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Supplementary Figure S1. H&E staining of the combined LUAD/SCLC cases in our 

cohort with histologic components labeled. 

 

 

 

 

 

 

 

 

 



Supplementary Figure S2 
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Supplementary Figure S2. (A) Common mutations in the LUAD and SCLC components 

of the T4 case, assessed in the RNAseq data. Bar plots showing tumor purity (B), ploidy 

(C) and mutational burden (D) of samples in the cohort analyzed by WES. (E) 

Neoantigen load in matched T-LUAD and T-SCLC samples labeled by subtype of the 

SCLC component. (F) Enrichment in mutational signatures on the samples in our cohort 

analyzed by WES. (G) Oncoprint showing discrepancies in SNVs for cases T1 and T8 

between WES and targeted sequencing. RB1 and TP53 private mutations in T-SCLC1 

by WES are truly private as confirmed by IMPACT targeted deep sequencing. TP53 

private mutation in T-SCLC8 by WES was called in IMPACT at a low VAF (VAF=0.06) in 

T-LUAD8. Therefore, this mutation is not truly private. Upon genotyping in WES we could 

find read evidence at a subclonal level (VAF<5%) given lower depth of sequencing in 

WES. (H) Oncoprint of mutations frequently found in T-SCLC(70) in our samples 

analyzed by WES. Samples IDs in black and red indicate that they come from a 

combined histology specimen or a pre-/post-transformation specimen, respectively. 
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Supplementary Figure S3. (A) Prevalence (%) of mutations and CNAs enriched in our 

cohort of T-LUADs versus TCGA LUAD cohort (p-value<0.05). (B) mRNA expression of 

canonical NE markers in the different categories of samples included in our cohort. (C) 

YAP1 mRNA expression in control LUAD, T-LUAD, T-SCLC, and de novo SCLC 

samples. Two tailed Student’s t-test was used to assess statistical significance of the 

differential expression between groups (D) mRNA expression of tuft cell markers(20) in 

our control and T-LUADs. The expression values for the LUAD component of T3 are 

highlighted in red. Two tailed Student’s t-test was used to assess statistical significance 

of the differential expression between groups. p-values legend: * p<0.05, ** p<0.01, *** 

p<0.001.  Samples IDs in black and red indicate that they come from a combined 

histology specimen or a pre-/post-transformation specimen, respectively. 
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Supplementary Figure S4. EZH2 (A) and EGFR (B) mRNA expression in control LUAD, 

T-LUAD, T-SCLC, and de novo SCLC samples. Two tailed Student’s t-test was used to 

assess statistical significance of the differential expression between groups. (C) Blots for 

the protein arrays performed in this study. (D) Western blot showing levels of pAKT, 

pPRAS40 and beta-catenin in the protein samples included in the protein arrays. (E) 

Scatter plots showing DEGs exhibiting differential methylation levels in T-LUAD vs. T-

SCLC, grouped by pathways found enriched or depleted in our pathway enrichment 

analyses on RNA data. For DEGs, beta value (Sleuth-based estimation of log2 fold 

change) is shown. Significantly differentially expressed (q value < 0.05 and beta >= 

log2(1.5)) and methylated (FDR < 0.5 and differential methylation level greater than 0.1) 

sites are highlighted. Those genes where increased gene body or promoter methylation 

is correlated to expression positively and negatively, respectively, are labeled. p-values 

legend: * p<0.05, **p<0.01. 

 

 

 

 

 

 

 



Supplementary Figure S5
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Supplementary Figure S5. (A) Volcano plot showing overexpression of transcription 

factors of interest at the RNA level in T-SCLC versus T-LUAD. For DEGs, beta value 

(Sleuth-based estimation of log2 fold change) is shown. (B) Western blots exhibiting 

downregulation of EGFR after overexpression of FOXN4, ONECUT2 or POU3F2 in two 

EGFR-mutant lung LUAD cell lines. (C) Confirmation of FOXN4 overexpression at the 

RNA level by qPCR. (D) Western blots showing EGFR expression levels after ASCL1 

and NEUROD1 overexpression in these cell lines. (E) Osimertinib concentrations 

inducing 50% of growth inhibition (GI50) in these cell lines overexpressing FOXN4, 

ONECUT2 or POU3F2 GI50 were calculated as described in(69,71). FOXN4 mRNA (F) 

and ONECUT2 or POU3F2 protein (G) levels after treatment with Osimertinib 5 nM or 

10 nM for 3 or 7 days. Representative biological replicates are shown for qPCR and 

western blots. Two tailed Student’s t-test was used to assess statistical significance of 

the differential Osimertinib sensitivity  between cell lines. p-value legend: * p<0.05 
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Supplementary Figure S6. (A) CDKN2A body methylation levels in the samples in our 

cohort analyzed by EPIC. Scatter plots showing DEGs exhibiting differential methylation 

levels in our T-LUAD versus control LUAD (B) or T-SCLC versus de novo SCLC (C) 

comparisons, grouped by pathways enriched or depleted in pathway enrichment 

analyses on RNA. For DEGs, beta value (Sleuth-based estimation of log2 fold change) 

is shown. Significantly differentially expressed (q value < 0.05 and beta >= log2(1.5)) and 

methylated (FDR < 0.5 and differential methylation level greater than 0.1) sites are 

highlighted. Those genes where increased gene body or promoter methylation is 

correlated to expression positively and negatively, respectively, are labeled. Samples 

IDs in black and red indicate that they come from a combined histology specimen or a 

pre-/post-transformation specimen, respectively. 

 

 

 

 

 

 

 



Supplementary Figure S7
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Supplementary Figure S7. (A) Tumor volume measurements for the treatment of the 

T14-CH EGFR-mutant combined LUAD and NE PDX model with the EGFR inhibitor 

Osimertinib, the EZH1/2 inhibitor DS-3201b, an the Wnt inhibitor G007-LK, or the 

combinations of Osimertinib with the two latter. (B) Western blot showing AKT and 

PRAS40 phosphorylation levels in T14-CH PDX tumors (N=3 per arm) treated with 

osimertibib, samotolisib, or their combination. (C) Body weight measurements of the 

mice treated with Osimertinib, the AKT inhibitor Somatolisib, or their combination (see 

Figure 7A). Two-tailed Student’s t-test was performed to compare body weights at 

endpoint (day 31). (D) Plot showing average ± SD of IHC scores for pEGFR, pAKT and 

pPRAS40 in the LUAD and SCLC components of control T14-CH, Two-tailed Student’s 

t-test was performed to compare IHC scores between histological components . p-values 

legend: * p<0.05, ** p<0.01, *** p<0.001, ns = Non-significant. 

 

 

 

 

 

 

 

 

 


