

Supplementary Figure S1. Dietary 7-KC did not increase AAR compared to LV after myocardial IR. The AAR / LV quantified 24 hours after IR. N=8-10. The data were analyzed by one-way ANOVA, followed by Tukey's post-hoc multiple comparison test. AAR, area at risk; LV, left ventricle; ND, normal laboratory diet; WD, western diet; 7KWD, WD containing 7-KC.

Supplementary Figure S2. Dietary 7-KC did not affect BP or HR. BP and HR measured in mice fed a ND, WD or 7KWD for 3 weeks. N=12. The data were analyzed by one-way ANOVA, followed by Tukey's post-hoc multiple comparison test. BP, blood pressure; HR, heart rate; ND, normal laboratory diet; WD, western diet; 7KWD, WD containing 7-KC.

Supplementary Figure S3. Flowcytometric gating strategy. Flowcytometric gating strategy for isolated cells from the heart after myocardial IR. FS, forward scatter; SS, side scatter; WBC, white blood cell; Lin, Lineage; Mo, monocyte; Mph, macrophage.

Supplementary Figure S4. Dietary 7-KC increased MCP-1 expression and CCR2-positive cells in the heart after myocardial IR. MCP-1 expression and CCR2-positive monocytes/macrophages in the heart at 24 hours after IR. Scale bar, 100 μ m. N=5. The data were analyzed by unpaired t test.

Supplementary Figure S5. Mito-TEMPO did not suppress 7-KC-induced inflammatory gene expression. Peritoneal macrophages were pretreated with 0 to 100 µM Mito-TEMPO for 1 hour before 10 µM 7-KC treatment for 24 hours. Expression of cytokines were quantified by RT-PCR. N=1-2. Control, vehicle control; 7-KC, 7-ketocholesterol

Supplementary Figure S6

Supplementary Figure S6. 7-KC increased inflammatory cytokines through TLR4-independent pathway. <u>A</u>, mRNA expression of cytokines in peritoneal macrophages isolated from TLR4-deficient mice and treated with 10 µM cholesterol or 7-KC for 24 hours. N=5-6. B, LPS-induced mRNA expression of cytokines in peritoneal macrophages transfected with 5 nM siRNA against TLR4 packaged in LNPs. N=2. C, After transfected with 5 nM siRNA against TLR4 packaged in LNPs. N=2. C, After transfected with 5 nM siRNA against TLR4 packaged in LNPs. N=2. C, After transfected with 5 nM siRNA against TLR4 packaged in LNPs. N=2. C, After transfected with 5 nM siRNA against TLR4 packaged in LNPs. N=2. C, After transfected with 5 nM siRNA against TLR4 packaged in LNPs. N=2. C, After transfected with 5 nM siRNA against TLR4 packaged in LNPs. N=2. C, After transfected with 5 nM siRNA against TLR4 packaged in LNPs. N=2. C, After transfected with 5 nM siRNA against TLR4 packaged in LNPs. N=2. C, After transfected with 5 nM siRNA against TLR4 packaged in LNPs. N=2. C, After transfected with 5 nM siRNA against TLR4 packaged in LNPs. N=2. C, After transfected with 5 nM siRNA against TLR4 packaged in LNPs. N=2. C, After transfected with 5 nM siRNA against TLR4 packaged in LNPs. N=2. C, After transfected with 5 nM siRNA against TLR4 packaged in LNPs. N=2. C, After transfected with 5 nM siRNA against TLR4 packaged in LNPs. N=2. C, After transfected with 5 nM siRNA against transfected with 5 nM siRNA against TLR4, toll-like receptor 4; Chol, cholesterol; 7-KC, 7-ketocholesterol; WT, wild-type mice; TLR4'-, TLR4-deficient mice; si-Control, nontargeted control siRNA; si-TLR4, siRNA against TLR4; LPS, lipopolysaccharide; LNP, lipid nanoparticle.

Supplementary Figure S7. 7-KC increased LXR target genes. mRNA expression of LXR target genes related to lipid metabolism in peritoneal macrophages treated with vehicle, 10 µM cholesterol or 7-KC for 24 hours. N=8. The data were analyzed by one-way ANOVA, followed by Tukey's post-hoc multiple comparison test. Veh, vehicle; Chol, cholesterol; 7-KC, 7-ketocholesterol; ABCA1, ATP-binding cassette protein A1; ABCG1, ATP-binding cassette protein G1; SREBP-1c, sterol regulatory element-binding protein 1c; LXR, liver X receptor.

Supplementary Figure S8. Silencing LXR did not inhibit 7-KC-induced proinflammatory cytokines. A, Peritoneal macrophages were transfected with 10 nM siRNA against LXR α or LXR β packaged in LNPs for 24 hours. Twelve hours after transfection was completed, expression of target genes were quantified by RT–PCR. N=2. B, After transfected with 10 nM siRNA against LXR α and LXR β , mRNA expression of cytokines in peritoneal macrophages treated with 10 µM cholesterol or 7-KC for 24 hours were quantified by RT–PCR. N=7. The data were analyzed by one-way ANOVA, followed by Tukey's post-hoc multiple comparison test. LXR, liver X receptor; si-Control, nontargeted control siRNA; si-LXR α , siRNA against LXR α ; si-LXR β , siRNA against LXR α and LXR β ; LNP, lipid nanoparticle; Chol, cholesterol; 7-KC, 7-ketocholesterol.

