

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Postnatal maternal depressive symptoms and behavioural outcomes in term- and preterm-born toddlers

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058540
Article Type:	Original research
Date Submitted by the Author:	20-Oct-2021
Complete List of Authors:	Kleine, Ira; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Vamvakas, George; King's College London, Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience Lautarescu, Alexandra; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine; King's College London, Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience Falconer, Shona; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Chew, Andrew; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Counsell, Serena ; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Counsell, Serena ; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Pickles, Andrew; King's College London, Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience Edwards, David; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Nosarti, Chiara; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine
Keywords:	MENTAL HEALTH, Child & adolescent psychiatry < PSYCHIATRY, Developmental neurology & neurodisability < PAEDIATRICS, Depression & mood disorders < PSYCHIATRY
	·

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Postnatal maternal depressive symptoms and behavioural outcomes in term- and preterm-born toddlers

Kleine, I^a (MBBS); Vamvakas, G^b (MSc); Lautarescu A^{a,c} (MPhil); Falconer, S^a (PhD); Chew A^a (MD); Counsell SJ^a (PhD); Pickles, A^b (FMedSci); Edwards, AD^a (FMedSci); Nosarti, C^{a,d} (PhD).

^a Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, St Thomas' Hospital, London SE1 7EH, UK.

^b Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.

^c Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and

Neuroscience, King's College London, London SE5 8AF, UK.

^d Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.

Post-publication corresponding author's contact information

Prof Chiara Nosarti Centre for the Developing Brain, School of Bioengineering and Imaging Sciences King's College London St Thomas' Hospital London SE1 7EH UK chiara.nosarti@kcl.ac.uk +44 (0)207 848 0133

<u>Abstract</u>

Objectives: To examine the association between maternal depressive symptoms in the immediate postnatal period and offspring's mental health in a large cohort of term- and preterm-born toddlers.

Design and Participants: Data were drawn from the Developing Human Connectome Project. Maternal postnatal depressive symptoms were assessed at term, and children's outcomes were evaluated at a median corrected age of 18.4 months (range 17.3 – 24.3). **Exposure and outcomes:** Preterm birth was defined as <37 weeks completed gestation. Maternal depressive symptoms were assessed with the Edinburgh Postnatal Depression Scale (EPDS). Toddlers' outcome measures were parent-rated Child Behaviour Checklist 1^{1/2}-5 Total (CBCL) and Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores. Toddlers' cognition was assessed with the Bayley Scales of Infant and Toddler Development – Third Edition (Bayley-III).

Results: Higher maternal EPDS scores were associated with toddlers' higher CBCL (B=0.93, 95% CI 0.43-1.44, p<0.001, f^2 =0.05) and Q-CHAT scores (B=0.27, 95% CI 0.03-0.52, p=.031, f^2 =0.01). Higher maternal EPDS scores were not associated with toddlers' cognitive outcomes. Maternal EPDS, toddlers' CBCL and Q-CHAT scores did not differ between preterm (n=97; 19.1% of the total sample) and term participants.

Conclusions: Our findings indicate that children whose mothers had increased depressive symptoms in the early postnatal period, including subclinical symptoms, exhibit more maternally-reported behavioural problems in toddlerhood. These associations were independent of gestational age. Further research is needed to confirm the clinical significance of these findings.

Strengths and limitations of this study

- Prospective study with a large sample, using multiple imputation to reduce non-response bias.
- Maternal depressive symptoms assessed as a continuous variable, providing more nuanced information about the significance of subclinical symptoms.
- Maternal depressive symptoms assessed earlier than in previous studies, enabling recognition of early screening opportunities for families.
- Potential shared method variance bias through parent-completed child behavioural assessments.
- Unknown paternal and parental factors, such as comorbid psychiatric conditions, that may confound our findings.

Keywords

Postpartum Depression; Child Development; Autism; Mental Health; Child Behavior; Mood Disorder.

Declarations

Funding

The DHCP project was funded by the European Research Council under the European Union Seventh Framework Programme (FR/2007-2013)/ERC Grant Agreement no. 319456. The authors acknowledge infrastructure support from the National Institute for Health Research Mental Health Biomedical Research Centre at South London, Maudsley NHS Foundation Trust, King's College London, the National Institute for Health Research Mental Health Biomedical Research Centre at Guys, and St Thomas' Hospitals NHS Foundation Trust. The study was also supported in part by the Engineering and Physical Sciences Research Council / Wellcome Trust Centre for Medical Engineering at King's College London (grant WT 203148/Z/16/Z) and the Medical Research Council (UK) (grants MR/K006355/1 and MR/L011530/1) and the MRC Centre for Neurodevelopmental Disorders at King's College London. AP receives a NIHR SI award (NF-SI-0617-10120). AL is supported by the UK Medical Research Council (MR/N013700) and King's College London member of the MRC Doctoral Training Partnership in Biomedical Sciences. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care.

Conflict of interest / Competing interests

ADE received financial support from the EU-AIMS-Trials (European Research Council under the European Union Seventh Framework Programme) as co-Principal Investigator. ADE received consulting fees from Chiesi Farmaceutici (advice on neuroprotection in newborn infants) and Medtronix (unpaid participation in scientific advice committee). ADE has a patent on Xenon as an organ protectant (No P023708WO). ADE was Chair of the Data Monitoring and Ethics Committee for the Baby-Oscar Trial, and served on the Data Monitoring and Ethics Committee for the PAEN Trial.

There are no other relationships or activities that could appear to have influenced the submitted work.

Availability of data and material

Research data will be available as part of Developing Human Connectome Project (<u>http://www.developingconnectome.org/</u>).

Code availability

Not applicable.

Ethics approval

This study was approved by the UK National Research Ethics Authority (14/LO/1169) and conducted in accordance with the World Medical Association's Code of Ethics (Declaration of Helsinki).

ey.e

Consent to participate

Written informed consent was given by children's carer(s) at recruitment into the study.

Consent for publication

Not applicable.

Patient and Public Involvement statement

The current study was developed in consultation with the Weston Programme for Family Centered Research, which involves parents to define what research is valuable to them, and to allow them to lead it with support from the scientists in the Centre for the Developing Brain.

Introduction

Postnatal depression affects approximately 12% of mothers worldwide.¹ In contrast to 'baby blues', which is a state of emotional lability that affects between 30-80% of women in the first few days after birth and typically resolves spontaneously within two weeks,² postnatal depression is more severe and starts in the first few months post-partum¹. Stressful life events have been linked to a heightened risk of developing postnatal depression,³ with rates as high as 40% in women who give birth before term completion (i.e., preterm, < 37 gestational weeks),⁴ likely due to heightened stress associated with perinatal complications.⁵

Women with postnatal depression tend to be less responsive to their baby's needs and to display less affection.⁶ Therefore, in the short-term postpartum depression may affect motherinfant interactions⁷ and in the long-term it may lead to alterations in brain development,⁸ emotional difficulties,⁹ less secure attachment, cognitive and behavioural problems in childhood, and a possible increased risk of autism spectrum disorder (ASD).^{10,11} Large cohort studies, such as the Avon Longitudinal Study of Parents and Children (ALSPAC), have shown that these associations are even evident when maternal depression is measured on a continuum of symptoms rather than a dichotomous diagnosis,^{12–14} supporting the notion that elevated sub-diagnostic psychiatric symptoms can also negatively impact on children's development.¹⁵

Studies investigating the underlying causes that may link maternal postnatal depression to child outcomes have implicated several biological and environmental variables. For instance, genetic and epigenetic factors have been shown to both mediate and mitigate the intergenerational transmission of psychiatric disorders,¹⁶ while lower quality parenting, interparental conflict, and socioeconomic deprivation have been shown to exacerbate children's developmental risk.¹¹ In addition, preterm birth has been associated with alterations in early brain development,¹⁷ as well as neurological, behavioural and cognitive problems in childhood and beyond.^{18,19} Therefore, it is complex to disentangle the possible effects of postnatal maternal mental health and those of perinatal clinical factors on specific outcomes in preterm children, as these may involve both maternal psychosocial and biological variables and child preterm-related neurodevelopmental morbidity. Furthermore, a question that remains unanswered is whether perinatal clinical risk accentuates the association between maternal postnatal depressive symptoms and child outcome. Previous research has proposed a diathesis-stress model, whereby preterm birth is regarded as a

vulnerability factor that makes preterm infants more prone to suboptimal environmental influences compared to term infants.^{20,21} On the other hand, the differential susceptibility model frames preterm birth as a plasticity factor that makes infants more likely to have both poorer outcomes in negative environments, as well as better outcomes in supportive environments.^{21,22}

Given that mothers of preterm children experience elevated levels of distress,²³ are at high risk of developing postnatal depression,⁴ and that preterm children themselves are vulnerable to psychiatric sequelae,²⁴ we aimed to investigate the association between very early symptoms of maternal postnatal depression and child behavioural and emotional outcomes, as well as whether this association was influenced by gestational age. We hypothesise that early postnatal maternal depressive symptoms would be more elevated in mothers of preterm compared to term infants and that these would impact preterm children's behavioural and emotional outcomes to a greater degree than their term counterparts.

Methods

Sample

Participants were enrolled in the Developing Human Connectome Project (DHCP, http://www.developingconnectome.org/). Toddlers were invited to the Centre for the Developing Brain, St Thomas' Hospital, London, for neurodevelopmental assessment between 17 and 24 months post-expected delivery date. Inclusion criteria for our follow-up study were: mother and baby attendance for magnetic resonance imaging (MRI) at term corrected age; completed toddler neurodevelopmental assessment. 509 toddlers met these inclusion criteria by the date of closure for this analysis (26/02/2020). This study was approved by the UK National Research Ethics Authority (14/LO/1169) and conducted in accordance with the World Medical Association's Code of Ethics (Declaration of Helsinki). Written informed consent was given by children's carer(s) at recruitment into the study.

Maternal variables

Maternal age, parity, Body Mass Index (BMI) and postcode were collected at enrolment into the DHCP study. Parity was coded as 0, 1, 2, or \geq 3 previous children. Index of Multiple Deprivation (IMD) rank was computed from the current maternal postcode using the 2019 IMD classification,²⁵ and provided a proxy for family socioeconomic status. Lower IMD rank corresponds to greater social deprivation.

BMJ Open

Maternal depressive symptoms were measured using the Edinburgh Postnatal Depression Scale (EPDS)²⁶ at term corrected age. The EPDS is a 10-item screening questionnaire completed by mothers, with higher scores reflecting a higher likelihood of depressive disorders. A score of 13 can be used as a cut-off indicating high-level symptoms, although a cut-off of 11 maximises the sensitivity and specificity of the screening tool for depression.²⁷

Child variables

Infant *clinical characteristics* included: sex, gestational age at birth, birth weight, and pregnancy size (singleton/twin/triplet).

Behavioural outcomes were assessed using the Child Behaviour Checklist/1^{1/2}-5 (CBCL), a parent-completed 100-item questionnaire, in which the parent rates the child's behaviour over the preceding two months using a 3-point Likert scale ("not true", "somewhat or sometimes true", and "very true or often true"). Responses are categorised into syndrome profiles, and these are subsequently grouped into internalising (emotional reactivity, anxiety/depression, somatic complaints, and withdrawal), externalising (attention problems, aggressive behaviour) and total (internalising, externalising, sleep and other) problem scales. Higher scores indicate increased emotional and behavioural problems. Total scores are classified into a normal range ($\leq 92^{rd}$ centile, T ≤ 64), borderline range ($93^{rd}-97^{th}$ centile, T 65-69), and clinical range ($\geq 98^{th}$ centile, T ≥ 70). The CBCL is known to have high reliability and validity for measuring children's emotional and behavioural problems.²⁸

ASD traits were assessed using the Quantitative Checklist for Autism in Toddlers (Q-CHAT). The Q-CHAT is a parent-completed 25-item questionnaire, in which the child's behaviour is scored on a 5-point (0-4) frequency scale. Higher total scores correspond to a higher frequency of autistic traits. The Q-CHAT shows good test-retest reliability, face validity and specificity, yet poor positive predictive value.^{29,30}

Cognitive assessment was performed using the Bayley Scales of Infant and Toddler Development – Third Edition (Bayley-III). The Bayley-III provides scores for a child's overall cognitive, language and motor development. The cognitive standardised composite score was used in this study; scores between 70-85 indicate mild cognitive impairment, and scores lower than 70 indicate moderate-severe impairment³¹. Reliability and validity of the Bayley-III have been shown to be robust.³²

Assessments were carried out by staff experienced in the neurocognitive assessments of toddlers.

Analysis

 Descriptive statistics and one-way ANOVA tests were performed in IBM SPSS Statistics for Windows v.25. All other analyses were carried out in Stata v.16.

Multiple imputation (MI) was carried out to account for missing data in CBCL (11/509, 2.24%), Q-CHAT (9/509, 1.8%), maternal EPDS (73/509, 14.3%), maternal BMI (27/509, 5.3%) and IMD rank (3/509, 0.6%). Variables were imputed simultaneously using the 'mi impute chained' procedure that performs imputation by chained equations. The imputation models included all variables that appear in the corresponding analysis models and also had the same structural form as the analysis models. They additionally included all variables correlating with the incomplete variables, as well as all predictors of the probability of a value being missing.³³ Maternal depression and CBCL were imputed using Poisson regression; Q-CHAT, maternal BMI, and the IMD rank were imputed using linear regression. 40 MI datasets were created. To assess the stability of our MI parameters, we extracted the Monte Carlo error of each parameter estimate and examined whether the error for the coefficient was less than 10% of the parameter's standard error estimate. MI estimates were used for the primary analyses and compared to the estimates from complete-case (CC, individuals who had no missing data pre-imputation) analyses. Normal probability plots of residuals from the CC analyses were examined.

The analysis models used multiple linear regression with standard errors that allowed for intragroup correlation and were fitted using the 'mi estimate' procedure, which estimates effects after application of Rubin's rules.³⁴ For continuous variables, Cohen's f-squared effect sizes were calculated using $f^2 = (R_{AB}^2 - R_A^2)/(1 - R_{AB}^2)$, where R_{AB}^2 is the R-squared value from a regression model that includes the variable of interest as well as all the covariates used in the model, and R_A^2 is the R-squared value from the regression model that includes only the covariates.^{35,36} For binary variables, Cohen's f-squared effect sizes were produced after

Page 11 of 35

BMJ Open

 estimating first the Cohen's d using the formula: $f^2 = \frac{d}{2k}$, where k is the number of groups. As a measure of dispersion, Cohen's d used the average root mean-square error over the MI datasets. Adjusted R-squared values after MI were extracted after estimating the model with the user-written 'mibeta' command with the 'fisherz' option,³⁷ which calculates R-squared measures for linear regression with MI data. The significance of the joint effect of the categorical variable parity was assessed using `mi test' which performs Wald tests of composite linear hypotheses.

Primary outcome measures were children's total CBCL raw score and Q-CHAT score. Secondary outcome measures were CBCL internalising and externalising scores. The effect of maternal EPDS score was adjusted for IMD rank, maternal age, maternal BMI, maternal parity, pregnancy size, and the following child's variables: gestational age, birth weight, Bayley-III cognitive composite score, and corrected age at assessment. The interaction between gestational age and maternal depression was explored using a complete case analysis in both CBCL and Q-CHAT models. EPDS, CBCL and Q-CHAT scores were compared between term and preterm infants using the complete case dataset.

In order to investigate the specificity of the association between maternal EPDS scores and child's behavioural outcomes (versus cognitive outcomes) we repeated the analyses using the Bayley-III cognitive composite score as primary outcome, with the following confounders: IMD rank, maternal age, maternal BMI, maternal parity, pregnancy size, and the following child's variables: gestational age, birth weight, corrected age at assessment, and Q-CHAT score. CBCL score was not included in the model predicting cognitive outcome, because cognition was not a significant predictor of CBCL (see Results).

As all mothers had their EPDS score measured near term-corrected age, we further investigated the association between time elapsing between baby's birth and mother's EPDS assessment and EPDS score, in order to avoid erroneously identifying 'baby blues' in mothers of term-born infants versus postnatal depression in mothers of preterm infants. This post-hoc analysis was performed using Poisson regression.

Results

509 toddlers were followed up at a median corrected age of 18.4 months (range 17.3 – 24.3 months). 51 (10.0%) of these were twins, and 3 (0.59%) were triplets. 21/509 (4.13%) of mothers scored above a clinical cut-off (\geq 13) on the EPDS.(26) Demographic data are shown in Table 1. 400 (78.6%) children had complete data. Missing data were imputed and thus all 509 subjects were included in the primary and secondary analyses. One participant was excluded from the cognition analysis after examining the quintiles of the residuals against the theoretical quintiles of a normal distribution. The mean CBCL T score was 46.9 (SD 9.5) (Table 1); 484 (95.1%) of participants had a CBCL score in the normal range, 14 (2.8%) were borderline, and no participants scored in the clinical range. The mean Q-CHAT score was 30.5 (SD 9.3) (Table 1).

Predictors of children's CBCL and Q-CHAT scores after multiple imputation are shown in Table 2. Higher maternal EPDS score was associated with children's higher CBCL Total score (B=0.93, 95% CI 0.43-1.44, p<0.001, f²=0.05) and Q-CHAT score (B=0.27, 95% CI 0.03-0.52, p=.031, f²=0.01) (Table 2). These associations are presented graphically in Figure 1 and Figure 2, respectively. Higher maternal EPDS score was associated with both internalising (B=0.22, 95% CI 0.08-0.36, p<0.01, f²=0.03) and externalising (B=0.40, 95% CI 0.20-0.61, p<0.001, f²=0.05) symptoms in children (Supplementary Table 1 and 2, respectively). Comparison of the imputed model analyses to the complete-case analyses showed that results were consistent for the CBCL model (Supplementary Table 3). Comparison for the Q-CHAT model showed that maternal EPDS was a significant predictor in the imputed model, but not in the complete-case analysis (Supplementary Table 3).

Maternal EPDS scores did not differ between preterm and term groups in the complete dataset (t(434)=0.11, p=0.92). CBCL scores (t(496)=0.95, p=0.34) and Q-CHAT scores (t(122.6)=0.50, p=0.62) did not differ between preterm and term groups in the complete dataset. Maternal EPDS score did not disproportionately affect preterm children with respect to CBCL or Q-CHAT scores (Table 3).

Mothers who gave birth prematurely (<37 weeks gestation) had their EPDS score assessed on average 7.7 weeks later post-delivery than mothers who gave birth at term (preterm participants M=8.9 (SD 4.8), term participants M=1.2 (SD 1.3); t(99.4)=15.5, p<.001). The time-lag between birth and EPDS assessment did not predict maternal EPDS score, and there

 BMJ Open

was no evidence of a significant interaction between gestation and birth-to-assessment timelag (Supplementary Table 4 and 5, respectively).

Boys had higher CBCL and Q-CHAT scores than girls. Higher Q-CHAT scores were associated with lower IMD rank (i.e., greater socio-economic deprivation) and lower Bayley-III cognitive composite scores. Parity was not a significant predictor of outcome in any of the models (Table 2).

The mean Bayley III cognitive composite score in our sample was 100 (SD 11.4) (Table 1); this corresponds to the standardised test mean.³¹ 480 (94.3%) of participants had a normal cognitive score, 24 (4.7%) had mild impairment, and 5 (1%) had moderate-severe impairment. Predictors of children's cognitive score are shown in Table 4. Maternal EPDS score at term was not associated with toddlers' cognitive outcomes (B=-0.22, 95% CI -0.50-0.05, p=.108) (Table 4).

Discussion

Principal findings

Contrary to our predictions, mothers of preterm infants did not display more depressive symptoms compared to mothers of term infants. Moreover, gestational age not influence the association between maternal depressive symptoms and infants' behavioural outcomes in toddlerhood. These results suggest that preterm birth may not be a vulnerability or plasticity factor with respect to the effect of maternal postnatal depression on infants' behavioural development in the first 18 months of life. However, our results do suggest that more maternal self-reported depressive symptoms shortly after birth are associated with greater toddlers' behavioural problems and ASD traits, but not with cognitive outcomes. Given that fewer than 5% of the mothers in our cohort had EPDS scores above a clinical threshold,²⁶ our findings indicate that even subclinical depressive symptoms adversely impact children's behavioural outcomes. In addition, our cohort was typically developing with few CBCL scores reaching a concerning threshold; our results could be interpreted within the conceptual framework of mental illness lying on a continuum with typical behavioural traits.³⁸

Comparison to prior literature

 The finding that more preterm infants were not disproportionately affected by maternal depressive symptoms supports Hadfield et al.'s findings that maternal distress at 9 months did not differentially impact very preterm (<34 weeks) or late preterm (34-36⁺⁶ weeks) infants with respect to socioemotional outcomes, although paternal distress did have an impact on very preterm infants' outcomes.³⁹ However, our results differ from Gueron-Sela et al.'s finding that very preterm (28-33 weeks) 12 month old infants' social outcomes were more influenced by maternal emotional distress at 6 months than term infants' outcomes.²² The inconsistent findings may be due to methodological differences: for instance, our infant assessment being conducted at 18 months corrected age when social competency is more developed, our assessment of maternal depressive symptoms being in the very early postnatal period, or our use of a screening measure, the Q-CHAT, as a measure of ASD traits. Importantly, the lack of support for a diathesis-stress or differential susceptibility model of maternal mental state on younger preterm infants in our study must be viewed in the context of our results also showing no difference in CBCL and Q-CHAT scores between term and preterm infants. This is in contrast to the existing literature that preterm infants are more likely to develop behavioural problems, such as ADHD, in childhood and adolescence.^{19,24} It is possible that the phenotypes of neurodevelopmental and neuropsychiatric disorders assessed with the chosen behavioural measures may not be sufficiently expressed at 18 months corrected age.⁴⁰ In addition, as briefly discussed above, much of the existing literature emphasises the risk of extreme (<28 weeks) or very preterm (28-33 weeks) birth on later mental health outcomes,^{19,24} whereas only 3.5% and 5.5% of our participants fell within the extreme and very preterm birth group, respectively, and we thus may not have the power to show any subtle effects.

Our results with respect to internalising and externalising behavioural outcomes are in line with previous studies, including large population cohort studies, that show an association between postnatal maternal depression and young children's emotional and behavioural problems.¹¹ The only previous study investigating this association in infants at 18 months found maternal depression to be associated with internalising and dysregulated behaviour, but not externalising symptoms.⁴¹ This difference between our and Conroy et al.'s findings may have arisen from their exclusion of infants born <36 weeks and their use of a clinical diagnosis of depression for mothers, rather than the dimensional approach we employed. Interestingly, our finding that even subclinical depressive symptoms may adversely impact

BMJ Open

children's behavioural outcomes is in line with recent data showing that low- as well as highlevel depressive symptoms are associated with internalising and externalising symptoms in children aged 3 years.⁴²

The results showing an association between maternal postnatal depressive symptoms and childhood ASD are less robust and need to be interpreted with caution. Although some prior studies have reported an association between antenatal maternal depression and offspring's ASD,^{10,43} and postnatal depression has been suggested as a potential focus of cross-domain studies of ASD,⁴⁴ there is no clear aetiological role of maternal postnatal depression in the development of ASD *per se*. Also, given that mothers with ASD are more likely to suffer from perinatal depression than mothers without ASD,⁴⁵ and ASD is highly heritable,⁴⁶ maternal depression may be a confounder in our observed results.

