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Supplementary Figure 1. Thermogenic response is reduced during LV-pressure



(A) Age of control subjects (Con) or patients with congestive heart failure (CHF) (n=15,
9). (B) Cardiac function of control subjects or CHF patients. EF; Ejection fraction (n =15,
9), LVDs; left-ventricular systolic dimension (n =15, 9). (C) Scheme showing an outline
of the experiment. TAC (thoracic aortic constriction) was performed in WT mice at 11
weeks of age. At 4 weeks after TAC, mice were subjected to analyses otherwise
mentioned. (D) Cardiac function of mice prepared as described in Figure 1C (FS:
fractional shortening; n = 4, 6, LVDs: left-ventricular systolic dimension; n = 4, 6). (E)
Body weight-adjusted heart weight of mice prepared as described in Figure 1C (n =6, 7).
(F) Thermographic measurement of body surface temperature after tail tip cold exposure
(TT-CE) in TAC model mice. (G, H) Body weight (G) (n =6, 7) and food intake (H) (n
=5, 7) of mice prepared as described in Figure 1C. (I) Hematoxylin and eosin (HE)
staining of BAT from mice as prepared in Figure 1C. Scale bar=50 pum. (J)
Immunofluorescent staining showing Hifla-positive (red) cells in BAT after TAC. The
graph on the right displays the Hifla-positive area (%) (n = 4, 4). Scale bar = 50 pm. (K)
Representative photomicrographs of TUNEL staining in BAT after TAC shown in Figure
1F. Scale bar = 50 um. Data were analysed by a two-tailed Student’s #-test (A, B, D, E,
G, H and J). *P < 0.05, **P < 0.01. Values are shown as the mean + s.e.m. NS = not
significant.
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Supplementary Figure 2. Brown adipose tissue thermogenic response is reduced
after myocardial infarction.
(A) Western blot analysis of UCPI in BAT as described in Figure 1C. TOMM?20 was
used as the loading control. The right panel shows quantification of the data (n = 4, 4).



Original blots are presented in Supplementary Figure 10. (B) Relative transcripts
assessing beige markers in inguinal WAT (iWAT) of mice 4 weeks after TAC or 1 week
after cold exposure (n=8,8,6,5 for Ucpl, Mtnd5, Ppargcla and Cidea, n=8,8,11,11 for
Cptlb and EgIn3). (C) Cardiac function of mice at 6 weeks after myocardial infarction
(MI) (FS; n=3, 4, LVDs; n =3, 4). (D-F) Body weight-adjusted heart weight (D) (n =5,
4), body weight (E) (n = 6, 6), or food intake (F) (n =7, 4) of mice. (G, I) Haematoxylin
and eosin (H&E) staining (G) or Pimonidazole staining performed by the Hypoxyprobe-
1 method (I) of BAT from mice. The right panel shows quantification of the hypoxic area
(n=15, 3). Scale bar = 50 um. (H) Acute cold tolerance test (n = 5, 3). (J) Quantification
of TUNEL-positive cells in BAT from mice (n = 3, 3). (K) Body weight-adjusted BAT
weight of mice (n =6, 6). (L) Scheme showing an outline of the experiment. Brown
adipose tissue (BAT) or white adipose tissue (WAT) was transplanted into a visceral
cavity of WT mice at 9 weeks of age, and TAC was performed at 11 weeks of age. At 2
weeks after TAC, mice were subjected to analyses. (M) Food intake of mice subjected to
WAT or BAT implantation as described in Figure 11 (n =15, 7, 7, 10). (N, O) Body weight
(N) (n = 8,9, 8 12) or body weight-adjusted heart weight (O) of mice prepared as
described in Figure 11 (n = 12, 13, 10, 16). Data were analysed by the 2-tailed Student’s
t-test (A-F, I, J and K), 2-way ANOVA followed by Tukey’s multiple comparison test
(M-0), or repeated measures followed by Tukey’s multiple comparison test (H). *P<0.05,
**P<0.01. Values are shown as the mean + s.e.m. NS = not significant.
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(A) Transcripts for mitofusin-1 (Mfnl) and mitofusin-2 (Mfn2) in BAT from mice
prepared as described in Figure 2A (n =6, 4). (B) Haematoxylin and eosin (H&E) staining
(higher magnification) of BAT from mice prepared in Figure 2A. Scale bar = 50 pm. (C,
D) Body weight-adjusted BAT weight (C; left) (=11, 10), BAT weight (C; middle)
(n=12, 10), WAT weight (C; right) (n=12, 10) and body weight (D) (n=11, 10) in
littermate control mice (Con) and BAT MfnDKO mice aged 8—10 weeks. (E) Food intake
of 12-week-old Con or MfnDKO mice (n =5, 4). (F) Cardiac function of the mice (FS:
fractional shortening; n =4, 5, LVDs: left-ventricular systolic dimension; n = 4, 5). (G)
Scheme showing an outline of the experiment. BAT was removed (BATectomy) at 10
weeks of age, and TAC was performed at 11 weeks of age. At 2 weeks after TAC, mice
were subjected to analyses otherwise mentioned. (H, I) An acute cold tolerance test (H)
(n =9, 10) and measurement of the hypothermia-free ratio in this study (I) (n = 9, 10)
were performed 1 week after BATectomy (this experiment was done before TAC). Sham
indicates sham operation for BATectomy. (J) Assessment of cardiac function in the mice
at 2 weeks after TAC (n = 10, 14). (K) Body weight-adjusted heart weight of mice (n =
6, 13). (L) Masson’s trichrome staining of hearts. The right panel shows quantification of
the fibrotic areas (n = 6, 13). Scale bar = 50 um. Data were analysed by the 2-tailed
Student’s #-test (A, C-F and J-L), repeated measures followed by Tukey’s multiple
comparison test (H), or the log-rank test for Kaplan-Meier method (I). *P < 0.05, **P <
0.01. Values are shown as the mean + s.e.m. NS = not significant.
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Supplementary Figure 4. Modulation of environmental temperature per se has little
influence on heart failure.