Supplementary Figure S9. Original blots/gels of Figure 5A. We cannot provide images of full-length blots because we cut membranes before hybridization with antibodies. Veh, vehicle; Chol, cholesterol; 7-KC, 7-ketocholesterol; PERK, PKR-like endoplasmic reticulum kinase; BiP, binding immunoglobulin protein; CHOP, C/EBP homologous protein.

Supplementary Figure S10. Original blots/gels of Figure 5B. We cannot provide images of full-length blots because we cut membranes before hybridization with antibodies. Veh, vehicle; Chol, cholesterol; 7-KC, 7-ketocholesterol; PERK, PKR-like endoplasmic reticulum kinase; BiP, binding immunoglobulin protein; CHOP, C/EBP homologous protein.

Supplementary Figure S11. PERK and ERO1- α siRNA suppressed each target gene. Peritoneal macrophages were transfected with 25 nM siRNA against PERK or ERO1- α packaged in LNPs for 24 hours. Twelve hours after transfection was completed, expression of target genes were quantified by RT–PCR. N=3. PERK, PKR-like endoplasmic reticulum kinase; ERO1- α , endoplasmic reticulum oxidase 1 α ; si-Control, nontargeted control siRNA; si-PERK, siRNA against PERK; si-ERO1- α , siRNA against ERO1- α ; LNP, lipid nanoparticle.

Supplementary Table S1. Pathway analyses of RNA-Seq

KEGG Pathways				
#Term ID	Term description	Count in gene set	FDR	
mmu00100	Steroid biosynthesis	9 of 19	2.96E-15	
mmu01100	Metabolic pathways	17 of 1296	2.03E-06	
mmu04657	IL-17 signaling pathway	6 of 91	9.34E-06	
mmu05134	Legionellosis	5 of 57	2.02E-05	
mmu04141	Protein processing in endoplasmic reticulum	6 of 161	0.00014	
mmu00900	Terpenoid backbone biosynthesis	3 of 22	0.00082	
mmu04621	NOD-like receptor signaling pathway	5 of 164	0.0016	
mmu04668	TNF signaling pathway	4 of 108	0.0035	
mmu04060	Cytokine-cytokine receptor interaction	5 of 252	0.0073	
mmu05418	Fluid shear stress and atherosclerosis	4 of 140	0.0073	
mmu01230	Biosynthesis of amino acids	3 of 75	0.0122	
mmu04612	Antigen processing and presentation	3 of 78	0.0126	
mmu04064	NF-kappa B signaling pathway	3 of 93	0.019	
mmu00650	Butanoate metabolism	2 of 27	0.0223	
mmu04931	Insulin resistance	3 of 108	0.0245	
mmu05145	Toxoplasmosis	3 of 107	0.0245	
mmu00250	Alanine, aspartate and glutamate metabolism	2 of 36	0.0284	
mmu01200	Carbon metabolism	3 of 118	0.0284	
mmu04380	Osteoclast differentiation	3 of 122	0.0284	
mmu05020	Prion diseases	2 of 34	0.0284	
mmu04210	Apoptosis	3 of 135	0.0335	
mmu05144	Malaria	2 of 45	0.0375	
mmu04010	MAPK signaling pathway	4 of 292	0.0412	
mmu01212	Fatty acid metabolism	2 of 51	0.0435	
mmu00280	Valine, leucine and isoleucine degradation	2 of 55	0.0481	
mmu05164	Influenza A	3 of 165	0.0481	

KEGG pathways were identified using the KEGG pathway database (www.kegg.jp/kegg/kegg1.html). RNA-Seq, RNA sequencing; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, false discovery rate.

Gene	Forward	Reverse	
Mus musculus			
Actb	CCTGAGCGCAAGTACTCTGTGT	GCTGATCCACATCTGCTGGAA	
ll1b	TCCAGGATGAGGACATGAGCAC	GAACGTCACACACCAGCAGGTTA	
116	TCCACGATTTCCCAGAGAAC	AGTTGCCTTCTTGGGACTGA	
Ccl2	AGGTCCCTGTCATGCTTCTG	TCTGGACCCATTCCTTCTTG	
Tnf	AGCCCCCAGTCTGTATCCTT	CTCCCTTTGCAGAACTCAGG	
Nos2	CCCCGCTACTACTCCATCAG	CCACTGACACTTCGCACAAA	
Abca1	AACAGTTTGTGGCCCTTTTG	AGTTCCAGGCTGGGGTACTT	
Abcg1	GTACCATGACATCGCTGGTG	AGCCGTAGATGGACAGGATG	
Srebf1	GATCAAAGAGGAGCCAGTGC	TAGATGGTGGCTGCTGAGTG	
Nr1h3	CATCTTCTCTGCAGACCGGC	TAGCATCCGTGGGAACATCA	
Nr1h2	CCCAAAGTCACGCCCTGG	CCACAATCTCCTGGACCGAG	
Eif2ak3	GGTCTGGTTCCTTGGTTTCA	TTCGCTGGCTGTGTAACTTG	
Ero1I	GCCAGGTTAGTGGTTACTTGG	GGCCTCTTCAGGTTTACCTTGT	

Supplementary Table S2. qPCR primer information