Strengths & limitations of the study

The strengths of this study lie primarily in its large sample and prospective data collection. Moreover, the use of multiple imputation methodology has facilitated retention of a complete dataset, thus minimising non-response bias and increasing parameter precision. A strength in comparison to prior population cohort studies is that we assessed very early maternal depressive symptoms. Given the complex interplay of biological and environmental factors in the aetiology of mental health disorders, the inclusion of a substantive proportion of preterm infants in our cohort also offers an important insight into the role of preterm birth in influencing mental health outcomes; moreover, our results represent the full gestational spectrum, rather than discrete gestational categories. In addition, using maternal depression as a continuous, rather than dichotomous, variable allows a more nuanced understanding of the role maternal postnatal depressive symptoms may play in influencing children's outcomes.

There are five main limitations to this study. Firstly, differences in birth-to-EPDS-assessment time-lags are a potential confounder, given the time-sensitive nature of early-onset temporary baby blues and later-onset pathological postnatal depression. Mothers of infants born at term were assessed early post-delivery, within the period one would anticipate baby blues to present, whereas mothers of preterm participants were on average assessed later, when postnatal depression predominates.^{1,2} Although our post-hoc analyses showed no association between the time elapsed from birth to EPDS assessment and maternal EPDS score, providing reassurance that our assessments of mothers of term-born infants were not inflated

by the common, temporary symptoms of baby blues, it is however possible that we did not capture the full extent of later-onset depressive symptoms in mothers of term-born infants. This may explain why maternal EPDS scores did not differ between preterm and term groups in our complete dataset analysis, contrary to the current literature.²³ Secondly, a number of important confounders that are likely to affect children's behavioural outcomes were not assessed in this study, including genetic risk for psychiatric disorders,⁴⁷ parental psychiatric co-morbidities,⁴¹ chronicity of postnatal depressive symptoms,⁴² antenatal maternal depression, paternal depression and subsequent parent-infant attachment, and inter-parental conflict.¹¹ In this study we did not systematically collect maternal psychiatric history and our focus was on symptoms rather than a diagnosis of depression. Thus, we are unable to conclude whether our observed associations between early postnatal maternal depressive symptoms and children's mental health outcomes are moderated or mediated by other parental factors. Thirdly, whilst our study included a substantive proportion of preterm infants (97/509, 19%), the sample was not random, as preterm children were selectively recruited for the DHCP; indeed, preterm infants are over-represented in our sample when compared to the UK population incidence (7.3%),⁴⁸ which may limit the study's generalisability to the general population. Fourthly, the effect sizes of the association between maternal EPDS score and behavioural problems and ASD traits, respectively, were small; this raises questions regarding the clinical significance of our findings and potentially explains some of the inconsistency between this and previous studies. Even within our analyses, the association between maternal depressive symptoms and ASD traits was not observed in our complete case analysis, thus calling into question the validity of this result. It is also important to highlight the continuum of ASD traits that are conceptualised by the Q-CHAT,²⁹ as well as its poor positive predictive value;³⁰ the presence of traits does not imply a diagnosis of ASD, and this distinction may also explain the contrast to previous studies. Fifthly, the outcome measures used in this study were parent-completed questionnaires and it is possible that reporting bias with shared method variance may have skewed our results, as maternal depression has been shown to influence reporting of ASD traits,⁴⁹ including the Q-CHAT,⁵⁰ and CBCL scores.⁵¹

Implications of our findings

Of greatest importance to clinicians and policymakers is our finding that even *subclinical* maternal depressive symptoms are associated with behavioural outcomes of offspring. This has significant implications for the risk-stratification of women and their babies in the

 BMJ Open

postnatal period, during which contact with medical professionals is already established. Identifying high risk families and providing appropriate supportive measures at the early postnatal stage may help to prevent future psychiatric morbidity.

Future research

Further follow-up of large cohorts of preterm and term infants, to an age when behavioural phenotypes may become more pronounced, is needed to investigate whether the long-term developmental trajectories of term and ex-preterm infants are differentially susceptible to changes of postnatal maternal mental health. Such follow-up should use independent, objective assessments of child behavioural outcomes. Further study is also needed to elucidate the role of maternal depression in the aetiology of ASD, controlling for both diagnostic and sub-clinical maternal ASD symptomatology. Finally, it is crucial for future research to elucidate the interplay of biochemical and neurodevelopmental changes that may mediate and confound the translation of environmental exposures into distal behavioural phenotypes.

Conclusion

This prospective longitudinal cohort study found no evidence to support the concept of preterm birth as a vulnerability or plasticity factor with respect to the effect of maternal depressive symptoms on behavioural development. However, we do show that early subclinical maternal postnatal depressive symptoms are associated with behavioural problems in children. This adds to the increasing body of literature indicating the role of subclinical and early postnatal depressive symptoms in the aetiology of childhood mental health disorders. These findings are of great relevance to child and public health, and have potentially significant implications for developing strategies to facilitate effective screening and support for women and children, enabling all to reach their full potential.

Acknowledgements & contributions

We thank all DHCP investigators for their contribution to the study. We thank Dr Oliver Gale-Grant MRes (Centre for the Developing Brain, King's College London; Department of Forensic & Neurodevelopmental Sciences, King's College London) for providing the IMD rank data. We are very grateful to the families who generously took part in this research. **Conceptualization:** SC, ADE, CN; **Methodology:** IK, GV, SC, AP, ADE, CN; **Investigation:** SF, AC; **Data curation:** IK, AL; **Formal analysis:** IK, GV, AP, CN; **Writing – original draft preparation:** IK; **Writing – Review & Editing:** GV, AL, SF, AC, SC, AP, ADE, CN; **Visualisation:** IK, GV; **Funding acquisition:** SC, ADE; **Supervision:** AP, ADE, CN.

References

- 1. Woody CA, Ferrari AJ, Siskind DJ, Whiteford HA, Harris MG. A systematic review and meta-regression of the prevalence and incidence of perinatal depression. *J Affect Disord*. 2017;219:86-92. doi:10.1016/j.jad.2017.05.003
- 2. Henshaw C. Mood disturbance in the early puerperium: a review. *Arch Women's Ment Health*. 2003;6(2):s33-s42. doi:10.1007/s00737-003-0004-x
- 3. Beck CT. Predictors of postpartum depression: an update. *Nurs Res.* 2001;50(5):275-285.
- 4. Vigod SN, Villegas L, Dennis C-L, Ross LE. Prevalence and risk factors for postpartum depression among women with preterm and low-birth-weight infants: a systematic review. *BJOG Int J Obstet Gynaecol*. 2010;117(5):540-550. doi:10.1111/j.1471-0528.2009.02493.x
- Blom EA, Jansen PW, Verhulst FC, et al. Perinatal complications increase the risk of postpartum depression. The Generation R Study. *BJOG Int J Obstet Gynaecol*. 2010;117(11):1390-1398. doi:10.1111/j.1471-0528.2010.02660.x
- 6. Beck CT. Postpartum depression: a metasynthesis. *Qual Health Res*. 2002;12(4):453-472. doi:10.1177/104973202129120016
- 7. Grace SL, Evindar A, Stewart DE. The effect of postpartum depression on child cognitive development and behavior: a review and critical analysis of the literature. *Arch Womens Ment Health*. 2003;6(4):263-274. doi:10.1007/s00737-003-0024-6
- 8. Lebel C, Walton M, Letourneau N, Giesbrecht GF, Kaplan BJ, Dewey D. Prepartum and Postpartum Maternal Depressive Symptoms Are Related to Children's Brain Structure in Preschool. *Biol Psychiatry*. 2016;80(11):859-868. doi:10.1016/j.biopsych.2015.12.004
- 9. Goodman SH, Rouse MH, Connell AM, Broth MR, Hall CM, Heyward D. Maternal depression and child psychopathology: a meta-analytic review. *Clin Child Fam Psychol Rev.* 2011;14(1):1-27. doi:10.1007/s10567-010-0080-1
- Hagberg KW, Robijn AL, Jick S. Maternal depression and antidepressant use during pregnancy and the risk of autism spectrum disorder in offspring. *Clin Epidemiol*. 2018;10:1599-1612. doi:10.2147/CLEP.S180618

- Stein A, Pearson RM, Goodman SH, et al. Effects of perinatal mental disorders on the fetus and child. *The Lancet*. 2014;384(9956):1800-1819. doi:10.1016/S0140-6736(14)61277-0
- 12. Van Batenburg-Eddes T, Brion MJ, Henrichs J, et al. Parental depressive and anxiety symptoms during pregnancy and attention problems in children: a cross-cohort consistency study. *J Child Psychol Psychiatry*. 2013;54(5):591-600. doi:10.1111/jcpp.12023
- Barker ED, Jaffee SR, Uher R, Maughan B. The contribution of prenatal and postnatal maternal anxiety and depression to child maladjustment. *Depress Anxiety*. 2011;28(8):696-702. doi:10.1002/da.20856
- 14. Pearson RM, Evans J, Kounali D, et al. Maternal depression during pregnancy and the postnatal period: risks and possible mechanisms for offspring depression at 18 years. *JAMA Psychiatry*. 2013;70(12):1312-1319. doi:10.1001/jamapsychiatry.2013.2163
- 15. Kleine I, Falconer S, Roth S, et al. Early postnatal maternal trait anxiety is associated with the behavioural outcomes of children born preterm <33 weeks. *J Psychiatr Res*. 2020;131:160-168. doi:10.1016/j.jpsychires.2020.09.010
- 16. Feder A, Nestler EJ, Charney DS. Psychobiology and molecular genetics of resilience. *Nat Rev Neurosci.* 2009;10(6):446-457. doi:10.1038/nrn2649
- 17. Dimitrova R, Pietsch M, Christiaens D, et al. Heterogeneity in brain microstructural development following preterm birth. *Cereb Cortex*. 2020;30(9):4800-4810. doi:10.1093/cercor/bhaa069
- Fitzallen GC, Sagar YK, Taylor HG, Bora S. Anxiety and Depressive Disorders in Children Born Preterm: A Meta-Analysis. *J Dev Behav Pediatr JDBP*. 2021;42(2):154-162. doi:10.1097/DBP.00000000000898
- 19. Allotey J, Zamora J, Cheong-See F, et al. Cognitive, motor, behavioural and academic performances of children born preterm: a meta-analysis and systematic review involving 64 061 children. *BJOG Int J Obstet Gynaecol*. 2018;125(1):16-25. doi:10.1111/1471-0528.14832
- Jaekel J, Pluess M, Belsky J, Wolke D. Effects of maternal sensitivity on low birth weight children's academic achievement: a test of differential susceptibility versus diathesis stress. *J Child Psychol Psychiatry*. 2015;56(6):693-701. doi:10.1111/jcpp.12331
- 21. Belsky J, Bakermans-Kranenburg MJ, van IJzendoorn MH. For better and for worse: differential susceptibility to environmental influences. *Curr Dir Psychol Sci.* 2007;16(6):300-304. doi:10.1111/j.1467-8721.2007.00525.x
- 22. Gueron-Sela N, Atzaba-Poria N, Meiri G, Marks K. The caregiving environment and developmental outcomes of preterm infants: diathesis stress or differential susceptibility effects? *Child Dev.* 2015;86(4):1014-1030. doi:https://doi.org/10.1111/cdev.12359

- 23. Carson C, Redshaw M, Gray R, Quigley MA. Risk of psychological distress in parents of preterm children in the first year: evidence from the UK Millennium Cohort Study. *BMJ Open*. 2015;5(12):e007942. doi:10.1136/bmjopen-2015-007942
- 24. Johnson S, Wolke D. Behavioural outcomes and psychopathology during adolescence. *Early Hum Dev.* 2013;89(4):199-207. doi:10.1016/j.earlhumdev.2013.01.014
- 25. Ministry of Housing, Communities & Local Government. The English Indices of Deprivation 2019. Published online 2019. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment _data/file/835115/IoD2019_Statistical_Release.pdf
- Cox JL, Holden JM, Sagovsky R. Detection of postnatal depression: development of the 10-item Edinburgh Postnatal Depression Scale. *Br J Psychiatry*. 1987;150(6):782-786. doi:10.1192/bjp.150.6.782
- 27. Levis B, Negeri Z, Sun Y, Benedetti A, Thombs BD. Accuracy of the Edinburgh Postnatal Depression Scale (EPDS) for screening to detect major depression among pregnant and postpartum women: systematic review and meta-analysis of individual participant data. *BMJ*. 2020;371. doi:10.1136/bmj.m4022
- 28. Achenbach TM, Rescorla LA. *Manual for the ASEBA Preschool Forms & Profiles*.; 2000.
- 29. Allison C, Baron-Cohen S, Wheelwright S, et al. The Q-CHAT (Quantitative Checklist for Autism in Toddlers): a normally distributed quantitative measure of autistic traits at 18-24 months of age: preliminary report. *J Autism Dev Disord*. 2008;38(8):1414-1425. doi:10.1007/s10803-007-0509-7
- Allison C, Matthews FE, Ruta L, et al. Quantitative Checklist for Autism in Toddlers (Q-CHAT). A population screening study with follow-up: the case for multiple timepoint screening for autism. *BMJ Paediatr Open*. 2021;5(1):e000700. doi:10.1136/bmjpo-2020-000700
- 31. Bayley N. *Bayley Scales of Infant and Toddler Development Third Edition*. 3rd ed. Harcourt Assessment; 2006.
- 32. Albers CA, Grieve AJ. Review of Bayley Scales of Infant and Toddler Development--Third Edition. *J Psychoeduc Assess*. 2007;25(2):180-190. doi:10.1177/0734282906297199
- 33. White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. *Stat Med*. 2011;30(4):377-399. doi:https://doi.org/10.1002/sim.4067
- 34. Rubin DB. Inference and missing data. *Biometrika*. 1976;63(3):581-592. doi:10.2307/2335739
- 35. Cohen J. *Statistical Power Analysis for the Behavioral Sciences*. 2nd ed. L. Erlbaum Associates; 1988.

ว	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
27	
27	
38	
39	
40	
41	
42	
43	
44	
45	
45	
40	
4/	
48	
49	
50	
51	
52	
52	
57	
54	
55	
56	
57	
58	
59	
60	

- 36. Selya AS, Rose JS, Dierker LC, Hedeker D, Mermelstein RJ. A practical guide to calculating Cohen's f2, a measure of local effect size, from PROC MIXED. *Front Psychol.* 2012;3. doi:10.3389/fpsyg.2012.00111
- 37. Harel O. The estimation of R 2 and adjusted R 2 in incomplete data sets using multiple imputation. *J Appl Stat.* 2009;36(10):1109-1118. doi:10.1080/02664760802553000
- 38. Plomin R, Haworth CMA, Davis OSP. Common disorders are quantitative traits. *Nat Rev Genet*. 2009;10(12):872-878. doi:10.1038/nrg2670
- 39. Hadfield K, O'Brien F, Gerow A. Is level of prematurity a risk/plasticity factor at three years of age? *Infant Behav Dev*. 2017;47:27-39. doi:10.1016/j.infbeh.2017.03.003
- 40. Egger HL, Emde RN. Developmentally sensitive diagnostic criteria for mental health disorders in early childhood: the diagnostic and statistical manual of mental disorders-IV, the research diagnostic criteria-preschool age, and the diagnostic classification of mental health and developmental disorders of infancy and early childhood-revised. *Am Psychol.* 2011;66(2):95-106. doi:10.1037/a0021026
- 41. Conroy S, Pariante CM, Marks MN, et al. Maternal psychopathology and infant development at 18 months: the impact of maternal personality disorder and depression. *J Am Acad Child Adolesc Psychiatry*. 2012;51(1):51-61. doi:10.1016/j.jaac.2011.10.007
- 42. Kingston D, Kehler H, Austin M-P, et al. Trajectories of maternal depressive symptoms during pregnancy and the first 12 months postpartum and child externalizing and internalizing behavior at three years. *PloS One*. 2018;13(4):e0195365. doi:10.1371/journal.pone.0195365
- 43. Wiggins LD, Rubenstein E, Daniels J, et al. A phenotype of childhood autism is associated with preexisting maternal anxiety and depression. *J Abnorm Child Psychol*. 2019;47(4):731-740. doi:10.1007/s10802-018-0469-8
- 44. Babb JA, Deligiannidis KM, Murgatroyd CA, Nephew BC. Peripartum depression and anxiety as an integrative cross-domain target for psychiatric preventative measures. *Behav Brain Res.* 2015;0:32-44. doi:10.1016/j.bbr.2014.03.039
- 45. Pohl AL, Crockford SK, Blakemore M, Allison C, Baron-Cohen S. A comparative study of autistic and non-autistic women's experience of motherhood. *Mol Autism*. 2020;11(1):3. doi:10.1186/s13229-019-0304-2
- 46. Colvert E, Tick B, McEwen F, et al. Heritability of autism spectrum disorder in a UK population-based twin sample. *JAMA Psychiatry*. 2015;72(5):415-423. doi:10.1001/jamapsychiatry.2014.3028
- 47. Biel MG. Parental psychiatric symptoms and children's outcomes: toward understanding and responding to intergenerational risk in child psychiatry. *J Am Acad Child Adolesc Psychiatry*. 2018;57(9):632-633. doi:10.1016/j.jaac.2018.06.010
- 48. National Institute for Health and Care Excellence. Preterm labour and birth (NICE Guideline 25). Published online November 2015. Accessed January 27, 2019. https://www.nice.org.uk/guidance/ng25

49. Bennett T, Boyle M, Georgiades K, et al. Influence of reporting effects on the association between maternal depression and child autism spectrum disorder behaviors. *J Child Psychol Psychiatry*. 2012;53(1):89-96. doi:10.1111/j.1469-7610.2011.02451.x

- 50. Goh DA, Gan D, Kung J, et al. Child, Maternal and Demographic Factors Influencing Caregiver-Reported Autistic Trait Symptomatology in Toddlers. *J Autism Dev Disord*. 2018;48(4):1325-1337. doi:10.1007/s10803-018-3471-7
- Friedlander S, Weiss DS, Traylor J. Assessing the influence of maternal depression on the validity of the Child Behavior Checklist. *J Abnorm Child Psychol*. 1986;14(1):123-133. doi:10.1007/bf00917228

for occreation on the second

Variable	Number (%)*
Sex: Male	274 (53.8)
Index of Multiple Deprivation (IMD) quintiles	
1 (least deprived) ^a	65 (12.8)
2	87 (17.2)
3	108 (21.3)
4	173 (34.2)
5 (most deprived)	73 (14.4)
Gestational age at birth (weeks), median [range]	39.7 [20 – 43]
Gestational category	
Preterm (<37 weeks)	97 (19.1)
Term (≥37 weeks)	412 (80.9)
Birthweight (g), median [range]	3290 [450 - 4750]
Multiple pregnancy	54 (10.6)
Maternal parity	
0	332 (65.2)
1	124 (24.4)
2	32 (6.3)
3+	21 (4.2)
Maternal BMI (kg/m ²), median [range]	23.2 [15.3 – 43.6]
Maternal age at infant's birth (years), mean (SD)	34.2 (4.8)
Bayley III cognitive composite score, mean (SD)	100 (11.4)
CBCL total T score, mean (SD)	46.9 (9.5)
Q-CHAT total score, mean (SD)	30.5 (9.3)
EPDS score, median [range]	4 [0-28]

Table 1: Socio-demographic, maternal and clinical characteristics (n=509)

^a Quintile 1 corresponds to the highest, least deprived, IMD rankings. St ucpri

* unless otherwise specified

3
4
5
6
7
, 8
0
9 10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
ד∠ ⊿2
43 44
44
45

1 2

Table 2: CBCL and Q-CHAT model predictors using multiple imputation v	without interaction.	(Cf. Supplementary	Table 3 for complete
case analysis)			

	CBCL		Q-CHAT			
	B [95%CI]	р	f ²	B [95%CI]	р	f ²
Maternal EPDS	0.93 [0.43, 1.44]	<.001 ***	0.05	0.27 [0.03, 0.52]	.031 *	0.01
Maternal BMI	-0.09 [-0.44, 0.26]	.621	-	0.06 [-0.13, 0.24]	.538	-
Multiple pregnancy	3.15 [-3.07, 9.37]	.320	-	1.33 [-2.62, 5.28]	.509	-
Parity						
1	-2.52 [-5.96, 0.93]	.151	-	-2.14 [-4.02, -0.27]	.025 a	-
2	-3.23 [-9.16, 2.70]	.285	-	0.88 [-1.99, 3.75]	.548	-
3+	-1.37 [-8.36, 5.61]	.699	-	-0.49 [-4.57, 3.60]	.815	-
IMD rank	-1.48 [-3.33, 0.37]	.117	-	-1.50 [-2.60, -0.40]	.008 **	0.02
Gestational age at birth (weeks)	0.10 [-0.65, 0.85]	.786	-	0.26 [-0.17, 0.70]	.233	-
Birthweight (kg)	0.56 [-2.65, 3.78]	.731	-	-1.24 [-2.93, 0.46]	.151	-
Sex:female	-4.14 [-6.96, -1.31]	.004 **	0.06	-1.95 [-3.42, -0.48]	.009 **	0.05
Corrected age at assessment (months)	-0.90 [-2.17, 0.37]	.166	-	-0.16 [-0.91, 0.59]	.677	-
Cognition	-0.05 [-0.20, 0.09]	.467	-	-0.27 [-0.35, -0.20]	<.001 ***	0.12

p<0.05 *; p<0.01 **; p<0.001 ***

CBCL model adjusted $R^2 = 0.0676$. Q-CHAT model adjusted $R^2 = 0.193$.

B = unstandardised coefficient.

CBCL = Child Behaviour Checklist score at 18 months. Q-CHAT = Quantitative Checklist for Autism in Toddlers score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-corrected age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months.

^a Wald test of whole parity variable in Q-CHAT model: F(3, 476.9) = 1.88, p = .133

Effect size (Cohen's f^2 , calculated from squared part correlations for predictors significant to 0.05): 0.02 = small, 0.15 = medium and 0.35 = large.[25]

- indicates data not given, as predictor not significant to 0.05.