(A) Scheme showing an outline of the experiment. At 2 weeks after TAC, BAT MfnDKO
mice were subjected to chronic cold exposure (15°C) (Cold) or room temperature (RT)
for 1 week. (B) Cardiac function of mice prepared as described in Figure S4A (FS:
fractional shortening, LVDs: left-ventricular systolic dimension) (=9, 7). (C) Body
weight-adjusted heart weight of the mice (n =9, 7). (D) Scheme showing an outline of the
experiment. At 2 weeks after TAC, wild-type (WT) mice were subjected to chronic cold
exposure (15°C) (Cold) or room temperature (RT) for 1 week. (E) Cardiac function of
mice prepared as described in Figure S4D (n =7, 6). (F) Body weight-adjusted heart
weight of the mice (n =7, 6). (G) Norepinephrine (NE) level in BAT from WT mice at 4
weeks after Sham or TAC (n=4, 7). (H) Hypothermia-free ratio in the acute cold tolerance



test in WT mice treated with saline (PBS) or isoproterenol (ISO) (n=4, 7). (I) Cardiac
function of mice prepared as described in Fig. S4H (n=4, 5). IVSTd; interventricular
septal thickness, diastolic, FS; fractional shortening, LVDs; left-ventricular systolic
dimension. Data were analysed by the 2-tailed Student’s #-test (B, C, E-G and I) or the
log-rank test for Kaplan-Meier method (H). *P < 0.05, **P < 0.01. Values are shown as
the mean + s.e.m. NS = not significant.
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(A) Metabolomic flux analysis of differentiated brown adipocytes treated with d9-choline
(n=4, 4, 4, 4). Data for d9-choline, d9-phosphorylcholine and d9-
glycerophosphorylcholine are described in a box plot. Right panels show the summary of
d9-phosphatidylcholines (PC) and d9-lysophosphatidylcholines (LPC) showing an
increase with d9-choline. (B) Lipidomic flux analysis was performed in differentiated
brown adipocytes using d9-choline at the indicated times. Bars in the graph show
individual samples. A summary is shown in Figure S5A. Data were analysed by 2-way
ANOVA followed by Dunnett’s comparison test (A). *P<0.05, **P<0.01. Values are
shown as the mean + s.e.m. NS = not significant.
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Supplementary Figure 6. Dietary choline administration deteriorates cardiac

Fibrotic area

dysfunction after TAC.

(A) Scheme showing an outline of the experiment. At 2 weeks after TAC, WT mice were
subjected to administration of a high- (1%) or low-choline (0%) diet for 2 weeks. (B-D)
Plasma choline (B) and TMAO (C), heart TMAO (D) levels in mice (n =5, 5). (E) Cardiac
function as shown by fractional shortening (FS) and left-ventricular systolic dimension
(LVDS) (n = 8, 10). (F) Body weight-adjusted heart weight (n = 6, 10). (G) Masson’s
trichrome staining of myocardium. The right panel shows quantification of the fibrotic
area (n =6, 10). Scale bar = 50 um. Data were analysed by a 2-tailed Student’s #-test (B-
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trimethylamine N-oxide (TMAO) for 2 weeks (n = 24, 11). (B-E) Transmission electron
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microscopy of cardiac tissues from wild-type mice subjected to sham surgery or TAC
with or without TMAO introduction (B), littermate control (Con) mice or BAT Mfn DKO
mice 4 weeks after sham or TAC surgery (C), BATectomy mice subjected to TAC (D),
or systemic Fmo2 knockout mice subjected to TAC (E). The lower panels show
quantification of the disrupted mitochondria (B: n=5,5,3,3,C:n=4,4,4,5,D: n=3,
4, E: n = 3, 3). Scale bar=500 nm for low magnification and 200 nm for high
magnification. Data were analysed by the 2-tailed Student’s #-test (A, D and E) or 2-way
ANOVA followed by Tukey’s multiple comparison test (B and C). *P <0.05, **P <0.01.
Values are shown as the mean + s.e.m. NS = not significant.
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Supplementary Figure 8. COX1 protein is reduced in the heart after TMAQO
treatment.

(A) Gene ontology (GO) terms with negative (left) and positive (right) enrichment in
cardiac tissues from TMAO-treated WT mice compared to control mice. (B) Quantitative
data from proteomic analysis for COXI as analysed in Figure SE (n=1,1). Peptide 1
sequence: VFSWLATLHGGNIK, Peptide 2 sequence:
EVMSVSYASTNLEWLHGCPPPYHTFEEPTYVK. (C) Transcripts for cytochrome
oxidase 1, 2 and 3 (COX1, COX2 and COX3) (Mtcol, Mtco2 and Mtco3) in the hearts of
WT mice administered PBS (Con) or TMAO for 2 weeks (n=11,11). Data were analysed
by the 2-tailed Student’s t-test (C). NS = not significant.
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