.25, PD0.5

MORU DHA-PPQ 23.5 [21.8, 25.3] 8.2% [5.6, 10.9] 29.7% [27.4, 32.0] 37.9% [36.0, 40.0] 44.2% [42.1, 46.3] 5

PSU DHA-PPQ 12.3 [10.6, 13.5] 1.1% [-3.2, 5.2] 6.0% [1.8, 9.9] 8.6% [4.6, 12.8] 10.7% [6.6, 14.7] 0.7

Imperial DHA-PPQ 27.5 [26.4, 28.2] 8.4% [6.8, 10.1] 21.4% [19.8, 23.0] 27.5% [26.0, 28.9] 31.4% [29.9, 32.8] 3.7

MORU ASAQ 27.8 [25.6, 32.0] 6.6% [2.2, 11.3] 28.5% [25.0, 31.8] 37.8% [34.4, 41.2] 45.2% [41.9, 48.6] 6.5

PSU ASAQ 36.2 [32.1, 40.6] 1.9% [-2.0, 6.0] 13.2% [9.0, 17.6] 20.8% [17.1, 24.8] 27.6% [24.0, 31.3] 5.3

Imperial ASAQ 35.1 [33.3, 36.9] -0.8% [-2.8, 1.4] 1.7% [-0.3, 3.7] 5.3% [3.1, 7.3] 12.2% [10.3, 14.0] 2.3

MORU AL 29.4 [26.3, 31.4] 5.5% [2.0, 9.0] 24.3% [21.5, 27.1] 34.7% [31.9, 37.3] 42.3% [39.6, 44.9] 6.2

PSU AL 26.8 [24.2, 30.3] 5.7% [0.8, 10.2] 11.4% [6.8, 16.3] 20.9% [16.1, 25.1] 23.6% [19.4, 27.9] 2.9

Imperial AL 26.1 [24.9, 27.3] 1.2% [-0.6, 3.0] 3.5% [1.4, 5.5] 8.0% [6.1, 9.7] 13.4% [11.7, 15.2] 1.7
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