BMJ Open

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 45
40

46

	CBCL		Q-CHAT	
	B [95%CI]	р	B [95%CI]	р
Maternal EPDS	0.89 [-0.24, 2.02]	.121	0.24 [-0.28, 0.75]	.365
Maternal BMI	-0.01 [-0.39, 0.37]	.955	0.00 [-0.16, 0.17]	.982
Multiple pregnancy	1.76 [-6.65, 10.17]	.681	0.97 [-2.07, 4.01]	.532
Parity		•		
1	-2.75 [-6.49, 0.99]	.149	-1.42 [-3.30, 0.46]	.139
2	-3.49 [-10.36, 3.37]	.317	0.16 [-2.84, 3.16]	.917
3+	-1.17 [-9.69, 7.35]	.788	-1.13 [-4.24, 1.98]	.476
IMD rank	-1.41 [-3.54, 0.73]	.195	-1.68 [-2.64, -0.72]	.001 **
Gestation: term	1.25 [-8.34, 10.85]	.797	2.64 [-1.74, 7.02]	.236
Birthweight (kg)	-1.01 [-4.08, 2.05]	.516	-2.25 [-3.73, -0.78]	.003 **
Sex: female	-4.64 [-7.83, -1.44]	.005 **	-2.22 [-3.72, -0.71]	.004 **
Corrected age at assessment (months)	-0.83 [-2.27, 0.62]	.261	-0.39 [-1.18, 0.04]	.335
Cognition	-0.03 [-0.20, 0.14]	.720	-0.22 [-0.29,0.15]	<.001 ***
EPDS x gestation:term	-0.01 [-1.30, 1.28]	.991	-0.02 [-0.60, 0.56]	.950

Table 3: CBCL and Q-CHAT model predictors using complete case analysis with interaction of 'EPDS x term'.

p<0.05 *; p<0.01 **; p<0.001 ***

CBCL model adjusted $R^2 = 0.0865$. Q-CHAT model adjusted $R^2 = 0.215$.

B = unstandardised coefficient.

CBCL = Child Behaviour Checklist score at 18 months. Q-CHAT = Quantitative Checklist for Autism in Toddlers score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-corrected age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Gestation: term = dummy variable, term (\geq 37 weeks) vs preterm (<37 weeks) gestation at birth. Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months. EPDS x gestation:term = interaction term between maternal EPDS score and term gestation at birth.

	B [95%CI]	р
Maternal EPDS	-0.22 [-0.50, 0.05]	.108
Maternal BMI	-0.32 [-0.52, -0.13]	.001 **
Multiple pregnancy	1.65 [-2.49, 5.79]	.433
Parity		
1	-0.46 [-2.67, 1.76]	.686
2	-3.47 [-6.69, -0.25]	.035 a
3+	-4.57 [-9.53, 0.40]	.072
IMD rank	1.43 [0.37, 2.50]	.009 **
Gestational age at birth (weeks)	0.45 [-0.07, 0.96]	.091
Birthweight (kg)	0.81 [-1.24, 2.87]	.436
Sex: female	1.99 [0.24, 3.74]	.026 *
Corrected age at assessment (months)	-0.75 [-1.59, 0.08]	.075
Q-CHAT score	-0.39 [-0.50, -0.28]	<.001 ***

Table 4: Cognition model predictors using multiple imputation.

p<0.05 *; p<0.01 **; p<0.001 ***

Adjusted $\hat{R}^2 = 0.231$

B = unstandardised coefficient.

Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-corrected age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months. Q-CHAT score = infant's Q-CHAT score at 18 month assessment.

el en

^a Wald test of whole parity variable in cognition model: F(3, 482.9)=2.41, p=0.067

Fig.1 Children's predicted CBCL scores at 18 months are positively correlated to the maternal EPDS score at term corrected age

Fig.2 Children's predicted Q-CHAT scores at 18 months are positively correlated to the maternal EPDS score at term corrected age

Supplemental material

Supplementary Table 1: CBCL internalising symptom model predictors using multiple imputation

Supplementary Table 2: CBCL externalising symptom model predictors using multiple imputation

Supplementary Table 3: CBCL and Q-CHAT model predictors using complete case analysis without interaction.

Supplementary Table 4: EPDS score predictors

Supplementary Table 5: EPDS score predictors including interaction 'term x time-lag'

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 46
10

1 2

Supplementary Table 1: CBCL internalising symptom model predictors using multiple imputation

	B [95%CI]	р	\mathbf{f}^2
Maternal EPDS	0.22 [0.08, 0.36]	.003 **	0.03
Maternal BMI	-0.04 [-0.13, 0.06]	.436	-
Multiple pregnancy	0.58 [-1.10, 2.27]	.497	-
Parity			
1	-0.37 [-1.41, 0.67]	.487	-
2	-1.33 [-3.09, 0.42]	.136	-
3+	0.64 [-1.34, 2.62]	.524	-
IMD rank	-0.41 [-0.91, 0.10]	.115	-
Gestational age at birth (weeks)	0.22 [-0.00, 0.44]	.053	-
Birthweight (kg)	-0.97 [-1.90, -0.05]	.038 *	0.005
Sex: female	-0.51 [-1.35, 0.33]	.232	-
Corrected age at assessment (months)	0.02 [-0.41, 0.45]	.923	-
Cognition	-0.05 [-0.10, -0.01]	.016 *	0.01

p<0.05 *; p<0.01 **; p<0.001 ***

Adjusted $R^2 = 0.0566$.

B = unstandardised coefficient.

Outcome variable = Child Behaviour Checklist internalising sub-score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-corrected age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months.

Effect size (Cohen's f^2 , calculated from squared part correlations for predictors significant to 0.05): 0.02 = small, 0.15 = medium and $0.35 = \text{large.}^1$

- indicates data not given, as predictor not significant to 0.05.

28

29

30 31

32

44 45 46 **BMJ** Open

f²

0.05

_

_

_

_

_

_

_

_

0.06

_

_

2			
3	Supplementary Table 2: CBCL externalisi	ng symptom model pred	dictors using
4		ing symptom model pre-	alectors using
5		B [95%CI]	р
6 7	Maternal EPDS	0.40 [0.20, 0.61]	<.001 ***
7 8	Maternal BMI	0.01 [-0.17, 0.15]	.933
9	Multiple pregnancy	2.51 [-0.29, 5.31]	.079
10	Parity		
11	1	-1.06 [-2.53, 0.42]	.160
12	2	-0.61 [-3.55, 2.33]	.682
13 14	3+	-0.96 [-4.47, 2.56]	.593
15	IMD rank	-0.24 [-1.11, 0.63]	.585
16	Gestational age at birth (weeks)	-0.07 [-0.40, 0.27]	.701
17	Birthweight (kg)	1.03 [-0.38, 2.44]	.153
18	Sex: female	-1.80 [-3.07, -0.53]	.006 **
19 20	Corrected age at assessment (months)	-0.40 [-0.95, 0.16]	.161
20	Cognition	0.03 [-0.03, 0.10]	.322
22	p<0.05 *; p<0.01 **; p<0.001 ***		
23	Adjusted $\mathbf{R}^2 = 0.0612$.		
24	B = unstandardised coefficient.		
25	Outcome variable = Child Behaviour Check	list externalising sub-sc	ore at 18 mc
26 27	Depression Scale score at term-corrected ag	e. Multiple pregnancy =	dummy var
27	1	1 1 8 8 9	5

ctors using multiple imputation

re at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-corrected age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months.

Effect size (Cohen's f^2 , calculated from squared part correlations for predictors significant to 0.05): 0.02 = small, 0.15 = medium and 0.35 =large.¹

- indicates data not given, as predictor not significant to 0.05.

	CBCL		Q-CHAT	
	B [95%CI]	р	B [95%CI]	р
Maternal EPDS	0.88 [0.35, 1.41]	.001 **	0.21 [-0.02, 0.44]	.069
Maternal BMI	-0.01 [-0.38, 0.37]	.963	0.01 [-0.16, 0.17]	.930
Multiple pregnancy	1.50 [-6.87, 9.87]	.724	0.43 [-2.50, 3.37]	.772
Parity				
1	-2.83 [-6.60, 0.94]	.141	-1.54 [-3.41, 0.34]	.108
2	-3.49 [-10.3, 3.35]	.316	0.13 [-2.85, 3.10]	.933
3+	-1.38 [-10.0, 7.30]	.755	-1.43 [-4.50, 1.64]	.360
IMD rank	-1.44 [-3.56, 0.67]	.181	-1.75 [-2.70, -0.79]	<.001 ***
Gestational age at birth (weeks)	0.01 [-0.90, 0.91]	.987	0.10 [-0.33, 0.54]	.639
Birthweight (kg)	-0.65 [-4.38, 3.08]	.733	-1.81 [-3.63, 0.00]	.050
Sex: female	-4.57 [-7.82, -1.31]	.006 **	-2.12 [-3.60, -0.64]	.005 **
Corrected age at assessment (months)	-0.84 [-2.26, 0.59]	.247	-0.41 [-1.18, 0.35]	.290
Cognition	-0.03 [-0.20, 0.13]	.689	-0.23 [-0.30, -0.15]	<.001 ***
0<0.05 *: p<0.01 **: p<0.001 ***				
CBCL adjusted $R^2 = 0.0862$. Q-CHAT a	djusted $R^2 = 0.2103$.			

Supplementary Table 3: CBCL and Q-CHAT model predictors using complete case analysis without interaction.

CBCL adjusted
$$R^2 = 0.0862$$
. Q-CHAT adjusted $R^2 = 0.2103$.

B = unstandardised coefficient.

 CBCL = Child Behaviour Checklist externalising sub-score at 18 months. Q-CHAT = Quantitative Checklist for Autism in Toddlers score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-corrected age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Gestation (weeks) = dummy variable: 34-36+6 weeks and ≥ 37 weeks gestation at birth. Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months.

Supplementary Table 4: EPDS score predictors

	IRR [95%CI]	р
Time-lag (weeks)	1.01 [0.97, 1.05]	.647
Gestation:term	0.91 [0.64, 1.31]	.627
IMD rank	1.00 [1.00, 1.00]	.103
Multiple pregnancy	0.66 [0.46, 0.96]	.031 *
Parity		
1	0.79 [0.66, 0.95]	.011 *
2	0.87 [0.60, 1.28]	.491
3+	0.84 [0.54, 1.31]	.445
Birthweight (kg)	0.98 [0.83, 1.17]	.847
Sex:female	1.13 [0.98, 1.31]	.098
0<0.05 *; p<0.01 **; p<0.0	001 ***	
Pseudo $R^2 = 0.0228$		
DD - incidence note notic		

IRR = incidence rate ratio

Outcome variable = maternal Edinburgh Postnatal Depression Scale (EPDS) score at term-corrected age. Time-lag (weeks) = time in weeks between birth and EPDS assessment. Gestation:term = dummy variable, term (\geq 37 weeks) vs preterm (<37 weeks) gestation at birth. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren).

2
3
4
5
6
7
8
9
10
11
17
12
15
14
15
16
17
18
19
20
21
22
22
25
24
25
26
27
28
29
30
31
27
5Z
33
34
35
36
37
38
39
40
41
רד ⊿ר∕
42 42
43
44
45

46

1

Supplementary Table 5: EPDS score predictors including interaction 'term x time-lag'

	IRR [95%CI]	р
Time-lag (weeks)	1.00 [0.97, 1.04]	.823
Gestation: term	0.88 [0.58, 1.34]	.553
IMD rank	1.00 [1.00, 1.00]	.104
Multiple pregnancy	0.66 [0.46, 0.96]	.029 *
Parity		
1	0.79 [0.66, 0.95]	.010 *
2	0.87 [0.60, 1.28]	.480
3+	0.85 [0.55, 1.31]	.458
Birthweight (kg)	0.97 [0.83, 1.15]	.756
Sex:female	1.13 [0.98, 1.30]	.100
Term x time-lag (weeks)	1.01 [0.94, 1.10]	.735

p<0.05 *; p<0.01 **; p<0.001 ***

Pseudo $R^2 = 0.0230$

IRR = incidence rate ratio

Outcome variable = maternal Edinburgh Postnatal Depression Scale (EPDS) score at term-corrected age. Time-lag (weeks) = time in weeks between birth and EPDS assessment. Gestation: term = dummy variable, term (\geq 37 weeks) vs preterm (<37 weeks) gestation at birth. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Term x time-lag (weeks): interaction term between term gestation at birth and time-lag between birth and maternal EPDS assessment.

 BMJ Open

Supplemental reference list

1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. L. Erlbaum Associates; 1988.

For peer review only

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1, 2
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	
Introduction			•
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Participants	6	 (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up (b) For matched studies, give matching criteria and number of exposed and unexposed 	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6, 7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	8
Statistical methods	12	 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) If applicable, explain how loss to follow-up was addressed (<u>e</u>) Describe any sensitivity analyses 	8,9
Results			
Participants	13*	 (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage (c) Consider use of a flow diagram 	10
Descriptive data	14*	 (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders (b) Indicate number of participants with missing data for each variable of interest (c) Summarise follow-up time (eg, average and total amount) 	10
Outcome data	15*	Report numbers of outcome events or summary measures over time	10

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	10
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	10, 11
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	13, 14
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	14, 15
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other informatio	on		·
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	3

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org. BMJ Open

BMJ Open

Postnatal maternal depressive symptoms and behavioural outcomes in term- and preterm-born toddlers: a longitudinal UK community cohort study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058540.R1
Article Type:	Original research
Date Submitted by the Author:	19-Feb-2022
Complete List of Authors:	Kleine, Ira; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Vamvakas, George; King's College London, Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience Lautarescu, Alexandra; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine; King's College London, Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience Falconer, Shona; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Chew, Andrew; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Counsell, Serena ; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Counsell, Serena ; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Pickles, Andrew; King's College London, Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience Edwards, David; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Nosarti, Chiara; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine
Primary Subject Heading :	Mental health
Secondary Subject Heading:	Paediatrics
Keywords:	MENTAL HEALTH, Child & adolescent psychiatry < PSYCHIATRY, Developmental neurology & neurodisability < PAEDIATRICS, Depression & mood disorders < PSYCHIATRY, NEONATOLOGY

1	
2	
4	
5	· · · · · · · · · · · · · · · · · · ·
6 7	SCHOLARONE™
8	Manuscripts
9	Manascripts
10	
12	
13	
14	
15 16	
17	
18	
19	
20	
22	
23	
24 25	
26	
27	
28 29	
30	
31	
32	
34	
35	
36	
37 38	
39	
40	
41 42	
43	
44	
45 46	
47	
48	
49 50	
50	
52	
53	
54 55	
56	
57	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Postnatal maternal depressive symptoms and behavioural outcomes in term- and preterm-born toddlers: a longitudinal UK community cohort study.

Kleine, I^a (MBBS); Vamvakas, G^b (MSc); Lautarescu A^{a,c} (MPhil); Falconer, S^a (PhD); Chew A^a (MD); Counsell SJ^a (PhD); Pickles, A^b (FMedSci); Edwards, AD^a (FMedSci); Nosarti, C^{a,d} (PhD).

^a Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, St Thomas' Hospital, London SE1
7EH, UK.

^b Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.

^c Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and

Neuroscience, King's College London, London SE5 8AF, UK.

^d Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.

Post-publication corresponding author's contact information

Prof Chiara Nosarti

Centre for the Developing Brain, School of Bioengineering and Imaging Sciences

King's College London

St Thomas' Hospital

London

SE1 7EH

UK

chiara.nosarti@kcl.ac.uk +44 (0)207 848 0133

<u>Abstract</u>

Objectives: To examine the association between maternal depressive symptoms in the immediate postnatal period and offspring's behavioural outcomes in a large cohort of term-and preterm-born toddlers.

Design and Participants: Data were drawn from the Developing Human Connectome Project. Maternal postnatal depressive symptoms were assessed at term-equivalent age, and children's outcomes were evaluated at a median corrected age of 18.4 months (range 17.3 – 24.3).

Exposure and outcomes: Preterm birth was defined as <37 weeks completed gestation. Maternal depressive symptoms were assessed with the Edinburgh Postnatal Depression Scale (EPDS). Toddlers' outcome measures were parent-rated Child Behaviour Checklist 1^{1/2}-5 Total (CBCL) and Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores. Toddlers' cognition was assessed with the Bayley Scales of Infant and Toddler Development – Third Edition (Bayley-III).

Results: Higher maternal EPDS scores were associated with toddlers' higher CBCL (B=0.93, 95% CI 0.43-1.44, p<0.001, f²=0.05) and Q-CHAT scores (B=0.27, 95% CI 0.03-0.52, p=.031, f²=0.01). Higher maternal EPDS scores were not associated with toddlers' cognitive outcomes. Maternal EPDS, toddlers' CBCL and Q-CHAT scores did not differ between

preterm (n=97; 19.1% of the total sample) and term participants.

Conclusions: Our findings indicate that children whose mothers reported increased depressive symptoms in the early postnatal period, including subclinical symptoms, exhibit more parent-reported behavioural problems in toddlerhood. These associations were independent of gestational age. Further research is needed to confirm the clinical significance of these findings.

Strengths and limitations of this study

- Prospective study with a large sample, using multiple imputation to reduce nonresponse bias.
- Maternal depressive symptoms assessed as a continuous variable, providing more nuanced information about the significance of subclinical symptoms.
- Maternal depressive symptoms assessed earlier than in previous studies, enabling • recognition of early screening opportunities for families.
- Potential common method variance bias through parent-completed child behavioural • assessments.
- Unknown paternal and parental factors, such as comorbid psychiatric conditions, that may confound our findings.

Keywords

Postpartum Depression; Child Development; Autism; Mental Health; Child Behavior; Mood Disorder; Preterm Birth.

Declarations

Funding

The DHCP project was funded by the European Research Council under the European Union Seventh Framework Programme (FR/2007-2013)/ERC Grant Agreement no. 319456. The authors acknowledge infrastructure support from the National Institute for Health Research Mental Health Biomedical Research Centre at South London, Maudsley NHS Foundation Trust, King's College London, the National Institute for Health Research Mental Health Biomedical Research Centre at Guys, and St Thomas' Hospitals NHS Foundation Trust. The study was also supported in part by the Engineering and Physical Sciences Research Council / Wellcome Trust Centre for Medical Engineering at King's College London (grant WT 203148/Z/16/Z) and the Medical Research Council (UK) (grants MR/K006355/1 and MR/L011530/1) and the MRC Centre for Neurodevelopmental Disorders at King's College London. AP receives a NIHR SI award (NF-SI-0617-10120). AL is supported by the UK Medical Research Council (MR/N013700) and King's College London member of the MRC Doctoral Training Partnership in Biomedical Sciences. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care.

Conflict of interest / Competing interests

ADE received financial support from the EU-AIMS-Trials (European Research Council under the European Union Seventh Framework Programme) as co-Principal Investigator. ADE received consulting fees from Chiesi Farmaceutici (advice on neuroprotection in newborn infants) and Medtronix (unpaid participation in scientific advice committee). ADE has a patent on Xenon as an organ protectant (No P023708WO). ADE was Chair of the Data Monitoring and Ethics Committee for the Baby-Oscar Trial, and served on the Data Monitoring and Ethics Committee for the PAEN Trial.

There are no other relationships or activities that could appear to have influenced the submitted work.

Availability of data and material

Research data are available upon reasonable request.

Code availability

Not applicable.

Ethics approval

This study was approved by the UK National Research Ethics Authority (14/LO/1169) and conducted in accordance with the World Medical Association's Code of Ethics (Declaration of Helsinki).

Consent to participate

Written informed consent was given by children's carer(s) at recruitment into the study.

Consent for publication

Not applicable.

Introduction

Postnatal depression affects approximately 12% of mothers worldwide.¹ In contrast to 'baby blues', which is a state of emotional lability that affects between 13.7%-76.0% of women in the first few days after birth and typically resolves spontaneously within two weeks,² postnatal depression is more severe and starts in the first few months post-partum¹. Stressful life events have been linked to a heightened risk of developing postnatal depression;³ for example, mothers of preterm infants have a significantly higher risk of postpartum depression compared to mothers of term infants,⁴ likely due to heightened stress associated with perinatal complications.⁵

Women with postnatal depression tend to be less responsive to their baby's needs and to display less affection.⁶ Therefore, in the short-term postpartum depression may affect motherinfant interactions⁷ and in the long-term it may lead to alterations in brain development,⁸ emotional difficulties,⁹ less secure attachment, cognitive and behavioural problems in childhood, and a possible increased risk of autism spectrum disorder (ASD).^{10,11} Large cohort studies, such as the Avon Longitudinal Study of Parents and Children (ALSPAC), have shown that these associations are even evident when maternal depression is measured on a continuum of symptoms rather than a dichotomous diagnosis,^{12–14} supporting the notion that elevated sub-diagnostic psychiatric symptoms can also negatively impact on children's development.¹⁵

Studies investigating the underlying causes that may link maternal postnatal depression to child outcomes have implicated several biological and environmental variables. For instance, genetic and epigenetic factors have been shown to both mediate and mitigate the intergenerational transmission of psychiatric disorders,¹⁶ while lower quality parenting, interparental conflict, and socioeconomic deprivation have been shown to exacerbate children's developmental risk of emotional and behavioural problems.¹¹ In addition, being born preterm (i.e. <37 weeks' gestation) has been associated with alterations in early brain development,¹⁷ as well as neurological, behavioural and cognitive problems in childhood and beyond.^{18,19} Therefore, it is complex to disentangle the possible effects of postnatal maternal mental health and those of perinatal clinical factors on specific outcomes in preterm children, as these may involve both maternal psychosocial and biological variables, as well as child preterm-related neurodevelopmental morbidity.

BMJ Open

Furthermore, a question that remains unanswered is whether preterm birth accentuates the association between maternal postnatal depression and child outcome. Two theoretical frameworks exist that hypothesise certain infants may be influenced differently by external stimuli: the diathesis stress model proposes that certain vulnerability factors make affected infants more prone to suboptimal environmental influences with subsequent poorer outcomes,^{20,21} whereas the differential susceptibility model frames such factors as plasticity-mediating, thus leading to poorer outcomes in negative environments, as well as better outcomes in supportive environments.^{21,22} Previous studies investigating differential susceptibility have shown mixed findings studying a range of environmental and clinical exposures,^{24,27} with child outcomes including attachment, internalising and externalising behaviour, and academic competence.²⁷ Both low birthweight in term infants (small for gestational age) ²³ and preterm birth ^{22,24,25} have been explored as distinct potential susceptibility factors, as the pathophysiological mechanisms underlying their respective differential susceptibility effects may differ.²⁶

Given that mothers of preterm children experience elevated levels of distress,²⁸ are at high risk of developing postnatal depression,²⁹ and that preterm children themselves are vulnerable to psychiatric sequelae,³⁰ we aimed to investigate the association between very early symptoms of maternal postnatal depression and child behavioural and emotional outcomes, including ASD symptoms. No studies to date have investigated the interactive effect of preterm birth and maternal depression on outcomes, hence we also aimed to explore whether maternal depression had a differential effect on term and preterm children's behavioural outcomes. We specifically aimed to investigate the continuum of maternal depressive symptoms rather than solely focussing on clinically significant maternal depressive symptoms on child outcomes. We hypothesised that early postnatal maternal depressive symptoms would be more elevated in mothers of preterm compared to term infants and that these would impact preterm children's behavioural and emotional outcomes to a greater degree than their term counterparts.

Methods

<u>Sample</u>

 Participants were enrolled in the Developing Human Connectome Project (DHCP, <u>http://www.developingconnectome.org/</u>), a neuroimaging-focused project, with eligibility

BMJ Open

criteria including pregnant women (aged ≥ 16 years) with a gestational age of 20–42 weeks, and newborn infants aged 24-44 weeks; infants enrolled in the DHCP had magnetic resonance imaging (MRI) at term-equivalent age. Exclusion criteria for the DHCP included: contraindications to MRI, babies being too unwell to tolerate a scan, and language difficulties preventing informed consent.³¹ Toddlers were invited to the Centre for the Developing Brain, St Thomas' Hospital, London, for neurodevelopmental assessment at 18 months postexpected delivery date; appointments were made according to family availability as close as possible to this time-point. Inclusion criteria for our follow-up study were: mother and baby attendance for MRI at term-equivalent age; completed toddler neurodevelopmental assessment. These inclusion criteria were met by 509 toddlers by the date of closure for this analysis (26/02/2020). Of the 509 toddlers, 51 were one of a twin pregnancy, and three were one of a triplet pregnancy; the sample contained 22 sibling pairs and one set of triplets. This study was approved by the UK National Research Ethics Authority (14/LO/1169) and conducted in accordance with the World Medical Association's Code of Ethics (Declaration of Helsinki). Written informed consent was given by children's carer(s) at recruitment into the study.

Maternal variables

Maternal age, parity, Body Mass Index (BMI) and postcode were collected at enrolment into the DHCP study. Parity was coded as 0, 1, 2, or \geq 3 previous children. Index of Multiple Deprivation (IMD) rank was computed from the current maternal postcode using the 2019 IMD classification; it combines locality-specific information about income, employment, education, health, crime, housing and living environment, thus providing a proxy for family socioeconomic status.³² Lower IMD rank corresponds to greater social deprivation.

Maternal depressive symptoms were measured using the Edinburgh Postnatal Depression Scale (EPDS)³³ on the day of infant's MRI at term-equivalent age. Mothers of infants born at term were tested in the first few weeks postnatally, whereas mothers of preterm-born infants were tested once they reached term-corrected age. The EPDS is a 10-item screening questionnaire completed by mothers, with higher scores reflecting a higher likelihood of depressive disorders. A score of 13 can be used as a cut-off indicating high-level symptoms, although a cut-off of 11 maximises the sensitivity and specificity of the screening tool for depression.³⁴ Mothers completed the EPDS independently in a private room in our Centre, with no interaction with the researcher. Participants were informed that the results would be discussed with them, and consented to information being shared with their General Practitioner in the case of high scores. The EPDS questionnaire was scored by a member of the DHCP team.³¹

Child variables

 Infant *clinical characteristics* were gathered from clinical notes where available, or from maternal report, and included: sex, gestational age at birth, birth weight, and pregnancy size (singleton/twin/triplet).

Behavioural outcomes were assessed using the Child Behaviour Checklist/1^{1/2}-5 (CBCL), a parent-completed 100-item questionnaire, in which the parent rates the child's behaviour over the preceding two months using a 3-point Likert scale ("not true", "somewhat or sometimes true", and "very true or often true"). Responses are categorised into syndrome profiles, and these are subsequently grouped into internalising (emotional reactivity, anxiety/depression, somatic complaints, and withdrawal), externalising (attention problems, aggressive behaviour) and total (internalising, externalising, sleep and other) problem scales. Higher scores indicate increased emotional and behavioural problems. Total scores are classified into a normal range ($<83^{rd}$ centile, T <60), borderline range (83^{rd} -90th centile, T 60-63), and clinical range ($>90^{th}$ centile, T ≥ 64).³⁵ The CBCL is known to have high reliability, validity and cross-informant agreement for measuring children's emotional and behavioural problems.³⁵

ASD traits were assessed using the Quantitative Checklist for Autism in Toddlers (Q-CHAT). The Q-CHAT is a parent-completed 25-item questionnaire, in which the child's behaviour is scored on a 5-point (0-4) frequency scale. Higher total scores correspond to a higher frequency of autistic traits. The Q-CHAT shows good test-retest reliability, face validity and specificity, yet poor positive predictive value.^{36,37}

Cognitive assessment was performed using the Bayley Scales of Infant and Toddler Development – Third Edition (Bayley-III). The Bayley-III provides scores for a child's overall cognitive, language and motor development. The cognitive standardised composite score was used in this study; scores between 70-84 indicate mild cognitive impairment, scores between 55-69 indicate moderate impairment, and scores lower than 55 indicate severe

BMJ Open

impairment³⁸. Reliability and validity of the Bayley-III have been shown to be robust,³⁹ although some studies report its underestimation of developmental problems.⁴⁰

Assessments were carried out by staff experienced in the neurocognitive assessments of toddlers.

Analysis

Descriptive statistics and one-way ANOVA tests were performed in IBM SPSS Statistics for Windows v.25. All other analyses were carried out in Stata v.16.

Multiple imputation (MI) was carried out to account for missing data in CBCL (11/509, 2.24%), Q-CHAT (9/509, 1.8%), maternal EPDS (73/509, 14.3%), maternal BMI (27/509, 5.3%) and IMD rank (3/509, 0.6%). Variables were imputed simultaneously using the 'mi impute chained' procedure that performs imputation by chained equations. The imputation models had the same structural form as the analysis models, and included all variables that appear in the corresponding analysis models (maternal EPDS, maternal BMI, multiple pregnancy, parity, IMD rank, gestational age at birth, birthweight, sex, corrected age at assessment, and Bayley III Cognitive Composite score); in addition, maternal age was also included in the imputation model, as this predicted the incomplete variable and the probability of a value being observed.⁴¹ To assess whether maternal age was predicting the probability of a value being observed, we firstly constructed binary indicators, one for each incomplete variable, that denoted whether the incomplete variable was missing their value (coded 0) or not (coded 1). These indicators then formed the dependent variable in logistic regression models that used maternal age as the independent variable. We used a 5% level to define a significant association.

Maternal EPDS and CBCL were imputed using Poisson regression; Q-CHAT, maternal BMI, and the IMD rank were imputed using linear regression. 40 MI datasets were created. To assess the stability of our MI parameters, we extracted the Monte Carlo error of each parameter estimate and examined whether the error for the coefficient was less than 10% of the parameter's standard error estimate. MI estimates were used for the primary analyses and compared to the estimates from complete-case (CC, individuals who had no missing data pre-imputation) analyses. Normal probability plots of residuals from the CC analyses were examined.

 The analysis models were multiple linear regressions fitted using the 'mi estimate' procedure, which estimates effects after application of Rubin's rules.⁴² To account for the small amount of clustering in our data (twin/triplet siblings), the models' standard errors were obtained using Stata's robust cluster estimator 'vce(cluster *idvar*)'. For continuous variables, Cohen's f-squared effect sizes were calculated using $f^2 = (R_{AB}^2 - R_A^2)/(1 - R_{AB}^2)$, where R_{AB}^2 is the R-squared value from a regression model that includes the variable of interest as well as all the covariates used in the model, and R_A^2 is the R-squared value from the regression model that includes only the covariates.^{43,44} For binary variables, Cohen's f-squared effect sizes were produced after estimating first the Cohen's d using the formula: $f^2 = \frac{d}{2k}$, where k is the number of groups. As a measure of dispersion, Cohen's d used the average root mean-square error over the MI datasets. Adjusted R-squared values after MI were extracted after estimating the model with the user-written 'mibeta' command with the 'fisherz' option,⁴⁵ which calculates R-squared measures for linear regression with MI data. The significance of the joint effect of the categorical variable parity was assessed using 'mi test' which performs Wald tests of composite linear hypotheses.

Primary outcome measures were children's total CBCL raw score and Q-CHAT score. Secondary outcome measures were CBCL internalising and externalising scores. The effect of maternal EPDS score was adjusted for IMD rank, maternal age, maternal BMI, maternal parity, pregnancy size, and the following child's variables: continuous gestational age, birth weight, Bayley-III cognitive composite score, and corrected age at assessment. The interaction between preterm birth and maternal depressive symptoms was explored using a complete case analysis in both CBCL and Q-CHAT models, using a dichotomised measure of gestational age. EPDS, CBCL and Q-CHAT scores were compared between term (\geq 37 weeks gestation) using the complete case dataset.

In order to investigate the specificity of the association between maternal EPDS scores and child's behavioural outcomes (versus cognitive outcomes) we repeated the analyses to predict Bayley-III Cognitive Composite score, with the following variables: IMD rank, maternal age, maternal BMI, maternal parity, pregnancy size, and the following child's variables: gestational age, birth weight, corrected age at assessment, and Q-CHAT score. CBCL score

BMJ Open

was not included in the model predicting cognitive outcome, because cognition was not a significant predictor of CBCL (see Results).

As all mothers had their EPDS score measured near term (or term-corrected in the case of mothers of preterm infants), we further investigated the association between time elapsing between baby's birth and mother's EPDS assessment and EPDS score, in order to avoid erroneously identifying 'baby blues' in mothers of term-born infants versus postnatal depression in mothers of preterm infants. This post-hoc analysis was performed using Poisson regression.

Patient and Public Involvement

The current study was developed in consultation with the Weston Programme for Family Centered Research, which involves parents to define what research is valuable to them, and to allow them to lead it with support from the scientists in the Centre for the Developing Brain.

Results

Descriptive statistics

Our sample of 509 toddlers were followed up at a median corrected age of 18.4 months (range 17.3 - 24.3 months). 51 (10.0%) of these were twins, and 3 (0.59%) were triplets. Of the 509, 21 (4.13%) mothers scored above a clinical cut-off (\geq 13) on the EPDS;(26) the distribution of maternal EPDS scores is shown graphically in Supplementary Figure 1. Demographic data are shown in Table 1. Complete data were available for 400 (78.6%) participants. Missing data were imputed and thus all 509 subjects were included in the primary and secondary analyses. One participant was excluded from the cognition analysis after examining the quintiles of the residuals against the theoretical quintiles of a normal distribution. The mean CBCL T score was 46.9 (SD 9.5) (Table 1); using CBCL-specified cut-offs,³⁵ 449 (90.2%) of participants had a CBCL score in the normal range, 30 (6.0%) were borderline, and 19 (3.8%) scored in the clinical range. The mean Q-CHAT score was 30.5 (SD 9.3) (Table 1). The mean Bayley III Cognitive Composite score in our sample was 100 (SD 11.4) (Table 1), which corresponds to the standardised test mean;³⁸ 480 (94.3%) of participants had a normal cognitive score, 24 (4.7%) had mild impairment, 5 (1%) had moderate impairment, and nil had severe impairment. This distribution is not dissimilar from that of the normative sample.³⁸

Association between maternal EPDS score and toddler CBCL and Q-CHAT scores

 Predictors of children's CBCL and Q-CHAT scores after multiple imputation are shown in Table 2. Higher maternal EPDS score was associated with children's higher CBCL Total score (B=0.93, 95% CI 0.43-1.44, p<0.001, f^2 =0.05) and Q-CHAT score (B=0.27, 95% CI 0.03-0.52, p=.031, f^2 =0.01) (Table 2). These associations are presented graphically in Figure 1 and Figure 2, respectively. Boys had higher CBCL and Q-CHAT scores than girls. Higher Q-CHAT scores were associated with lower IMD rank (i.e., greater socio-economic deprivation) and lower Bayley-III cognitive composite scores. Parity was not a significant predictor of outcome in any of the models (Table 2).

Association between maternal EPDS score and toddler CBCL internalising and externalising scores

Higher maternal EPDS score was associated with both internalising (B=0.22, 95% CI 0.08-0.36, p<0.01, f^2 =0.03) and externalising (B=0.40, 95% CI 0.20-0.61, p<0.001, f^2 =0.05) symptoms in children (Supplementary Table 1 and 2, respectively). Comparison of the imputed model analyses to the complete-case analyses showed that results were consistent for the CBCL model (Supplementary Table 3). Comparison for the Q-CHAT model showed that maternal EPDS was a significant predictor in the imputed model, but not in the complete-case analysis (Supplementary Table 3).

Interaction effect of preterm birth and maternal EPDS score on toddler CBCL and Q-CHAT scores

Maternal EPDS scores did not differ between preterm and term groups in the complete dataset (t(434)=0.11, p=0.92). CBCL scores (t(496)=0.95, p=0.34) and Q-CHAT scores (t(122.6)=0.50, p=0.62) did not differ between preterm and term groups in the complete dataset. Maternal EPDS score did not disproportionately affect preterm children with respect to CBCL or Q-CHAT scores (Table 3).

Association between maternal EPDS score and toddler cognitive outcomes

Predictors of children's cognitive score are shown in Table 4. Maternal EPDS score at term was not associated with toddlers' cognitive outcomes (B=-0.22, 95% CI -0.50-0.05, p=.108). *Effect of time-lag between baby's birth and mother's EPDS assessment and EPDS score* Mothers who gave birth prematurely (<37 weeks gestation) had their EPDS score assessed on average 7.7 weeks later post-delivery than mothers who gave birth at term (preterm

BMJ Open

participants M=8.9 (SD 4.8), term participants M=1.2 (SD 1.3); t(99.4)=15.5, p<.001). The time-lag between birth and EPDS assessment did not predict maternal EPDS score, and there was no evidence of a significant interaction between gestation and birth-to-assessment time-lag (Supplementary Table 4 and 5, respectively).

Discussion

Principal findings

Our results showed that more maternal self-reported depressive symptoms shortly after birth were associated with greater parent-reported toddlers' behavioural problems – both internalising and externalising symptoms – and ASD traits, but not with cognitive outcomes. Given that fewer than 5% of the mothers in our cohort had EPDS scores above a clinical threshold,³³ our findings indicate that even subclinical depressive symptoms – i.e. not only diagnostic postnatal depression – adversely impact children's behavioural outcomes. In addition, our cohort was typically developing with few CBCL scores reaching a concerning threshold; our results could be interpreted within the conceptual framework of mental illness lying on a continuum with typical behavioural traits.⁴⁶ Our findings further showed that preterm birth did not influence the association between self-reported maternal depressive symptoms and parent-reported infants' behavioural outcomes in toddlerhood. This indicates that in this context preterm birth may not be regarded as a vulnerability or plasticity factor. Interestingly, mothers of preterm infants did not report more depressive symptoms compared to mothers of term infants in this study.

Comparison to prior literature

Our results with respect to internalising and externalising symptoms are in line with previous studies, including large population cohort studies, that showed an association between postnatal maternal depression and young children's emotional and behavioural problems.¹¹ Another previous study in 18-month old toddlers found that maternal depression was associated with internalising and dysregulated behaviour, but not externalising symptoms.⁴⁷ This difference between our and Conroy et al.'s findings may have arisen from their exclusion of infants born <36 weeks and their use of a clinical diagnosis of depression for mothers, rather than the continuous self-reported approach we employed. Interestingly, our finding that even subclinical depressive symptoms may adversely impact parent-reported child behavioural outcomes is in line with recent data showing that low- as well as high-level

depressive symptoms are associated with internalising and externalising symptoms in children aged 3 years.⁴⁸

The results showing an association between maternal postnatal depressive symptoms and parental report of childhood ASD traits are less robust and need to be interpreted with caution. Although some prior studies have shown an association between antenatal maternal depression and offspring's ASD,^{10,49} and postnatal depression has been suggested as a potential focus of cross-domain studies of ASD,⁵⁰ there is no clear aetiological role of maternal postnatal depression in the development of ASD *per se*. Also, given that mothers with ASD are more likely to suffer from perinatal depression than mothers without ASD,⁵¹ and ASD is highly heritable,⁵² maternal depression may actually be a confounding rather than causative factor in our observed results.

The finding that preterm infants were not disproportionately affected by maternal depressive symptoms supports Hadfield et al.'s findings that maternal distress at 9 months did not differentially impact very preterm (<34 weeks) or late preterm (34-36⁺⁶ weeks) infants with respect to socioemotional outcomes, although paternal distress did have an impact on very preterm infants' outcomes.²⁴ However, our results differ from Gueron-Sela et al.'s finding that very preterm (28-33 weeks) 12 month old infants' social outcomes were more influenced by maternal emotional distress at 6 months than term infants' outcomes.²² The inconsistent findings may be due to methodological differences: for instance, our infant assessment being conducted at 18 months corrected age when social competency is more developed, our assessment of maternal depressive symptoms being in the very early postnatal period, or our use of a screening measure, the Q-CHAT, as a measure of ASD traits. Importantly, the lack of support for a diathesis-stress or differential susceptibility model of maternal mental state on preterm infants in our study must be viewed in the context of our results also showing no difference in CBCL and Q-CHAT scores between term and preterm infants. This is in contrast to the existing literature that preterm infants are more likely than term infants to develop behavioural problems, such as ADHD, in childhood and adolescence.^{19,30} It is possible that the phenotypes of neurodevelopmental and neuropsychiatric disorders assessed with the chosen behavioural measures may not be sufficiently expressed at 18 months corrected age.⁵³ In addition, as briefly discussed above, much of the existing literature emphasises the risk of extreme (<28 weeks) or very preterm (28-33 weeks) birth on later

Page 17 of 39

 BMJ Open

behavioural outcomes,^{19,30} whereas only 3.5% and 5.5% of our participants fell within the extreme and very preterm group, respectively, and we thus may not have the power to show any subtle effects.

Strengths & limitations of the study

The strengths of this study lie primarily in its large sample and prospective data collection. Moreover, the use of multiple imputation methodology has facilitated retention of a complete dataset, thus minimising non-response bias and increasing parameter precision. A strength in comparison to prior population cohort studies is that we assessed very early maternal depressive symptoms, and our sample is perhaps more representative of today's society – with increasing maternal age – than large cohort studies conducted in the 1990s-2000s. Given the complex interplay of biological and environmental factors in the aetiology of behavioural disorders, the inclusion of a substantive proportion of preterm infants in our cohort also offers an important insight into the role of preterm birth in behavioural outcomes; moreover, our results represent the full gestational spectrum, rather than discrete gestational categories. In addition, using maternal depressive symptoms as a continuous, rather than dichotomous, variable allows a more nuanced understanding of the role maternal postnatal depressive symptoms may play in influencing children's outcomes.

There are several limitations to this study that necessitate our findings to be considered with caution. Firstly, differences in birth-to-EPDS-assessment time-lags are a potential confounder, given the time-sensitive nature of early-onset temporary baby blues and later-onset pathological postnatal depression. Mothers of infants born at term were assessed early post-delivery, within the period one would anticipate baby blues to present, whereas mothers of preterm participants were on average assessed later, when postnatal depression predominates.^{1,54} Although our post-hoc analyses showed that the time elapsed from birth to EPDS assessment was not associated with maternal EPDS score, providing reassurance that our assessments of mothers of term-born infants were not inflated by the common temporary symptoms of baby blues, it is possible that we did not capture the full extent of later-onset depressive symptoms in mothers of term-born infants. This may explain why maternal EPDS scores did not differ between preterm and term groups in our complete dataset analysis, contrary to the current literature,²⁸ as well as why our rate of postpartum depression, using an EPDS cut-off of 13, was low (4.1%) compared to the previously documented UK community

prevalence rate of 8.9% at eight weeks postpartum.⁵⁵ Our results must therefore be interpreted with some caution.

 Secondly, although statistical techniques were used to impute missing data and mitigate this problem, 14.3% of maternal EPDS scores were missing. This rate of missingness may relate to some mothers being reluctant to complete a questionnaire at the time their child is having an MRI, or due to simultaneous childcare duties. Thirdly, a number of important confounders that are likely to affect children's behavioural outcomes were not assessed in this study, including genetic risk for psychiatric disorders,⁵⁶ parental psychiatric co-morbidities,⁴⁷ chronicity of postnatal depressive symptoms,⁴⁸ antenatal maternal depression, paternal depression and subsequent parent-infant attachment, and inter-parental conflict.¹¹ Thus, we are unable to conclude whether our observed associations between early postnatal maternal depressive symptoms and children's behavioural outcomes are moderated or mediated by other parental and/or psychiatric factors.

Fourthly, whilst our study included a reasonable proportion of preterm infants (97/509, 19%), our sample was not random, as preterm children were selectively recruited for the DHCP; indeed, preterm infants are over-represented in our sample when compared to the UK population incidence (7.3%),⁵⁷ which may limit the study's generalisability to the general population. This over-representation of preterm infants may explain why our mean maternal age is higher than the national mean age of 30.7,⁵⁸ given that increasing maternal age is associated with increased risk of adverse pregnancy outcomes.⁵⁹ Furthermore, although a 19% prevalence of preterm birth is high for a community sample, the proportion of very and extreme preterm infants in our sample is small, and this may not have provided sufficient power to detect any differential susceptibility effect of preterm birth on outcomes.

Sixthly, the effect sizes of the association between maternal EPDS score and behavioural problems and ASD traits, respectively, were small; this raises questions regarding the clinical significance of our findings and potentially explains some of the inconsistency between this and previous studies. Even within our analyses, the association between maternal depressive symptoms and ASD traits was not observed in our complete case analysis, thus calling into question the validity of this result. It is also important to highlight the continuum of ASD traits that are conceptualised by the Q-CHAT,³⁶ as well as its poor positive predictive value;³⁷

 BMJ Open

the presence of traits does not imply a diagnosis of ASD, and this distinction may also explain the contrast to previous studies.

Finally, it is well documented that maternal depression influences reporting of ASD traits,⁶⁰ Q-CHAT,⁶¹ and CBCL scores.⁶² Our study used maternal report of maternal depressive symptoms, and our outcome measures were parent-completed questionnaires; despite the CBCL showing good cross-informant agreement,³⁵ it is thus possible that reporting bias with common method variance could have skewed our results.

Implications of our findings

Of greatest importance to clinicians and policymakers is our finding that even *subclinical* self-reported maternal depressive symptoms are associated with parent-reported behavioural outcomes of offspring. This has significant implications for the risk-stratification of women and their babies in the postnatal period, during which contact with medical professionals is already established. Identifying high risk families and providing appropriate supportive measures at the early postnatal stage may help to prevent future psychiatric morbidity.

Future research

Further follow-up of large cohorts of preterm and term infants, to an age when behavioural phenotypes may become more pronounced, is needed to investigate whether the long-term developmental trajectories of term and ex-preterm infants are differentially susceptible to changes of postnatal maternal mental health. Future research should consider both maternal and paternal mental health, as well as socioeconomic and environmental factors on child outcomes. Such follow-up should use independent, objective assessments of child behavioural outcomes in order to avoid the common method variance inherent to parent-reported measures. In addition, further study is also needed to elucidate the role of maternal depression in the aetiology of ASD, controlling for both diagnostic and sub-clinical maternal ASD symptomatology. Finally, it is crucial for future research to elucidate the interplay of biochemical and neurodevelopmental changes that may mediate and confound the translation of environmental exposures into distal behavioural phenotypes.

Conclusion

This prospective longitudinal cohort study found no evidence to support the concept of preterm birth as a vulnerability or plasticity factor with respect to the effect of maternal

depressive symptoms on behavioural development. However, we showed that early subclinical maternal postnatal depressive symptoms were associated with behavioural problems in children on parent-reported measures. This adds to the increasing body of literature indicating the role of subclinical and early postnatal depressive symptoms in the aetiology of childhood behavioural disorders. These findings are of great relevance to child and public health, and further research may strengthen its implications for developing strategies to facilitate effective screening and support for women and children, enabling all to reach their full potential.

Acknowledgements & contributions

We thank all DHCP investigators for their contribution to the study. We thank Dr Oliver Gale-Grant MRes (Centre for the Developing Brain, King's College London; Department of Forensic & Neurodevelopmental Sciences, King's College London) for providing the IMD rank data. We are very grateful to the families who generously took part in this research.

Conceptualization: SC, ADE, CN; **Methodology:** IK, GV, SC, AP, ADE, CN; **Investigation:** SF, AC; **Data curation:** IK, AL; **Formal analysis:** IK, GV, AP, CN; **Writing – original draft preparation:** IK; **Writing – Review & Editing:** GV, AL, SF, AC, SC, AP, ADE, CN; **Visualisation:** IK, GV; **Funding acquisition:** SC, ADE; **Supervision:** AP, ADE, CN.

References

- 1. Woody CA, Ferrari AJ, Siskind DJ, Whiteford HA, Harris MG. A systematic review and meta-regression of the prevalence and incidence of perinatal depression. *J Affect Disord*. 2017;219:86-92. doi:10.1016/j.jad.2017.05.003
- Rezaie-Keikhaie K, Arbabshastan ME, Rafiemanesh H, Amirshahi M, Ostadkelayeh SM, Arbabisarjou A. Systematic Review and Meta-Analysis of the Prevalence of the Maternity Blues in the Postpartum Period. *J Obstet Gynecol Neonatal Nurs*. 2020;49(2):127-136. doi:10.1016/j.jogn.2020.01.001
- 3. Beck CT. Predictors of postpartum depression: an update. *Nurs Res.* 2001;50(5):275-285.
- 4. de Paula Eduardo JAF, de Rezende MG, Menezes PR, Del-Ben CM. Preterm birth as a risk factor for postpartum depression: A systematic review and meta-analysis. *J Affect Disord*. 2019;259:392-403. doi:10.1016/j.jad.2019.08.069

ו כ		
2 3 4 5 6	5.	H F Z
7 8 9	6.	₽ ∠
10 11 12 13 14	7.	((/
15 16 17 18 19 20	8.	I a i c
20 21 22 23 24	9.	(6 1
25 26 27 28 20	10.	H F 2
29 30 31 32 33	11.	s f
34 35 36 37 38	12.	
40 41 42 43	13.	H r 2
44 45 46 47	14.	I I J
48 49 50 51 52	15.	H V 2
53 54 55	16.	H 1
56 57 58 59 60	17.	I C C

- 5. Blom EA, Jansen PW, Verhulst FC, et al. Perinatal complications increase the risk of postpartum depression. The Generation R Study. *BJOG Int J Obstet Gynaecol*. 2010;117(11):1390-1398. doi:10.1111/j.1471-0528.2010.02660.x
- 6. Beck CT. Postpartum depression: a metasynthesis. *Qual Health Res*. 2002;12(4):453-472. doi:10.1177/104973202129120016
- 7. Grace SL, Evindar A, Stewart DE. The effect of postpartum depression on child cognitive development and behavior: a review and critical analysis of the literature. *Arch Womens Ment Health.* 2003;6(4):263-274. doi:10.1007/s00737-003-0024-6
- 8. Lebel C, Walton M, Letourneau N, Giesbrecht GF, Kaplan BJ, Dewey D. Prepartum and postpartum maternal depressive symptoms are related to children's brain structure in preschool. *Biol Psychiatry*. 2016;80(11):859-868. doi:10.1016/j.biopsych.2015.12.004
- 9. Goodman SH, Rouse MH, Connell AM, Broth MR, Hall CM, Heyward D. Maternal depression and child psychopathology: a meta-analytic review. *Clin Child Fam Psychol Rev.* 2011;14(1):1-27. doi:10.1007/s10567-010-0080-1
- Hagberg KW, Robijn AL, Jick S. Maternal depression and antidepressant use during pregnancy and the risk of autism spectrum disorder in offspring. *Clin Epidemiol*. 2018;10:1599-1612. doi:10.2147/CLEP.S180618
- Stein A, Pearson RM, Goodman SH, et al. Effects of perinatal mental disorders on the fetus and child. *The Lancet*. 2014;384(9956):1800-1819. doi:10.1016/S0140-6736(14)61277-0
- 12. Van Batenburg-Eddes T, Brion MJ, Henrichs J, et al. Parental depressive and anxiety symptoms during pregnancy and attention problems in children: a cross-cohort consistency study. *J Child Psychol Psychiatry*. 2013;54(5):591-600. doi:10.1111/jcpp.12023
- Barker ED, Jaffee SR, Uher R, Maughan B. The contribution of prenatal and postnatal maternal anxiety and depression to child maladjustment. *Depress Anxiety*. 2011;28(8):696-702. doi:10.1002/da.20856
- 14. Pearson RM, Evans J, Kounali D, et al. Maternal depression during pregnancy and the postnatal period: risks and possible mechanisms for offspring depression at 18 years. *JAMA Psychiatry*. 2013;70(12):1312-1319. doi:10.1001/jamapsychiatry.2013.2163
- 15. Kleine I, Falconer S, Roth S, et al. Early postnatal maternal trait anxiety is associated with the behavioural outcomes of children born preterm <33 weeks. *J Psychiatr Res.* 2020;131:160-168. doi:10.1016/j.jpsychires.2020.09.010
- 16. Feder A, Nestler EJ, Charney DS. Psychobiology and molecular genetics of resilience. *Nat Rev Neurosci.* 2009;10(6):446-457. doi:10.1038/nrn2649
- 17. Dimitrova R, Pietsch M, Christiaens D, et al. Heterogeneity in brain microstructural development following preterm birth. *Cereb Cortex*. 2020;30(9):4800-4810. doi:10.1093/cercor/bhaa069

- Fitzallen GC, Sagar YK, Taylor HG, Bora S. Anxiety and depressive disorders in children born preterm: a meta-analysis. *J Dev Behav Pediatr JDBP*. 2021;42(2):154-162. doi:10.1097/DBP.00000000000898
- Allotey J, Zamora J, Cheong-See F, et al. Cognitive, motor, behavioural and academic performances of children born preterm: a meta-analysis and systematic review involving 64 061 children. *BJOG Int J Obstet Gynaecol*. 2018;125(1):16-25. doi:10.1111/1471-0528.14832
- Jaekel J, Pluess M, Belsky J, Wolke D. Effects of maternal sensitivity on low birth weight children's academic achievement: a test of differential susceptibility versus diathesis stress. *J Child Psychol Psychiatry*. 2015;56(6):693-701. doi:10.1111/jcpp.12331
- 21. Belsky J, Bakermans-Kranenburg MJ, van IJzendoorn MH. For better and for worse: differential susceptibility to environmental influences. *Curr Dir Psychol Sci.* 2007;16(6):300-304. doi:10.1111/j.1467-8721.2007.00525.x
- 22. Gueron-Sela N, Atzaba-Poria N, Meiri G, Marks K. The caregiving environment and developmental outcomes of preterm infants: diathesis stress or differential susceptibility effects? *Child Dev.* 2015;86(4):1014-1030. doi:https://doi.org/10.1111/cdev.12359
- 23. Hadfield K, O'Brien F, Gerow A. Is level of prematurity a risk/plasticity factor at three years of age? *Infant Behav Dev.* 2017;47:27-39. doi:10.1016/j.infbeh.2017.03.003
- 24. Belsky J, Pluess M. Beyond diathesis stress: differential susceptibility to environmental influences. *Psychol Bull*. 2009;135(6):885-908. doi:10.1037/a0017376
- 25. Pluess M, Belsky J. Prenatal programming of postnatal plasticity? *Dev Psychopathol*. 2011;23(1):29-38. doi:10.1017/S0954579410000623
- 26. DeMaster D, Bick J, Johnson U, Montroy JJ, Landry S, Duncan AF. Nurturing the preterm infant brain: leveraging neuroplasticity to improve neurobehavioral outcomes. *Pediatr Res.* 2019;85(2):166-175. doi:10.1038/s41390-018-0203-9
- 27. World Health Organization (WHO). Global nutrition targets 2025: low birth weight policy brief. Published online 2014.
- 28. Carson C, Redshaw M, Gray R, Quigley MA. Risk of psychological distress in parents of preterm children in the first year: evidence from the UK Millennium Cohort Study. *BMJ Open.* 2015;5(12):e007942. doi:10.1136/bmjopen-2015-007942
- 29. Vigod SN, Villegas L, Dennis CL, Ross LE. Prevalence and risk factors for postpartum depression among women with preterm and low-birth-weight infants: a systematic review. *BJOG Int J Obstet Gynaecol*. 2010;117(5):540-550. doi:10.1111/j.1471-0528.2009.02493.x
- 30. Johnson S, Wolke D. Behavioural outcomes and psychopathology during adolescence. *Early Hum Dev.* 2013;89(4):199-207. doi:10.1016/j.earlhumdev.2013.01.014
- 31. Lautarescu A, Victor S, Lau-Zhu A, Counsell SJ, Edwards AD, Craig MC. The factor structure of the Edinburgh Postnatal Depression Scale among perinatal high-risk and

community samples in London. *Arch Womens Ment Health*. 2022;25(1):157-169. doi:10.1007/s00737-021-01153-0

- 32. Ministry of Housing, Communities & Local Government. The English indices of deprivation 2019. Published online 2019. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment _data/file/835115/IoD2019_Statistical_Release.pdf
- Cox JL, Holden JM, Sagovsky R. Detection of postnatal depression: development of the 10-item Edinburgh Postnatal Depression Scale. *Br J Psychiatry*. 1987;150(6):782-786. doi:10.1192/bjp.150.6.782
- 34. Levis B, Negeri Z, Sun Y, Benedetti A, Thombs BD. Accuracy of the Edinburgh Postnatal Depression Scale (EPDS) for screening to detect major depression among pregnant and postpartum women: systematic review and meta-analysis of individual participant data. *BMJ*. 2020;371. doi:10.1136/bmj.m4022
- 35. Achenbach TM, Rescorla LA. *Manual for the ASEBA preschool forms & profiles*.; 2000.
- 36. Allison C, Baron-Cohen S, Wheelwright S, et al. The Q-CHAT (Quantitative Checklist for Autism in Toddlers): a normally distributed quantitative measure of autistic traits at 18-24 months of age: preliminary report. *J Autism Dev Disord*. 2008;38(8):1414-1425. doi:10.1007/s10803-007-0509-7
- Allison C, Matthews FE, Ruta L, et al. Quantitative Checklist for Autism in Toddlers (Q-CHAT). A population screening study with follow-up: the case for multiple timepoint screening for autism. *BMJ Paediatr Open*. 2021;5(1):e000700. doi:10.1136/bmjpo-2020-000700
- 38. Bayley N. *Bayley scales of infant and toddler development third edition*. 3rd ed. Harcourt Assessment; 2006.
- 39. Albers CA, Grieve AJ. Review of Bayley scales of infant and toddler development-third edition. *J Psychoeduc Assess*. 2007;25(2):180-190. doi:10.1177/0734282906297199
- 40. Anderson PJ, De Luca CR, Hutchinson E, Roberts G, Doyle LW, the Victorian Infant Collaborative Group. Underestimation of developmental delay by the new Bayley-III scale. *Arch Pediatr Adolesc Med*. 2010;164(4):352-356. doi:10.1001/archpediatrics.2010.20
- 41. White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. *Stat Med.* 2011;30(4):377-399. doi:https://doi.org/10.1002/sim.4067
- 42. Rubin DB. Inference and missing data. *Biometrika*. 1976;63(3):581-592. doi:10.2307/2335739
- 43. Cohen J. *Statistical power analysis for the behavioral sciences*. 2nd ed. L. Erlbaum Associates; 1988.

44. Selya AS, Rose JS, Dierker LC, Hedeker D, Mermelstein RJ. A practical guide to calculating Cohen's f2, a measure of local effect size, from PROC MIXED. *Front Psychol.* 2012;3. doi:10.3389/fpsyg.2012.00111

- 45. Harel O. The estimation of R 2 and adjusted R 2 in incomplete data sets using multiple imputation. *J Appl Stat.* 2009;36(10):1109-1118. doi:10.1080/02664760802553000
- 46. Plomin R, Haworth CMA, Davis OSP. Common disorders are quantitative traits. *Nat Rev Genet*. 2009;10(12):872-878. doi:10.1038/nrg2670
- 47. Conroy S, Pariante CM, Marks MN, et al. Maternal psychopathology and infant development at 18 months: the impact of maternal personality disorder and depression. *J Am Acad Child Adolesc Psychiatry*. 2012;51(1):51-61. doi:10.1016/j.jaac.2011.10.007
- 48. Kingston D, Kehler H, Austin MP, et al. Trajectories of maternal depressive symptoms during pregnancy and the first 12 months postpartum and child externalizing and internalizing behavior at three years. *PloS One*. 2018;13(4):e0195365. doi:10.1371/journal.pone.0195365
- 49. Wiggins LD, Rubenstein E, Daniels J, et al. A phenotype of childhood autism is associated with preexisting maternal anxiety and depression. *J Abnorm Child Psychol*. 2019;47(4):731-740. doi:10.1007/s10802-018-0469-8
- 50. Babb JA, Deligiannidis KM, Murgatroyd CA, Nephew BC. Peripartum depression and anxiety as an integrative cross-domain target for psychiatric preventative measures. *Behav Brain Res.* 2015;0:32-44. doi:10.1016/j.bbr.2014.03.039
- 51. Pohl AL, Crockford SK, Blakemore M, Allison C, Baron-Cohen S. A comparative study of autistic and non-autistic women's experience of motherhood. *Mol Autism*. 2020;11(1):3. doi:10.1186/s13229-019-0304-2
- 52. Colvert E, Tick B, McEwen F, et al. Heritability of autism spectrum disorder in a UK population-based twin sample. *JAMA Psychiatry*. 2015;72(5):415-423. doi:10.1001/jamapsychiatry.2014.3028
- 53. Egger HL, Emde RN. Developmentally sensitive diagnostic criteria for mental health disorders in early childhood: the diagnostic and statistical manual of mental disorders-IV, the research diagnostic criteria-preschool age, and the diagnostic classification of mental health and developmental disorders of infancy and early childhood-revised. *Am Psychol.* 2011;66(2):95-106. doi:10.1037/a0021026
- 54. Henshaw C. Mood disturbance in the early puerperium: a review. *Arch Women's Ment Health*. 2003;6(2):s33-s42. doi:10.1007/s00737-003-0004-x
- 55. Heron J, O'Connor TG, Evans J, Golding J, Glover V. The course of anxiety and depression through pregnancy and the postpartum in a community sample. *J Affect Disord*. 2004;80(1):65-73. doi:10.1016/j.jad.2003.08.004
- 56. Biel MG. Parental psychiatric symptoms and children's outcomes: toward understanding and responding to intergenerational risk in child psychiatry. *J Am Acad Child Adolesc Psychiatry*. 2018;57(9):632-633. doi:10.1016/j.jaac.2018.06.010

- 57. National Institute for Health and Care Excellence. Preterm labour and birth (NICE guideline 25). Published online November 2015. Accessed January 27, 2019. https://www.nice.org.uk/guidance/ng25
 - 58. Office for National Statistics. Birth characteristics in England and Wales: 2020. Published January 13, 2022. Accessed February 5, 2022. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/live births/bulletins/birthcharacteristicsinenglandandwales/2020#birth-characteristics
 - 59. Londero AP, Rossetti E, Pittini C, Cagnacci A, Driul L. Maternal age and the risk of adverse pregnancy outcomes: a retrospective cohort study. *BMC Pregnancy Childbirth*. 2019;19(1):261. doi:10.1186/s12884-019-2400-x
 - 60. Bennett T, Boyle M, Georgiades K, et al. Influence of reporting effects on the association between maternal depression and child autism spectrum disorder behaviors. *J Child Psychol Psychiatry*. 2012;53(1):89-96. doi:10.1111/j.1469-7610.2011.02451.x
 - 61. Goh DA, Gan D, Kung J, et al. Child, maternal and demographic factors influencing caregiver-reported autistic trait symptomatology in toddlers. *J Autism Dev Disord*. 2018;48(4):1325-1337. doi:10.1007/s10803-018-3471-7
 - 62. Friedlander S, Weiss DS, Traylor J. Assessing the influence of maternal depression on the validity of the Child Behavior Checklist. *J Abnorm Child Psychol*. 1986;14(1):123-133. doi:10.1007/bf00917228

Piezoni

$\begin{array}{r} 274 \overline{(53.8)} \\ \hline \\ 65 (12.8) \\ 87 (17.2) \\ 108 (21.3) \\ 173 (34.2) \\ 73 (14.4) \\ 39.7 [20 - 43] \\ \hline \\ 18 (3.5) \\ 28 (5.5) \\ 51 (10.0) \\ 412 (80.9) \\ 3290 [450 - 4750] \\ 54 (10.6) \\ \end{array}$
$\begin{array}{r} 65 (12.8) \\ 87 (17.2) \\ 108 (21.3) \\ 173 (34.2) \\ 73 (14.4) \\ 39.7 [20 - 43] \\ \hline \\ 18 (3.5) \\ 28 (5.5) \\ 51 (10.0) \\ 412 (80.9) \\ 3290 [450 - 4750] \\ 54 (10.6) \\ \end{array}$
$\begin{array}{r} 65 (12.8) \\ \hline 87 (17.2) \\ 108 (21.3) \\ 173 (34.2) \\ 73 (14.4) \\ 39.7 [20 - 43] \\ \hline \\ 18 (3.5) \\ 28 (5.5) \\ 51 (10.0) \\ 412 (80.9) \\ 3290 [450 - 4750] \\ 54 (10.6) \\ \end{array}$
$\begin{array}{r} 87 (17.2) \\ 108 (21.3) \\ 173 (34.2) \\ 73 (14.4) \\ 39.7 [20 - 43] \\ \hline \\ 18 (3.5) \\ 28 (5.5) \\ 51 (10.0) \\ 412 (80.9) \\ 3290 [450 - 4750] \\ 54 (10.6) \\ \end{array}$
$ \begin{array}{r} 108 (21.3) \\ 173 (34.2) \\ 73 (14.4) \\ 39.7 [20 - 43] \\ \hline 18 (3.5) \\ 28 (5.5) \\ 51 (10.0) \\ 412 (80.9) \\ 3290 [450 - 4750] \\ 54 (10.6) \\ \end{array} $
$ \begin{array}{r} 173 (34.2) \\ 73 (14.4) \\ 39.7 [20 - 43] \\ \hline 18 (3.5) \\ 28 (5.5) \\ 51 (10.0) \\ 412 (80.9) \\ 3290 [450 - 4750] \\ 54 (10.6) \\ \end{array} $
$\begin{array}{r} 73 (14.4) \\ 39.7 [20 - 43] \\ \hline 18 (3.5) \\ 28 (5.5) \\ 51 (10.0) \\ 412 (80.9) \\ 3290 [450 - 4750] \\ 54 (10.6) \end{array}$
39.7 [20 – 43] 18 (3.5) 28 (5.5) 51 (10.0) 412 (80.9) 3290 [450 – 4750] 54 (10.6)
$ \begin{array}{r} 18 (3.5) \\ 28 (5.5) \\ 51 (10.0) \\ 412 (80.9) \\ 3290 [450 - 4750] \\ 54 (10.6) \\ \end{array} $
$ \begin{array}{r} 18 (3.5) \\ 28 (5.5) \\ 51 (10.0) \\ 412 (80.9) \\ 3290 [450 - 4750] \\ 54 (10.6) \\ \end{array} $
28 (5.5) 51 (10.0) 412 (80.9) 3290 [450 - 4750] 54 (10.6)
51 (10.0) 412 (80.9) 3290 [450 - 4750] 54 (10.6)
412 (80.9) 3290 [450 - 4750] 54 (10.6)
<u>3290 [450 - 4750]</u> 54 (10 6)
54 (10.6)
51(10.0)
332 (65.2)
124 (24.4)
32 (6.3)
21 (4.2)
23.2 [15.3 - 43.6]
34.2 (4.8)
[17 - 52]
272 (53.4)
56 (11.0)
28 (5.5)
18 (3.5)
4 (0.8)
4 (0.8)
30 (5.9)
9 (1.8)
88 (17.3)
100 (11.4)
[55 - 125]
46.9 (9.5)
[28 - 69]
30.5 (9.3)
[8 - 70]
4 [0 - 28]
4 [0 - 28]
4 [0 - 28] 415 (8.2)
<u>4 [0 - 28]</u> <u>415 (8.2)</u> 21 (4.1)

Table 1: Socio-demographic, maternal and clinical characteristics (n=	=509)
---	-------

Quintile 1 corresponds to the highest, least deprived, IMD rankings.

* unless otherwise specified

	CBCL Q-CHAT					
	B [95%CI]	р	f ²	B [95%CI]	р	f ²
Maternal EPDS	0.93 [0.43, 1.44]	<.001 ***	0.05	0.27 [0.03, 0.52]	.031 *	0.01
Maternal BMI	-0.09 [-0.44, 0.26]	.621	-	0.06 [-0.13, 0.24]	.538	-
Multiple pregnancy	3.15 [-3.07, 9.37]	.320	-	1.33 [-2.62, 5.28]	.509	-
Parity						
1	-2.52 [-5.96, 0.93]	.151	-	-2.14 [-4.02, -0.27]	.025 a	-
2	-3.23 [-9.16, 2.70]	.285	-	0.88 [-1.99, 3.75]	.548	-
3+	-1.37 [-8.36, 5.61]	.699	-	-0.49 [-4.57, 3.60]	.815	-
IMD rank	-1.48 [-3.33, 0.37]	.117	-	-1.50 [-2.60, -0.40]	.008 **	0.02
Gestational age at birth (weeks)	0.10 [-0.65, 0.85]	.786	-	0.26 [-0.17, 0.70]	.233	-
Birthweight (kg)	0.56 [-2.65, 3.78]	.731	-	-1.24 [-2.93, 0.46]	.151	-
Sex:female	-4.14 [-6.96, -1.31]	.004 **	0.06	-1.95 [-3.42, -0.48]	.009 **	0.05
Corrected age at assessment (months)	-0.90 [-2.17, 0.37]	.166	-	-0.16 [-0.91, 0.59]	.677	-
Cognition	-0.05 [-0.20, 0.09]	.467	-	-0.27 [-0.35, -0.20]	<.001 ***	0.12

 Table 2: CBCL and Q-CHAT model predictors using multiple imputation without interaction. (Cf. Supplementary Table 3 for complete case analysis)

p<0.05 *; p<0.01 **; p<0.001 ***

CBCL model adjusted $R^2 = 0.0676$. Q-CHAT model adjusted $R^2 = 0.193$.

B = unstandardised coefficient.

CBCL = Child Behaviour Checklist score at 18 months. Q-CHAT = Quantitative Checklist for Autism in Toddlers score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-equivalent age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months.

^a Wald test of whole parity variable in Q-CHAT model: F(3, 476.9) = 1.88, p = .133

Effect size (Cohen's f^2 , calculated from squared part correlations for predictors significant to 0.05): 0.02 = small, 0.15 = medium and 0.35 = large.⁴³

- indicates data not given, as predictor not significant to 0.05.

2
3
4
5
s c
6
/
8
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
25
26
27
27
20
29
30
31
32
33
34
35
36
37
38
30
10
40
41
42
43
44
45

1

	CBCL Q-CHAT		Т	
	B [95%CI]	р	B [95%CI]	р
Maternal EPDS	0.89 [-0.24, 2.02]	.121	0.24 [-0.28, 0.75]	.365
Maternal BMI	-0.01 [-0.39, 0.37]	.955	0.00 [-0.16, 0.17]	.982
Multiple pregnancy	1.76 [-6.65, 10.17]	.681	0.97 [-2.07, 4.01]	.532
Parity				
1	-2.75 [-6.49, 0.99]	.149	-1.42 [-3.30, 0.46]	.139
2	-3.49 [-10.36, 3.37]	.317	0.16 [-2.84, 3.16]	.917
3+	-1.17 [-9.69, 7.35]	.788	-1.13 [-4.24, 1.98]	.476
IMD rank	-1.41 [-3.54, 0.73]	.195	-1.68 [-2.64, -0.72]	.001 **
Gestation: term	1.25 [-8.34, 10.85]	.797	2.64 [-1.74, 7.02]	.236
Birthweight (kg)	-1.01 [-4.08, 2.05]	.516	-2.25 [-3.73, -0.78]	.003 **
Sex: female	-4.64 [-7.83, -1.44]	.005 **	-2.22 [-3.72, -0.71]	.004 **
Corrected age at assessment (months)	-0.83 [-2.27, 0.62]	.261	-0.39 [-1.18, 0.04]	.335
Cognition	-0.03 [-0.20, 0.14]	.720	-0.22 [-0.29,0.15]	<.001 ***
EPDS x gestation:term	-0.01 [-1.30, 1.28]	.991	-0.02 [-0.60, 0.56]	.950

p<0.05 *; p<0.01 **; p<0.001 ***

CBCL model adjusted $R^2 = 0.0865$. Q-CHAT model adjusted $R^2 = 0.215$.

B = unstandardised coefficient.

CBCL = Child Behaviour Checklist score at 18 months. Q-CHAT = Quantitative Checklist for Autism in Toddlers score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-equivalent age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Gestation: term = dummy variable, term (\geq 37 weeks) vs preterm (<37 weeks) gestation at birth. Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months. EPDS x gestation: term = interaction term between maternal EPDS score and term gestation at birth.

ez.ez

	B [95%CI]	р
Maternal EPDS	-0.22 [-0.50, 0.05]	.108
Maternal BMI	-0.32 [-0.52, -0.13]	.001 **
Multiple pregnancy	1.65 [-2.49, 5.79]	.433
Parity		·
1	-0.46 [-2.67, 1.76]	.686
2	-3.47 [-6.69, -0.25]	.035 a
3+	-4.57 [-9.53, 0.40]	.072
IMD rank	1.43 [0.37, 2.50]	.009 **
Gestational age at birth (weeks)	0.45 [-0.07, 0.96]	.091
Birthweight (kg)	0.81 [-1.24, 2.87]	.436
Sex: female	1.99 [0.24, 3.74]	.026 *
Corrected age at assessment (months)	-0.75 [-1.59, 0.08]	.075
Q-CHAT score	-0.39 [-0.50, -0.28]	<.001 ***
<0.05 *; p<0.01 **; p<0.001 *** Adjusted R ² = 0.231		
Actornal EDDS = maternal Edinburgh Dost	notal Doprossion Soula and	ro at tarm agu
B = unstandardised coefficient. Maternal EPDS = maternal Edinburgh Posti	natal Depression Scale sco	ore at term-e

ng multiple imputation.

age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months. Q-CHAT score = infant's Q-CHAT score at 18 month assessment. ^a Wald test of whole parity variable in cognition model: F(3, 482.9)=2.41, p=0.067

Fig.1 Children's predicted CBCL scores at 18 months are positively correlated to the maternal EPDS score at term-equivalent age.

Fig.2 Children's predicted Q-CHAT scores at 18 months are positively correlated to the maternal EPDS score at term-equivalent age.

Fig.1 Children's predicted CBCL scores at 18 months are positively correlated to the maternal EPDS score at

158x158mm (220 x 220 DPI)

Supplemental material

 Supplementary Table 1: CBCL internalising symptom model predictors using multiple imputation.

Supplementary Table 2: CBCL externalising symptom model predictors using multiple imputation.

Supplementary Table 3: CBCL and Q-CHAT model predictors using complete case analysis without interaction.

Supplementary Table 4: EPDS score predictors.

Supplementary Table 5: EPDS score predictors including interaction 'term x time-lag'.

Supplementary Figure 1: Histogram showing the distribution of maternal EPDS scores at term-equivalent age.
BMJ Open

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	

46

Supplementary Table 1: CBCL internalising symptom model predictors using multiple imputation.

			പ
	B [95%CI]	р	f²
Maternal EPDS	0.22 [0.08, 0.36]	.003 **	0.03
Maternal BMI	-0.04 [-0.13, 0.06]	.436	-
Multiple pregnancy	0.58 [-1.10, 2.27]	.497	-
Parity			
1	-0.37 [-1.41, 0.67]	.487	-
2	-1.33 [-3.09, 0.42]	.136	-
3+	0.64 [-1.34, 2.62]	.524	-
IMD rank	-0.41 [-0.91, 0.10]	.115	-
Gestational age at birth (weeks)	0.22 [-0.00, 0.44]	.053	-
Birthweight (kg)	-0.97 [-1.90, -0.05]	.038 *	0.005
Sex: female	-0.51 [-1.35, 0.33]	.232	-
Corrected age at assessment (months)	0.02 [-0.41, 0.45]	.923	_
Cognition	-0.05 [-0.10, -0.01]	.016 *	0.01

p<0.05 *; p<0.01 **; p<0.001 ***

Adjusted $R^2 = 0.0566$.

B = unstandardised coefficient.

Outcome variable = Child Behaviour Checklist internalising sub-score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-equivalent age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months.

Effect size (Cohen's f^2 , calculated from squared part correlations for predictors significant to 0.05): 0.02 = small, 0.15 = medium and 0.35 = large.¹

- indicates data not given, as predictor not significant to 0.05.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

1 2

Supplementary Table 2: CBCL externalising symptom model predictors using multiple imputation.

	B [95%CI]	р	\mathbf{f}^2
Maternal EPDS	0.40 [0.20, 0.61]	<.001 ***	0.05
Maternal BMI	0.01 [-0.17, 0.15]	.933	-
Multiple pregnancy	2.51 [-0.29, 5.31]	.079	-
Parity			
1	-1.06 [-2.53, 0.42]	.160	-
2	-0.61 [-3.55, 2.33]	.682	-
3+	-0.96 [-4.47, 2.56]	.593	-
IMD rank	-0.24 [-1.11, 0.63]	.585	-
Gestational age at birth (weeks)	-0.07 [-0.40, 0.27]	.701	-
Birthweight (kg)	1.03 [-0.38, 2.44]	.153	-
Sex: female	-1.80 [-3.07, -0.53]	.006 **	0.06
Corrected age at assessment (months)	-0.40 [-0.95, 0.16]	.161	-
Cognition	0.03 [-0.03, 0.10]	.322	-
p<0.05 *; p<0.01 **; p<0.001 ***			
A dijusted $\mathbf{R}^2 - 0.0612$			

Adjusted $R^2 = 0.0612$.

B = unstandardised coefficient.

Outcome variable = Child Behaviour Checklist externalising sub-score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-equivalent age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months.

Effect size (Cohen's f^2 , calculated from squared part correlations for predictors significant to 0.05): 0.02 = small, 0.15 = medium and 0.35 =large.¹

- indicates data not given, as predictor not significant to 0.05.

 BMJ Open

	CBCL		Q-CHA	Т
	B [95%CI]	р	B [95%CI]	р
Maternal EPDS	0.88 [0.35, 1.41]	.001 **	0.21 [-0.02, 0.44]	.069
Maternal BMI	-0.01 [-0.38, 0.37]	.963	0.01 [-0.16, 0.17]	.930
Multiple pregnancy	1.50 [-6.87, 9.87]	.724	0.43 [-2.50, 3.37]	.772
Parity				
1	-2.83 [-6.60, 0.94]	.141	-1.54 [-3.41, 0.34]	.108
2	-3.49 [-10.3, 3.35]	.316	0.13 [-2.85, 3.10]	.933
3+	-1.38 [-10.0, 7.30]	.755	-1.43 [-4.50, 1.64]	.360
IMD rank	-1.44 [-3.56, 0.67]	.181	-1.75 [-2.70, -0.79]	<.001 **
Gestational age at birth (weeks)	0.01 [-0.90, 0.91]	.987	0.10 [-0.33, 0.54]	.639
Birthweight (kg)	-0.65 [-4.38, 3.08]	.733	-1.81 [-3.63, 0.00]	.050
Sex: female	-4.57 [-7.82, -1.31]	.006 **	-2.12 [-3.60, -0.64]	.005 **
Corrected age at assessment (months)	-0.84 [-2.26, 0.59]	.247	-0.41 [-1.18, 0.35]	.290
Cognition	-0.03 [-0.20, 0.13]	.689	-0.23 [-0.30, -0.15]	<.001 ***
p<0.05 *; p<0.01 **; p<0.001 *** CBCL adjusted R2 = 0.0862. Q-CHAT adjusted R2 = 0.2103.				

Supplementary Table 3: CBCL and Q-CHAT model predictors using complete case analysis without interaction.

CBCL adjusted
$$R^2 = 0.0862$$
. Q-CHAT adjusted $R^2 = 0.2103$.

B = unstandardised coefficient.

CBCL = Child Behaviour Checklist externalising sub-score at 18 months. Q-CHAT = Quantitative Checklist for Autism in Toddlers score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-equivalent age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Gestation (weeks) = dummy variable: 34-36+6 weeks and \geq 37 weeks gestation at birth. Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months.

2
3
4
5
6
7
, 8
0
10
10
17
12
13
14
15
10
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

1

Supplementary Table 4: EPDS score predictors.

	IRR [95%CI]	р
Time-lag (weeks)	1.01 [0.97, 1.05]	.647
Gestation:term	0.91 [0.64, 1.31]	.627
IMD rank	1.00 [1.00, 1.00]	.103
Multiple pregnancy	0.66 [0.46, 0.96]	.031 *
Parity		
1	0.79 [0.66, 0.95]	.011 *
2	0.87 [0.60, 1.28]	.491
3+	0.84 [0.54, 1.31]	.445
Birthweight (kg)	0.98 [0.83, 1.17]	.847
Sex:female	1.13 [0.98, 1.31]	.098

p<0.05 *; p<0.01 **; p<0.001 ***

Pseudo $R^2 = 0.0228$

IRR = incidence rate ratio

Outcome variable = maternal Edinburgh Postnatal Depression Scale (EPDS) score at term-equivalent age. Time-lag (weeks) = time in weeks between birth and EPDS assessment. Gestation:term = dummy variable, term (\geq 37 weeks) vs preterm (\leq 37 weeks) gestation at birth. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren).

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
20	
27 20	
20	
29	
50 21	
21	
2∠ 22	
ככ ⊃⊿	
24 25	
35	
0C 27	
3/	
38 20	
39 40	
40	
41	
42	
43	
44	
45	

46

Supplementary Table 5: EPDS score predictors including interaction 'term x time-lag'.

	IRR [95%CI]	р
Time-lag (weeks)	1.00 [0.97, 1.04]	.823
Gestation: term	0.88 [0.58, 1.34]	.553
IMD rank	1.00 [1.00, 1.00]	.104
Multiple pregnancy	0.66 [0.46, 0.96]	.029 *
Parity		
1	0.79 [0.66, 0.95]	.010 *
2	0.87 [0.60, 1.28]	.480
3+	0.85 [0.55, 1.31]	.458
Birthweight (kg)	0.97 [0.83, 1.15]	.756
Sex:female	1.13 [0.98, 1.30]	.100
Term x time-lag (weeks)	1.01 [0.94, 1.10]	.735

p<0.05 *; p<0.01 **; p<0.001 ***

Pseudo $R^2 = 0.0230$

IRR = incidence rate ratio

Outcome variable = maternal Edinburgh Postnatal Depression Scale (EPDS) score at term-equivalent age. Time-lag (weeks) = time in weeks between birth and EPDS assessment. Gestation: term = dummy variable, term (\geq 37 weeks) vs preterm (<37 weeks) gestation at birth. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Term x time-lag (weeks): interaction term between term gestation at birth and time-lag between birth and maternal EPDS assessment.

 BMJ Open

Supplemental reference list

1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. L. Erlbaum Associates; 1988.

For peer review only

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the	1, 2
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5,6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6,7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7
5		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7
1		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7, 8
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7, 8
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	9
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	9, 10
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	9, 10
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(e) Describe any sensitivity analyses	
Dosults			
Participants	13*	(a) Report numbers of individuals at each stage of study—eq numbers notentially	11
i articipants	15	eligible examined for eligibility confirmed eligible included in the study	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic clinical social)	11
	14	and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-un time (eg. average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	11.
Cateonie unu	1.5	report numbers of outcome events of summary medsures over time	12

BMJ Open

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	11, 12, 13
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11, 12, 13
Discussion			
Key results	18	Summarise key results with reference to study objectives	13
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	15- 17
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	17
Generalisability	21	Discuss the generalisability (external validity) of the study results	15- 17
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	3

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Postnatal maternal depressive symptoms and behavioural outcomes in term- and preterm-born toddlers: a longitudinal UK community cohort study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058540.R2
Article Type:	Original research
Date Submitted by the Author:	26-May-2022
Complete List of Authors:	Kleine, Ira; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Vamvakas, George; King's College London, Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience Lautarescu, Alexandra; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine; King's College London, Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience Falconer, Shona; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Chew, Andrew; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Counsell, Serena ; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Counsell, Serena ; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Pickles, Andrew; King's College London, Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience Edwards, David; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Nosarti, Chiara; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine
Primary Subject Heading :	Mental health
Secondary Subject Heading:	Paediatrics
Keywords:	MENTAL HEALTH, Child & adolescent psychiatry < PSYCHIATRY, Developmental neurology & neurodisability < PAEDIATRICS, Depression & mood disorders < PSYCHIATRY, NEONATOLOGY

SCHOLARONE" Manuscripts
For noar roviow only http://bmionan.hmi.com/site/about/guidalines.yhtml
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xntml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Page 3 of 38

2 3	1	Postnatal maternal depressive symptoms and behavioural outcomes in term- and	
4 5	2	preterm-born toddlers: a longitudinal UK community cohort study.	
6 7	3	Kleine, Ja (MBBS): Vamvakas, G ^b (MSc): Lautarescu A ^{a,c} (MPhil): Falconer, S ^a (PhD): Chew	
8	<u>ح</u>	A ^a (MD): Counsell SI ^a (PhD): Pickles A ^b (EMedSci): Edwards AD ^a (EMedSci): Nosarti C ^{a,d}	
9 10	5	(PhD)	
11 12	5		
13	7	^a Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty	
14 15	,	of Life Sciences & Medicine King's College London St Thomas' Hospital London SE1	
16 17	0	7ELL UV	
18	9	/En, UK.	
19 20	10	Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and	
21 22	11	Neuroscience, King's College London, London SES 8AF, UK.	
23	12	^c Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and	
24 25	13	Neuroscience, King's College London, London SE5 8AF, UK.	
26 27	14	^d Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and	
27 28	15	Neuroscience, King's College London, London SE5 8AF, UK.	
29 30	16		
31	17	Post-publication corresponding author's contact information	
32 33	18	Prof Chiara Nosarti	
34 35	19	Centre for the Developing Brain, School of Bioengineering and Imaging Sciences	
36	20	King's College London	
37 38	21	St Thomas' Hospital	
39 40	22	London	
41	23	SE1 7EH	
42 43	24	UK	
44 45	25	chiara.nosarti@kcl.ac.uk	
46 47	26	+44 (0)207 848 0133	
48 ⊿9	27		
50	28		
51 52	29		
53 54	30		
55	31		
56 57	32		
58 59	33		
60	34		

2		
4	35	Abstract
5 6 7 8 9	36	Objectives: To examine the association between maternal depressive symptoms in the
	37	immediate postnatal period and offspring's behavioural outcomes in a large cohort of term-
	38	and preterm-born toddlers.
10 11	39	Design and Participants: Data were drawn from the Developing Human Connectome
12	40	Project. Maternal postnatal depressive symptoms were assessed at term-equivalent age, and
13 14	41	children's outcomes were evaluated at a median corrected age of 18.4 months (range 17.3 –
15 16	42	24.3).
17	43	Exposure and outcomes: Preterm birth was defined as <37 weeks completed gestation.
18	44	Maternal depressive symptoms were assessed with the Edinburgh Postnatal Depression Scale
20 21	45	(EPDS). Toddlers' outcome measures were parent-rated Child Behaviour Checklist 1 ^{1/2} -5
22	46	Total (CBCL) and Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores.
23 24	47	Toddlers' cognition was assessed with the Bayley Scales of Infant and Toddler Development
25 26	48	– Third Edition (Bayley-III).
27 28	49	Results: Higher maternal EPDS scores were associated with toddlers' higher CBCL (B=0.93,
29	50	95% CI 0.43-1.44, p<0.001, f ² =0.05) and Q-CHAT scores (B=0.27, 95% CI 0.03-0.52,
30 31	51	p=.031, f ² =0.01). Maternal EPDS, toddlers' CBCL and Q-CHAT scores did not differ
32 33	52	between preterm (n=97; 19.1% of the total sample) and term participants. Maternal EPDS
34	53	score did not disproportionately affect preterm children with respect to CBCL or Q-CHAT
35 36	54	scores.
37 38	55	Conclusions: Our findings indicate that children whose mothers reported increased
39 40	56	depressive symptoms in the early postnatal period, including subclinical symptoms, exhibit
40	57	more parent-reported behavioural problems in toddlerhood. These associations were
42 43	58	independent of gestational age. Further research is needed to confirm the clinical significance
44 45	59	of these findings.
46	60	
47 48	61	
49 50	62	
50 51 52 53	63	
	64	
54 55	65	
56	66	
58	67	
59 60	68	
	00	

1 2							
3	69	Strengths and limitations of this study					
4 5	70	 Prospective study with a large sample, using multiple imputation to reduce non- response bias. 					
6 7	71						
8 9	72	• Maternal depressive symptoms assessed as a continuous variable, providing more					
10 11	73	nuanced information about the significance of subclinical symptoms.					
12	74	• Maternal depressive symptoms assessed earlier than in previous studies, enabling					
13 14	75	recognition of early screening opportunities for families.					
15 16	76	• Potential common method variance bias through parent-completed child behavioural					
17	77	assessments.					
19	78	• Unknown paternal and parental factors, such as comorbid psychiatric conditions, that					
20 21	79	may confound our findings.					
22 23	80						
24	81	Keywords					
26	82	Postpartum Depression; Child Development; Autism; Mental Health; Child Behavior; Mood					
27 28	83	B Disorder; Preterm Birth.					
29	84						
30	84						
30 31 32	84 85	Declarations					
30 31 32 33	84 85 86	Declarations Funding					
30 31 32 33 34 35	84 85 86 87	Declarations Funding The DHCP project was funded by the European Research Council under the European Union					
30 31 32 33 34 35 36 37	84 85 86 87 88	Declarations Funding The DHCP project was funded by the European Research Council under the European Union Seventh Framework Programme (FR/2007-2013)/ERC Grant Agreement no. 319456. The					
30 31 32 33 34 35 36 37 38 30	84 85 86 87 88 89	Declarations Funding The DHCP project was funded by the European Research Council under the European Union Seventh Framework Programme (FR/2007-2013)/ERC Grant Agreement no. 319456. The authors acknowledge infrastructure support from the National Institute for Health Research					
30 31 32 33 34 35 36 37 38 39 40	84 85 86 87 88 89 90	Declarations Funding The DHCP project was funded by the European Research Council under the European Union Seventh Framework Programme (FR/2007-2013)/ERC Grant Agreement no. 319456. The authors acknowledge infrastructure support from the National Institute for Health Research Mental Health Biomedical Research Centre at South London, Maudsley NHS Foundation					
30 31 32 33 34 35 36 37 38 39 40 41 42	84 85 86 87 88 89 90 91	Declarations Funding The DHCP project was funded by the European Research Council under the European Union Seventh Framework Programme (FR/2007-2013)/ERC Grant Agreement no. 319456. The authors acknowledge infrastructure support from the National Institute for Health Research Mental Health Biomedical Research Centre at South London, Maudsley NHS Foundation Trust, King's College London, the National Institute for Health Research Mental Health					
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	84 85 86 87 88 89 90 91 92	DeclarationsFundingThe DHCP project was funded by the European Research Council under the European UnionSeventh Framework Programme (FR/2007-2013)/ERC Grant Agreement no. 319456. Theauthors acknowledge infrastructure support from the National Institute for Health ResearchMental Health Biomedical Research Centre at South London, Maudsley NHS FoundationTrust, King's College London, the National Institute for Health Research Mental HealthBiomedical Research Centre at Guys, and St Thomas' Hospitals NHS Foundation Trust. The					
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	84 85 86 87 88 89 90 91 91 92 93	DeclarationsFundingThe DHCP project was funded by the European Research Council under the European UnionSeventh Framework Programme (FR/2007-2013)/ERC Grant Agreement no. 319456. Theauthors acknowledge infrastructure support from the National Institute for Health ResearchMental Health Biomedical Research Centre at South London, Maudsley NHS FoundationTrust, King's College London, the National Institute for Health Research Mental HealthBiomedical Research Centre at Guys, and St Thomas' Hospitals NHS Foundation Trust. Thestudy was also supported in part by the Engineering and Physical Sciences Research Council					
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 	84 85 86 87 88 89 90 91 91 92 93 94	Declarations Funding The DHCP project was funded by the European Research Council under the European Union Seventh Framework Programme (FR/2007-2013)/ERC Grant Agreement no. 319456. The authors acknowledge infrastructure support from the National Institute for Health Research Mental Health Biomedical Research Centre at South London, Maudsley NHS Foundation Trust, King's College London, the National Institute for Health Research Mental Health Biomedical Research Centre at Guys, and St Thomas' Hospitals NHS Foundation Trust. The study was also supported in part by the Engineering and Physical Sciences Research Council / Wellcome Trust Centre for Medical Engineering at King's College London (grant WT					
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 	84 85 86 87 88 89 90 91 91 92 93 94 95	DeclarationsFundingThe DHCP project was funded by the European Research Council under the European UnionSeventh Framework Programme (FR/2007-2013)/ERC Grant Agreement no. 319456. Theauthors acknowledge infrastructure support from the National Institute for Health ResearchMental Health Biomedical Research Centre at South London, Maudsley NHS FoundationTrust, King's College London, the National Institute for Health Research Mental HealthBiomedical Research Centre at Guys, and St Thomas' Hospitals NHS Foundation Trust. Thestudy was also supported in part by the Engineering and Physical Sciences Research Council/ Wellcome Trust Centre for Medical Engineering at King's College London (grant WT203148/Z/16/Z) and the Medical Research Council (UK) (grants MR/K006355/1 and					
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 	84 85 86 87 88 89 90 91 92 93 94 95 96	DeclarationsFundingThe DHCP project was funded by the European Research Council under the European UnionSeventh Framework Programme (FR/2007-2013)/ERC Grant Agreement no. 319456. Theauthors acknowledge infrastructure support from the National Institute for Health ResearchMental Health Biomedical Research Centre at South London, Maudsley NHS FoundationTrust, King's College London, the National Institute for Health Research Mental HealthBiomedical Research Centre at Guys, and St Thomas' Hospitals NHS Foundation Trust. Thestudy was also supported in part by the Engineering and Physical Sciences Research Council/ Wellcome Trust Centre for Medical Engineering at King's College London (grant WT203148/Z/16/Z) and the Medical Research Council (UK) (grants MR/K006355/1 andMR/L011530/1) and the MRC Centre for Neurodevelopmental Disorders at King's College					
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 52 	84 85 86 87 88 89 90 91 92 93 94 95 96 97	Declarations Funding The DHCP project was funded by the European Research Council under the European Union Seventh Framework Programme (FR/2007-2013)/ERC Grant Agreement no. 319456. The authors acknowledge infrastructure support from the National Institute for Health Research Mental Health Biomedical Research Centre at South London, Maudsley NHS Foundation Trust, King's College London, the National Institute for Health Research Mental Health Biomedical Research Centre at Guys, and St Thomas' Hospitals NHS Foundation Trust. The study was also supported in part by the Engineering and Physical Sciences Research Council / Wellcome Trust Centre for Medical Engineering at King's College London (grant WT 203148/Z/16/Z) and the Medical Research Council (UK) (grants MR/K006355/1 and MR/L011530/1) and the MRC Centre for Neurodevelopmental Disorders at King's College London. AP receives a NIHR SI award (NF-SI-0617-10120). AL is supported by the UK					
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	Declarations Funding The DHCP project was funded by the European Research Council under the European Union Seventh Framework Programme (FR/2007-2013)/ERC Grant Agreement no. 319456. The authors acknowledge infrastructure support from the National Institute for Health Research Mental Health Biomedical Research Centre at South London, Maudsley NHS Foundation Trust, King's College London, the National Institute for Health Research Mental Health Biomedical Research Centre at Guys, and St Thomas' Hospitals NHS Foundation Trust. The study was also supported in part by the Engineering and Physical Sciences Research Council / Wellcome Trust Centre for Medical Engineering at King's College London (grant WT 203148/Z/16/Z) and the Medical Research Council (UK) (grants MR/K006355/1 and MR/L011530/1) and the MRC Centre for Neurodevelopmental Disorders at King's College London. AP receives a NIHR SI award (NF-SI-0617-10120). AL is supported by the UK					
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	84 85 86 87 88 89 90 91 92 93 94 95 94 95 96 97 98 99	Declarations Funding The DHCP project was funded by the European Research Council under the European Union Seventh Framework Programme (FR/2007-2013)/ERC Grant Agreement no. 319456. The authors acknowledge infrastructure support from the National Institute for Health Research Mental Health Biomedical Research Centre at South London, Maudsley NHS Foundation Trust, King's College London, the National Institute for Health Research Mental Health Biomedical Research Centre at Guys, and St Thomas' Hospitals NHS Foundation Trust. The study was also supported in part by the Engineering and Physical Sciences Research Council / Wellcome Trust Centre for Medical Engineering at King's College London (grant WT 203148/Z/16/Z) and the Medical Research Council (UK) (grants MR/K006355/1 and MR/L011530/1) and the MRC Centre for Neurodevelopmental Disorders at King's College London. AP receives a NIHR SI award (NF-SI-0617-10120). AL is supported by the UK Medical Research Council (MR/N013700) and King's College London member of the MRC					
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 4 55 56 57 58	 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 	DeclarationsFundingThe DHCP project was funded by the European Research Council under the European UnionSeventh Framework Programme (FR/2007-2013)/ERC Grant Agreement no. 319456. Theauthors acknowledge infrastructure support from the National Institute for Health ResearchMental Health Biomedical Research Centre at South London, Maudsley NHS FoundationTrust, King's College London, the National Institute for Health Research Mental HealthBiomedical Research Centre at Guys, and St Thomas' Hospitals NHS Foundation Trust. Thestudy was also supported in part by the Engineering and Physical Sciences Research Council/ Wellcome Trust Centre for Medical Engineering at King's College London (grant WT203148/Z/16/Z) and the Medical Research Council (UK) (grants MR/K006355/1 andMR/L011530/1) and the MRC Centre for Neurodevelopmental Disorders at King's CollegeLondon. AP receives a NIHR SI award (NF-SI-0617-10120). AL is supported by the UKMedical Research Council (MR/N013700) and King's College London member of the MRCDoctoral Training Partnership in Biomedical Sciences. The views expressed are those of theauthors and not necessarily those of the NHS, the NIHR, or the Department of Health and					

1 2		
3 4 5 6 7 8 9 10 11 12	102	Conflict of interest / Competing interests
	103	ADE received financial support from the EU-AIMS-Trials (European Research Council
	104	under the European Union Seventh Framework Programme) as co-Principal Investigator.
	105	ADE received consulting fees from Chiesi Farmaceutici (advice on neuroprotection in
	106	newborn infants) and Medtronix (unpaid participation in scientific advice committee). ADE
	107	has a patent on Xenon as an organ protectant (No P023708WO). ADE was Chair of the Data
13 14	108	Monitoring and Ethics Committee for the Baby-Oscar Trial, and served on the Data
15 16	109	Monitoring and Ethics Committee for the PAEN Trial.
17	110	
10	111	There are no other relationships or activities that could appear to have influenced the
20 21	112	submitted work.
22 23	113	
24	114	Availability of data and material
25 26	115	Research data are available upon reasonable request.
27 28	116	
29 30	117	Code availability
31	118	Not applicable.
32 33	119	
34 35	120	Ethics approval
36 37	121	This study was approved by the UK National Research Ethics Authority (14/LO/1169) and
38	122	conducted in accordance with the World Medical Association's Code of Ethics (Declaration
39 40	123	of Helsinki).
41 42	124	
43 44	125	Consent to participate
44	126	Written informed consent was given by children's carer(s) at recruitment into the study.
46 47	127	
48 49	128	Consent for publication
49 50 51 52 53 54 55 56	129	Not applicable.
	130	
	131	
	132	
57	133	
58 59 60	134	
	135	

1

BMJ Open

2 3	126	Introduction
4 5 6 7 8	130	Introduction Destructed depression affects approximately 12% of mothers worldwide In contrast to 'hely
	137	blues' which is a state of amotional lability that affects between 12.79/ 76.09/ of women in
	138	the first form down of the high and trained has been executed as the manual of the first form down of the high and the second se
9 10	139	the first lew days after birth and typically resolves spontaneously within two weeks, ²
11	140	postnatal depression is more severe and starts in the first few months post-partum ² . Stressiul
12 13	141	life events have been linked to a heightened risk of developing postnatal depression; ³ for
14 15	142	example, mothers of preterm infants have a significantly higher risk of postpartum depression
16	143	compared to mothers of term infants, ⁴ likely due to heightened stress associated with
17 18	144	perinatal complications. ⁵
19 20	145	
20	146	Women with postnatal depression tend to be less responsive to their baby's needs and to
22 23	147	display less affection. ⁶ Therefore, in the short-term postpartum depression may affect mother-
24 25	148	infant interactions ⁷ and in the long-term it may lead to alterations in brain development, ⁸
26	149	emotional difficulties,9 less secure attachment, cognitive and behavioural problems in
27 28	150	childhood, and a possible increased risk of autism spectrum disorder (ASD). ^{10,11} Large cohort
29 30	151	studies, such as the Avon Longitudinal Study of Parents and Children (ALSPAC), have
31	152	shown that these associations are even evident when maternal depression is measured on a
32 33	153	continuum of symptoms rather than a dichotomous diagnosis, ^{12–14} supporting the notion that
34 35	154	elevated sub-diagnostic psychiatric symptoms can also negatively impact on children's
36	155	development. ¹⁵
37 38	156	
39 40	157	Studies investigating the underlying causes that may link maternal postnatal depression to
41	158	child outcomes have implicated several biological and environmental variables. For instance,
42 43	159	genetic and epigenetic factors have been shown to both mediate and mitigate the
44 45	160	intergenerational transmission of psychiatric disorders, ¹⁶ while lower quality parenting,
46	161	interparental conflict, and socioeconomic deprivation have been shown to exacerbate
47 48	162	children's developmental risk of emotional and behavioural problems. ¹¹ In addition, being
49 50	163	born preterm (i.e. <37 weeks' gestation, as per the World Health Organization definition ¹⁷)
51	164	has been associated with alterations in early brain development, ¹⁸ as well as neurological,
52 53	165	behavioural and cognitive problems in childhood and beyond. ^{19,20} Therefore, it is complex to
54 55	166	disentangle the possible effects of postnatal maternal mental health and those of perinatal
56 57	167	clinical factors on specific outcomes in preterm children as these may involve both maternal
58	168	psychosocial and biological variables as well as child preterm-related neurodevelopmental
59 60	160	morbidity
	103	mororany.

 Furthermore, a question that remains unanswered is whether preterm birth accentu association between maternal postnatal depression and child outcome. Two theorem 	ates the tical
 association between maternal postnatal depression and child outcome. Two theore 	tical
7 172 association between maternal postilatal depression and enne outcome. Two theore	lical
8 172 frameworks exist that hypothesise certain infants may be influenced differently by	ovtornal
⁹ 173 frameworks exist that hypothesise certain mants may be influenced differently by	external
174 stimuli, the diatnesis stress model proposes that certain vulnerability factors make	affected
¹² ¹⁷⁵ infants more prone to suboptimal environmental influences with subsequent poore	r
14 176 outcomes, ^{21,22} whereas the differential susceptibility model frames such factors as	plasticity-
16 177 mediating, thus leading to poorer outcomes in negative environments, as well as b	etter
 17 178 outcomes in supportive environments.^{22,23} Previous studies investigating different 18 	al
19 179 susceptibility have shown mixed findings studying a range of environmental and c	linical
$\frac{20}{21}$ 180 exposures, 24,25 with child outcomes including attachment, internalising and extern	alising
 ²² 181 behaviour, and academic competence.²⁵ Both low birthweight in term infants (sma 	ll for
24 182 gestational age, SGA) 26 and preterm birth (PTB) 23,24,27 have been explored as dis	tinct
$\frac{25}{26}$ 183 potential susceptibility factors. This distinction is based on the different pathophys	iological
$\frac{27}{28}$ 184 processes underlying the respective conditions of SGA and PTB, both, or a combi	nation, of
$\frac{29}{20}$ 185 which can cause low birthweight. ²⁸ For example, SGA is a marker of intra-uterine	growth
186 restriction related to placental dysfunction, ²⁹ whereas PTB can be caused by a mu	titude of
³² ₃₃ 187 factors, including infection and inflammation. ³⁰	
³⁴ 188	
36 189 Given that mothers of preterm children experience elevated levels of distress, ³¹ ar	e at high
$_{38}^{37}$ 190 risk of developing postnatal depression, ³² and that preterm children themselves are	vulnerable
$\frac{39}{40}$ 191 to psychiatric sequelae, ³³ in addition to investigating the association between very	early
41 192 maternal postnatal depressive symptoms and child behavioural and emotional out	omes, we
4243 193 further aimed to investigate the interaction between preterm birth and maternal de	pressive
4445 194 symptoms on child outcomes. Previous work focusing on the differential susceptil	oility of
$\frac{46}{47}$ 195 preterm born children to various environmental stimuli, as described above, had n	ot yet
48 196 studied maternal depressive symptoms as a proposed exposure. We specifically ai	ned to
investigate the continuum of maternal depressive symptoms rather than solely foc	ussing on
⁵¹ ₅₂ 198 clinically significant maternal depression, so as to provide more nuanced informat	ion about
$^{53}_{54}$ 199 the importance of subclinical depressive symptoms on child outcomes. We hypoth	esised that
 55 200 early postnatal maternal depressive symptoms would be more elevated in mothers 	of preterm
compared to term infants and that these would impact preterm children's behavior	ral and
$_{59}^{58}$ 202 emotional outcomes to a greater degree than their term counterparts.	

BMJ Open

2 3	204	Methods
4 5 6 7 8	205	Sample
	206	Participants were enrolled in the Developing Human Connectome Project (DHCP,
	207	http://www.developingconnectome.org/), a neuroimaging-focused project, with eligibility
9 10	208	criteria including pregnant women (aged >16 years) with a gestational age of $20-42$ weeks.
11 12	209	and newborn infants aged 24–44 weeks; infants enrolled in the DHCP had magnetic
13 14	210	resonance imaging (MRI) at term-equivalent age. Exclusion criteria for the DHCP included:
15	211	contraindications to MRI, babies being too unwell to tolerate a scan, and language difficulties
16 17	212	preventing informed consent. ³⁴ Toddlers were invited to the Centre for the Developing Brain.
18 19	213	St Thomas' Hospital, London, for neurodevelopmental assessment at 18 months post-
20	214	expected delivery date; appointments were made according to family availability as close as
22	215	possible to this time-point. Inclusion criteria for our follow-up study were: mother and baby
23 24	216	attendance for MRI at term-equivalent age; completed toddler neurodevelopmental
25 26	217	assessment. These inclusion criteria were met by 509 toddlers by the date of closure for this
27	218	analysis (26/02/2020). Of the 509 toddlers, 51 were one of a twin pregnancy, and three were
20 29	219	one of a triplet pregnancy; the sample contained 22 sibling pairs and one set of triplets. This
30 31	220	study was approved by the UK National Research Ethics Authority (14/LO/1169) and
32 33	221	conducted in accordance with the World Medical Association's Code of Ethics (Declaration
34	222	of Helsinki). Written informed consent was given by children's carer(s) at recruitment into
36	223	the study.
37 38	224	
39 40	225	Maternal variables
41	226	Maternal age, parity, Body Mass Index (BMI), ethnicity and postcode were collected at
42	227	enrolment into the DHCP study. Our sample was ethnically representative of the surrounding
44 45	228	geographical area. Parity was coded as 0, 1, 2, or \geq 3 previous children. Index of Multiple
46 47	229	Deprivation (IMD) rank was computed from the current maternal postcode using the 2019
48	230	IMD classification; it combines locality-specific information about income, employment,
49 50	231	education, health, crime, housing and living environment, thus providing a proxy for family
51 52	232	socioeconomic status.35 Lower IMD rank corresponds to greater social deprivation. Our
53 54	233	sample was generally less deprived than the surrounding geographical areas, as well as the
55	234	UK as a whole, reflecting trends observed in other UK longitudinal studies. ³⁶
50	235	
58 59	236	Maternal depressive symptoms were measured using the Edinburgh Postnatal Depression
60	237	Scale (EPDS) ³⁷ on the day of infant's MRI at term-equivalent age. Mothers of infants born at

term were tested in the first few weeks postnatally, whereas mothers of preterm-born infants were tested once they reached term-corrected age. The EPDS is a 10-item screening questionnaire completed by mothers, with higher scores reflecting a higher likelihood of depressive disorders. A score of 13 can be used as a cut-off indicating high-level symptoms, although a cut-off of 11 maximises the sensitivity and specificity of the screening tool for depression.³⁸ Mothers completed the EPDS independently in a private room in our Centre, with no interaction with the researcher. Participants were informed that the results would be discussed with them, and consented to information being shared with their General Practitioner in the case of high scores. The EPDS questionnaire was scored by a member of the DHCP team.³⁴

Child variables

Infant *clinical characteristics* were gathered from clinical notes where available, or from maternal report, and included: sex, gestational age at birth, birth weight, and pregnancy size (singleton/twin/triplet).

Behavioural outcomes were assessed using the Child Behaviour Checklist/1^{1/2}-5 (CBCL), a parent-completed 100-item questionnaire, in which the parent rates the child's behaviour over the preceding two months using a 3-point Likert scale ("not true", "somewhat or sometimes true", and "very true or often true"). Responses are categorised into syndrome profiles, and these are subsequently grouped into internalising (emotional reactivity, anxiety/depression, somatic complaints, and withdrawal), externalising (attention problems, aggressive behaviour) and total (internalising, externalising, sleep and other) problem scales. Higher scores indicate increased emotional and behavioural problems. Total scores are classified into a normal range (<83rd centile, T <60), borderline range (83rd-90th centile, T 60-63), and clinical range (>90th centile, $T \ge 64$).³⁹ The CBCL is known to have high reliability, validity and cross-informant agreement for measuring children's emotional and behavioural problems.39

We used the Quantitative Checklist for Autism in Toddlers (Q-CHAT) as an additional behavioural screening tool to broaden the exploration of mental health outcomes in toddlers. The Q-CHAT is a parent-completed 25-item questionnaire, in which the child's behaviour is scored on a 5-point (0-4) frequency scale. Higher total scores correspond to a higher frequency of behaviours also observed in autism spectrum conditions. The Q-CHAT shows

Page 11 of 38

1 2

BMJ Open

3 4	272	good test-retest reliability, face validity and specificity, yet poor positive predictive value for				
5	273	autism, ^{40,41} highlighting that higher Q-CHAT scores may reflect developmental immaturity				
6 7	274	rather than autism. ⁴¹				
8 9 275						
10 11	276	Cognitive assessment was performed using the Bayley Scales of Infant and Toddler				
12	277	Development – Third Edition (Bayley-III). The Bayley-III provides scores for a child's				
13 14	278	overall cognitive, language and motor development. The cognitive standardised composite				
15 16	279	score was used in this study; scores between 70-84 indicate mild cognitive impairment,				
17	280	scores between 55-69 indicate moderate impairment, and scores lower than 55 indicate severe				
18 19	281	impairment ⁴² . Reliability and validity of the Bayley-III have been shown to be robust, ⁴³				
20 21	282	although some studies report its underestimation of developmental problems.44				
22 23	283					
24	284	Assessments were carried out by staff experienced in the neurocognitive assessments of				
25 26	285	toddlers.				
27 28	286					
29	287	Analysis				
30 31	288	Descriptive statistics and one-way ANOVA tests were performed in IBM SPSS Statistics for				
32 33	289	Windows v.25. All other analyses were carried out in Stata v.16.				
34 35	290					
36	291	Multiple imputation (MI) was carried out to account for missing data in CBCL (11/509,				
37 38	292	2.24%), Q-CHAT (9/509, 1.8%), maternal EPDS (73/509, 14.3%), maternal BMI (27/509,				
39 40	293	5.3%) and IMD rank (3/509, 0.6%). Variables were imputed simultaneously using the 'mi				
41 42	294	impute chained' procedure that performs imputation by chained equations. The imputation				
43	295	models had the same structural form as the analysis models, and included all variables that				
44 45	296	appear in the corresponding analysis models (maternal EPDS, maternal BMI, multiple				
46 47	297	pregnancy, parity, IMD rank, gestational age at birth, birthweight, sex, corrected age at				
48	298	assessment, and Bayley III Cognitive Composite score); in addition, maternal age was also				
49 50	299	included in the imputation model because it was found to be a significant predictor of both				
51 52	300	the total CBCL raw score and the Q-CHAT score when it was included as the sole				
53 54	301	independent variable in linear regression models.				
55	302					
56 57	303	Maternal EPDS and CBCL were imputed using Poisson regression; Q-CHAT, maternal BMI,				
58 59	304	and the IMD rank were imputed using linear regression. 40 MI datasets were created. To				
60	305	assess the stability of our MI parameters, we extracted the Monte Carlo error of each				

parameter estimate and examined whether the error for the coefficient was less than 10% of
the parameter's standard error estimate. MI estimates were used for the primary analyses and
compared to the estimates from complete-case (CC, individuals who had no missing data preimputation) analyses. Normal probability plots of residuals from the CC analyses were
examined.

The analysis models were multiple linear regressions fitted using the 'mi estimate' procedure, which estimates effects after application of Rubin's rules.⁴⁵ To account for the small amount of clustering in our data (twin/triplet siblings), the models' standard errors were obtained using Stata's robust cluster estimator 'vce(cluster idvar)'. For continuous variables, Cohen's f-squared effect sizes were calculated using $f^2 = (R_{AB}^2 - R_A^2)/(1 - R_{AB}^2)$, where R_{AB}^2 is the R-squared value from a regression model that includes the variable of interest as well as all the covariates used in the model, and R_A^2 is the R-squared value from the regression model that includes only the covariates.^{46,47} For binary variables, Cohen's f-squared effect sizes were produced after estimating first the Cohen's d using the formula: $f^2 = \frac{d}{2k}$, where k is the number of groups. As a measure of dispersion, Cohen's d used the average root mean-square error over the MI datasets. Adjusted R-squared values after MI were extracted after estimating the model with the user-written 'mibeta' command with the 'fisherz' option,⁴⁸ which calculates R-squared measures for linear regression with MI data. The significance of the joint effect of the categorical variable parity was assessed using 'mi test' which performs Wald tests of composite linear hypotheses.

41 327

Primary outcome measures were children's total CBCL raw score and Q-CHAT score. Secondary outcome measures were CBCL internalising and externalising scores. The effect of maternal EPDS score was adjusted for IMD rank, maternal age, maternal BMI, maternal parity, pregnancy size, and the following child's variables: continuous gestational age, birth weight, Bayley-III cognitive composite score, and corrected age at assessment. The interaction between preterm birth and maternal depressive symptoms was explored using a complete case analysis in both CBCL and Q-CHAT models, using a dichotomised measure of gestational age. EPDS, CBCL and Q-CHAT scores were compared between term (≥37 weeks gestation) and preterm infants (<37 weeks gestation) using the complete case dataset. Our regressions were thus run twice: with and without the interaction term.

1 2		
3 4 5 6 7 8 9 10 11 12 13 14	339	
	340	As all mothers had their EPDS score measured near term (or term-corrected in the case of
	341	mothers of preterm infants), we further investigated the association between time elapsing
	342	between baby's birth and mother's EPDS assessment and EPDS score, in order to avoid
	343	erroneously identifying 'baby blues' in mothers of term-born infants versus postnatal
	344	depression in mothers of preterm infants. This post-hoc analysis was performed using
	345	Poisson regression.
15 16	346	
17	347	Patient and Public Involvement
18 19	348	The current study was developed in consultation with the Weston Programme for Family
20 21	349	Centered Research, which involves parents to define what research is valuable to them, and to
22 23	350	allow them to lead it with support from the scientists in the Centre for the Developing Brain.
24	351	
25 26	352	Results
27 28	353	Descriptive statistics
29 30	354	Our sample of 509 toddlers were followed up at a median corrected age of 18.4 months
31	355	(range 17.3 – 24.3 months). 51 (10.0%) of these were twins, and 3 (0.59%) were triplets. Of
32 33	356	the 509, 21 (4.13%) mothers scored above a clinical cut-off (\geq 13) on the EPDS;(26) the
34 35	357	distribution of maternal EPDS scores is shown graphically in Supplementary Figure 1.
36 37	358	Demographic data are shown in Table 1. Complete data were available for 400 (78.6%)
38	359	participants. Missing data were imputed and thus all 509 subjects were included in the
39 40	360	primary and secondary analyses. One participant was excluded from the cognition analysis
41 42	361	after examining the quintiles of the residuals against the theoretical quintiles of a normal
43	362	distribution. The mean CBCL T score was 46.9 (SD 9.5) (Table 1); using CBCL-specified
44 45	363	cut-offs, ³⁹ 449 (90.2%) of participants had a CBCL score in the normal range, 30 (6.0%)
46 47	364	were borderline, and 19 (3.8%) scored in the clinical range. The mean Q-CHAT score was
48 49	365	30.5 (SD 9.3) (Table 1). The mean Bayley III Cognitive Composite score in our sample was
50 51	366	100 (SD 11.4) (Table 1), which corresponds to the standardised test mean; ⁴² 480 (94.3%) of
52	367	participants had a normal cognitive score, 24 (4.7%) had mild impairment, 5 (1%) had
53 54	368	moderate impairment, and nil had severe impairment. This distribution is not dissimilar from
55 56	369	that of the normative sample. ⁴²
57	370	
58 59 60	371	Association between maternal EPDS score and toddler CBCL and Q-CHAT scores

2		
3 4 5 6 7 8 9 10 11 12 13 14	372	Predictors of children's CBCL and Q-CHAT scores after multiple imputation are shown in
	373	Table 2. Higher maternal EPDS score was associated with children's higher CBCL Total
	374	score (B=0.93, 95% CI 0.43-1.44, p<0.001, f ² =0.05) and Q-CHAT score (B=0.27, 95% CI \sim
	375	0.03-0.52, p=.031, f ² =0.01) (Table 2). These associations are presented graphically in Figure
	376	1 and Figure 2, respectively. Boys had higher CBCL and Q-CHAT scores than girls. Higher
	377	Q-CHAT scores were associated with lower IMD rank (i.e., greater socio-economic
	378	deprivation) and lower Bayley-III cognitive composite scores. Parity was not a significant
15 16	379	predictor of outcome in any of the models (Table 2).
17	380	
18 19	381	Maternal EPDS score did not disproportionately affect preterm children with respect to
20 21	382	CBCL or Q-CHAT scores (Table 3).
22 23	383	
24	384	Association between maternal EPDS score and toddler CBCL internalising and externalising
25 26	385	scores
27 28	386	Higher maternal EPDS score was associated with both internalising (B=0.22, 95% CI 0.08-
29 30	387	0.36, p<0.01, f ² =0.03) and externalising (B=0.40, 95% CI 0.20-0.61, p<0.001, f ² =0.05)
31	388	symptoms in children (Supplementary Table 1 and 2, respectively). Comparison of the
32 33	389	imputed model analyses to the complete-case analyses showed that results were consistent for
34 35	390	the CBCL model (Supplementary Table 3). Comparison for the Q-CHAT model showed that
36 27	391	maternal EPDS was a significant predictor in the imputed model, but not in the complete-case
37 38	392	analysis (Supplementary Table 3).
39 40	393	
41 42	394	Effect of time-lag between baby's birth and mother's EPDS assessment and EPDS score
43	395	Mothers who gave birth prematurely (<37 weeks gestation) had their EPDS score assessed on
44 45	396	average 7.7 weeks later post-delivery than mothers who gave birth at term (preterm
46 47	397	participants M=8.9 (SD 4.8), term participants M=1.2 (SD 1.3); t(99.4)=15.5, p<.001). The
48 49	398	time-lag between birth and EPDS assessment did not predict maternal EPDS score, and there
49 50	399	was no evidence of a significant interaction between gestation and birth-to-assessment time-
51 52	400	lag (Supplementary Table 4 and 5, respectively).
53 54 55	401	
	402	Discussion
57	403	Principal findings
58 59 60	404	Our results showed that more maternal self-reported depressive symptoms shortly after birth
	405	were associated with greater parent-reported toddlers' behavioural problems. Given that

Page 15 of 38

BMJ Open

fewer than 5% of the mothers in our cohort had EPDS scores above a clinical threshold.³⁷ our findings indicate that even subclinical depressive symptoms – i.e. not only diagnostic postnatal depression – adversely impact children's behavioural outcomes. In addition, our cohort was typically developing with few CBCL scores reaching a concerning threshold; our results could be interpreted within the conceptual framework of mental illness lying on a continuum with typical behavioural traits.⁴⁹ Our findings further showed that preterm birth did not influence the association between self-reported maternal depressive symptoms and parent-reported infants' behavioural outcomes in toddlerhood. This indicates that in this context preterm birth may not be regarded as a vulnerability or plasticity factor. Interestingly, mothers of preterm infants did not report more depressive symptoms compared to mothers of term infants in this study.

²² 417

418 Comparison to prior literature

Our results with respect to internalising and externalising symptoms are in line with previous studies, including large population cohort studies, that showed an association between postnatal maternal depression and young children's emotional and behavioural problems.¹¹ Another previous study in 18-month old toddlers found that maternal depression was associated with internalising and dysregulated behaviour, but not externalising symptoms.⁵⁰ This difference between our and Conroy et al.'s findings may have arisen from their exclusion of infants born <36 weeks and their use of a clinical diagnosis of depression for mothers, rather than the continuous self-reported approach we employed. Interestingly, our finding that even subclinical depressive symptoms may adversely impact parent-reported child behavioural outcomes is in line with recent data showing that low- as well as high-level depressive symptoms are associated with internalising and externalising symptoms in children aged 3 years.⁵¹

46 431

The results showing an association between maternal postnatal depressive symptoms and the Q-CHAT are less robust and need to be interpreted with caution. Firstly, these results must be viewed in the context of the Q-CHAT having a low positive predictive value for autism, with the measure perhaps being more reflective of developmental immaturity. ⁴¹ Although some prior studies have shown an association between antenatal maternal depression and offspring's ASD,^{10,52} and postnatal depression has been suggested as a potential focus of cross-domain studies of ASD,⁵³ there is no clear aetiological role of maternal postnatal depression in the development of ASD per se. Also, given that mothers with ASD are more

likely to suffer from perinatal depression than mothers without ASD,⁵⁴ and ASD is highly heritable,⁵⁵ maternal depression may actually be a confounding rather than causative factor in our observed results. Overall, therefore, our findings with respect to the Q-CHAT do not provide support for a role of maternal depression in the aetiology of autism traits, but rather suggest that maternal depression can influence toddler behaviour.

The finding that preterm infants were not disproportionately affected by maternal depressive symptoms supports Hadfield et al.'s findings that maternal distress at 9 months did not differentially impact very preterm (<34 weeks) or late preterm (34-36⁺⁶ weeks) infants with respect to socioemotional outcomes, although paternal distress did have an impact on very preterm infants' outcomes.²⁴ However, our results differ from Gueron-Sela et al.'s finding that very preterm (28-33 weeks) 12 month old infants' social outcomes were more influenced by maternal emotional distress at 6 months than term infants' outcomes.²³ The inconsistent findings may be due to methodological differences: for instance, our infant assessment being conducted at 18 months corrected age when social competency is more developed, our assessment of maternal depressive symptoms being in the very early postnatal period, or our use of the CBCL and O-CHAT tools as markers of toddler behaviour. Importantly, the lack of support for a diathesis-stress or differential susceptibility model of maternal mental state on preterm infants in our study must be viewed in the context of our results also showing no difference in CBCL and Q-CHAT scores between term and preterm infants. This is in contrast to the existing literature that preterm infants are more likely than term infants to develop behavioural problems, such as ADHD, in childhood and adolescence.^{20,33} It is possible that the phenotypes of neurodevelopmental and neuropsychiatric disorders assessed with the chosen behavioural measures may not be sufficiently expressed at 18 months corrected age.⁵⁶ In addition, as briefly discussed above, much of the existing literature emphasises the risk of extreme (<28 weeks) or very preterm (28-33 weeks) birth on later behavioural outcomes,^{20,33} whereas only 3.5% and 5.5% of our participants fell within the extreme and very preterm group, respectively, and we thus may not have the power to show any subtle effects.

Strengths & limitations of the study

The strengths of this study lie primarily in its large sample and prospective data collection. Moreover, the use of multiple imputation methodology has facilitated retention of a complete

Page 17 of 38

1

BMJ Open

2	
3	473
4 5	474
6	175
7 8	475
9	476
10 11	477
12	478
13 14	479
15	480
16 17	481
18 10	192
19 20	402
21	483
22	484
24 25	485
26	486
27 28	487
29	488
30 31	489
32	490
33 34	101
35	491
36 37	492
38	493
39 40	494
41	495
42 43	496
44 45	497
45 46	100
47	490
48 49	499
50	500
51 52	501
53	502
54 55	503
56	504
5/	504

dataset, thus minimising non-response bias and increasing parameter precision. A strength in 473 comparison to prior population cohort studies is that we assessed very early maternal 474 depressive symptoms, and our sample is perhaps more representative of today's society – 475 with increasing maternal age – than large cohort studies conducted in the 1990s-2000s. Given 476 the complex interplay of biological and environmental factors in the aetiology of behavioural 477 478 disorders, the inclusion of a substantive proportion of preterm infants in our cohort also offers an important insight into the role of preterm birth in behavioural outcomes; moreover, our 479 results represent the full gestational spectrum, rather than discrete gestational categories. In 480 481 addition, using maternal depressive symptoms as a continuous, rather than dichotomous, variable allows a more nuanced understanding of the role maternal postnatal depressive 482 symptoms may play in influencing children's outcomes. 483

There are several limitations to this study that necessitate our findings to be considered with 485 486 caution. Firstly, differences in birth-to-EPDS-assessment time-lags are a potential confounder, given the time-sensitive nature of early-onset temporary baby blues and later-487 onset pathological postnatal depression. Mothers of infants born at term were assessed early 488 post-delivery, within the period one would anticipate baby blues to present, whereas mothers 489 490 of preterm participants were on average assessed later, when postnatal depression predominates.^{1,57} Although our post-hoc analyses showed that the time elapsed from birth to 491 492 EPDS assessment was not associated with maternal EPDS score, providing reassurance that our assessments of mothers of term-born infants were not inflated by the common temporary 493 494 symptoms of baby blues, it is possible that we did not capture the full extent of later-onset 495 depressive symptoms in mothers of term-born infants. This may explain why maternal EPDS scores did not differ between preterm and term groups in our complete dataset analysis, 496 contrary to the current literature,³¹ as well as why our rate of postpartum depression, using an 497 EPDS cut-off of 13, was low (4.1%) compared to the previously documented UK community 498 prevalence rate of 8.9% at eight weeks postpartum.⁵⁸ Our results must therefore be 499 interpreted with some caution. 500

Secondly, although statistical techniques were used to impute missing data and mitigate this 502 problem, 14.3% of maternal EPDS scores were missing. This rate of missingness may relate 503 to some mothers being reluctant to complete a questionnaire at the time their child is having 504 58 an MRI, or due to simultaneous childcare duties. Thirdly, a number of important confounders 505 59 60 that are likely to affect children's behavioural outcomes were not assessed in this study, 506

including genetic risk for psychiatric disorders,⁵⁹ parental psychiatric co-morbidities,⁵⁰ chronicity of postnatal depressive symptoms,⁵¹ antenatal maternal depression, paternal depression and subsequent parent-infant attachment, and inter-parental conflict.¹¹ Thus, we are unable to conclude whether our observed associations between early postnatal maternal depressive symptoms and children's behavioural outcomes are moderated or mediated by other parental and/or psychiatric factors. Fourthly, whilst our study included a reasonable proportion of preterm infants (97/509, 19%), our sample was not random, as preterm children were selectively recruited for the DHCP; indeed, preterm infants are over-represented in our sample when compared to the UK population incidence (7.3%),⁶⁰ which may limit the study's generalisability to the general population. This over-representation of preterm infants may explain why our mean maternal age is higher than the national mean age of 30.7,⁶¹ given that increasing maternal age is associated with increased risk of adverse pregnancy outcomes.⁶² Our observed large maternal age range in itself also poses a limitation on the generalisability of our findings to the general population, and further research would be necessary to identify a possible moderation effect of high maternal age on both EPDS scores and child behavioural outcomes. Furthermore, although a 19% prevalence of preterm birth is high for a community sample, the proportion of very and extreme preterm infants in our sample is small, and this may not have provided sufficient power to detect any differential susceptibility effect of preterm birth on outcomes. Sixthly, the effect sizes of the association between maternal EPDS score and behavioural problems were small; this raises questions regarding the clinical significance of our findings and potentially explains some of the inconsistency between this and previous studies. Even within our analyses, the association between maternal depressive symptoms and Q-CHAT scores was not observed in our complete case analysis, thus calling into question the validity of this result. It is also important to highlight again the poor positive predictive value of the Q-CHAT for autism;⁴¹ higher Q-CHAT scores do not imply a diagnosis of ASD, and this distinction may also explain the contrast to previous studies. Finally, it is well documented that maternal depression influences reporting of Q-CHAT 63

and CBCL scores.⁶⁴ Our study used maternal report of maternal depressive symptoms, and
 our outcome measures were parent-completed questionnaires; despite the CBCL showing

BMJ Open

good cross-informant agreement,³⁹ it is thus possible that reporting bias with common
method variance could have skewed our results.

543 Implications of our findings

Of greatest importance to clinicians and policymakers is our finding that even *subclinical* self-reported maternal depressive symptoms are associated with parent-reported behavioural outcomes of offspring. This has significant implications for the risk-stratification of women and their babies in the postnatal period, during which contact with medical professionals is already established. Identifying high risk families and providing appropriate supportive measures at the early postnatal stage may help to prevent future psychiatric morbidity.

Future research

Further follow-up of large cohorts of preterm and term infants, to an age when behavioural phenotypes may become more pronounced, is needed to investigate whether the long-term developmental trajectories of term and ex-preterm infants are differentially susceptible to changes of postnatal maternal mental health. Future research should consider both maternal and paternal mental health, as well as socioeconomic and environmental factors on child outcomes. Such follow-up should use independent, objective assessments of child behavioural outcomes in order to avoid the common method variance inherent to parent-reported measures. Finally, it is crucial for future research to elucidate the interplay of biochemical and neurodevelopmental changes that may mediate and confound the translation of environmental exposures into distal behavioural phenotypes.

563 Conclusion

This prospective longitudinal cohort study found no evidence to support the concept of preterm birth as a vulnerability or plasticity factor with respect to the effect of maternal depressive symptoms on behavioural development. However, we showed that early subclinical maternal postnatal depressive symptoms were associated with behavioural problems in children on parent-reported measures. This adds to the increasing body of literature indicating the role of subclinical and early postnatal depressive symptoms in the aetiology of childhood behavioural disorders. These findings are of great relevance to child and public health, and further research may strengthen its implications for developing strategies to facilitate effective screening and support for women and children, enabling all to reach their full potential.

1						
2 3	57/					
4	574					
6	575					
7 8	576	Acknowledgements & contributions				
9	577	We thank all DHCP investigators for their contribution to the study. We thank Dr Oliver				
10 11	578	Gale-Grant MRes (Centre for the Developing Brain, King's College London; Department of				
12	579	Forensic & Neurodevelopmental Sciences, King's College London) for providing the IMD				
13 14	580	rank data. We are very grateful to the families who generously took part in this research.				
15 16	581					
17	582	Conceptualization: SC, ADE, CN; Methodology: IK, GV, SC, AP, ADE, CN;				
18 19	583	Investigation: SF, AC; Data curation: IK, AL; Formal analysis: IK, GV, AP, CN;				
20	584	Writing – original draft preparation: IK Writing – Review & Editing: GV AL SF AC				
21	585	SC AP ADE CN: Visualisation: IK GV: Funding acquisition: SC ADE: Supervision:				
23 24	505	AD ADE CN				
25	500	AI, ADE, CN.				
26 27	587					
28	588	References				
29 30	589	1. Woody CA, Ferrari AJ, Siskind DJ, Whiteford HA, Harris MG. A systematic review and meta-				
31	590	regression of the prevalence and incidence of perinatal depression. J Affect Disord.				
32 33	591	2017;219:86-92. doi:10.1016/j.jad.2017.05.003				
34	592	2. Rezaie-Keikhaie K, Arbabshastan ME, Rafiemanesh H, Amirshahi M, Ostadkelayeh SM,				
35 36	593 597	Arbabisarjou A. Systematic Review and Meta-Analysis of the Prevalence of the Maternity Blues in the Postpartum Period. I Obstet Gynecol Neonatal Nurs, 2020;49(2):127-136				
37	595	doi:10.1016/j.jogn.2020.01.001				
38 39	596	3 Beck CT Predictors of postpartum depression: an update Nurs Res 2001:50(5):275-285				
40 41						
42	597 598	4. de Paula Eduardo JAF, de Rezende MG, Menezes PR, Del-Ben CM. Preterm birth as a risk factor for postpartum depression: A systematic review and meta-analysis <i>L Affect Disord</i>				
43	599	2019;259:392-403. doi:10.1016/j.jad.2019.08.069				
44 45	600					
46	600 601	5. Blom EA, Jansen PW, Verhulst FC, et al. Perinatal complications increase the risk of postpartum depression. The Generation R Study, <i>BIOG Int J Obstet Gynaecol</i>				
47 48	602	2010;117(11):1390-1398. doi:10.1111/j.1471-0528.2010.02660.x				
49	600					
50	603 604	6. Beck C1. Postpartum depression: a metasynthesis. <i>Qual Health Res.</i> 2002;12(4):453-472. doi:10.1177/104973202129120016				
51 52	001					
53	605	7. Grace SL, Evindar A, Stewart DE. The effect of postpartum depression on child cognitive				
54 55	606 607	development and behavior: a review and critical analysis of the literature. Arch Womens Ment Health 2003;6(4):263-274 doi:10.1007/s00737-003-0024-6				
56	007	1100000 2002,0(1).202 27 1. doi:10.1007/500757 005 0027 0				
57	608	8. Lebel C, Walton M, Letourneau N, Giesbrecht GF, Kaplan BJ, Dewey D. Prepartum and				
58 59	609 610	postpartum maternal depressive symptoms are related to children's brain structure in preschool. <i>Biol Psychiatry</i> 2016:80(11):859-868 doi:10.1016/j.biopsych.2015.12.004				
60						

2						
3 4 5 6	611 612 613	9.	Goodman SH, Rouse MH, Connell AM, Broth MR, Hall CM, Heyward D. Maternal depr and child psychopathology: a meta-analytic review. <i>Clin Child Fam Psychol Rev</i> . 2011;1: 27. doi:10.1007/s10567-010-0080-1			
7 8 9 10	614 615 616	10.	Hagberg KW, Robijn AL, Jick S. Maternal depression and antidepressant use during pregnancy and the risk of autism spectrum disorder in offspring. <i>Clin Epidemiol</i> . 2018;10:1599-1612. doi:10.2147/CLEP.S180618			
11 12 13	617 618	11.	Stein A, Pearson RM, Goodman SH, et al. Effects of perinatal mental disorders on the fetus and child. <i>The Lancet</i> . 2014;384(9956):1800-1819. doi:10.1016/S0140-6736(14)61277-0			
14 15 16 17	619 620 621	12.	Van Batenburg-Eddes T, Brion MJ, Henrichs J, et al. Parental depressive and anxiety symptoms during pregnancy and attention problems in children: a cross-cohort consistency study. <i>J Child Psychol Psychiatry</i> . 2013;54(5):591-600. doi:10.1111/jcpp.12023			
18 19 20 21	622 623 624	13.	Barker ED, Jaffee SR, Uher R, Maughan B. The contribution of prenatal and postnatal maternal anxiety and depression to child maladjustment. <i>Depress Anxiety</i> . 2011;28(8):696-702. doi:10.1002/da.20856			
22 23 24 25 26	625 626 627	14.	Pearson RM, Evans J, Kounali D, et al. Maternal depression during pregnancy and the postnatal period: risks and possible mechanisms for offspring depression at 18 years. <i>JAMA Psychiatry</i> . 2013;70(12):1312-1319. doi:10.1001/jamapsychiatry.2013.2163			
27 28 29 30	628 629 630	15.	Kleine I, Falconer S, Roth S, et al. Early postnatal maternal trait anxiety is associated with the behavioural outcomes of children born preterm <33 weeks. <i>J Psychiatr Res.</i> 2020;131:160-168. doi:10.1016/j.jpsychires.2020.09.010			
31 32 33	631 632	16.	Feder A, Nestler EJ, Charney DS. Psychobiology and molecular genetics of resilience. <i>Nat Rev Neurosci</i> . 2009;10(6):446-457. doi:10.1038/nrn2649			
34 35 36	633 634	17.	World Health Organization. Preterm birth. Published February 19, 2018. Accessed May 18, 2022. https://www.who.int/news-room/fact-sheets/detail/preterm-birth			
37 38 39 40	635 636 637	18.	Dimitrova R, Pietsch M, Christiaens D, et al. Heterogeneity in brain microstructural development following preterm birth. <i>Cereb Cortex</i> . 2020;30(9):4800-4810. doi:10.1093/cercor/bhaa069			
41 42 43 44	638 639 640	19.	Fitzallen GC, Sagar YK, Taylor HG, Bora S. Anxiety and depressive disorders in children born preterm: a meta-analysis. <i>J Dev Behav Pediatr JDBP</i> . 2021;42(2):154-162. doi:10.1097/DBP.00000000000898			
45 46 47 48	641 642 643	20.	Allotey J, Zamora J, Cheong-See F, et al. Cognitive, motor, behavioural and academic performances of children born preterm: a meta-analysis and systematic review involving 64 061 children. <i>BJOG Int J Obstet Gynaecol</i> . 2018;125(1):16-25. doi:10.1111/1471-0528.14832			
49 50 51 52	644 645 646	21.	Jaekel J, Pluess M, Belsky J, Wolke D. Effects of maternal sensitivity on low birth weight children's academic achievement: a test of differential susceptibility versus diathesis stress. <i>J Child Psychol Psychiatry</i> . 2015;56(6):693-701. doi:10.1111/jcpp.12331			
55 56 57 58 59 60	647 648 649	22.	Belsky J, Bakermans-Kranenburg MJ, van IJzendoorn MH. For better and for worse: differential susceptibility to environmental influences. <i>Curr Dir Psychol Sci</i> . 2007;16(6):300-304. doi:10.1111/j.1467-8721.2007.00525.x			

1

2							
3 4 5 6	650 651 652	23.	Gueron-Sela N, Atzaba-Poria N, Meiri G, Marks K. The caregiving environment and developmental outcomes of preterm infants: diathesis stress or differential susceptibility effects <i>Child Dev.</i> 2015;86(4):1014-1030. doi:https://doi.org/10.1111/cdev.12359				
7 8 9	653 654	24.	Hadfield K, O'Brien F, Gerow A. Is level of prematurity a risk/plasticity factor at three years of age? <i>Infant Behav Dev.</i> 2017;47:27-39. doi:10.1016/j.infbeh.2017.03.003				
10 11 12	655 656	25.	Belsky J, Pluess M. Beyond diathesis stress: differential susceptibility to environmental influences. <i>Psychol Bull</i> . 2009;135(6):885-908. doi:10.1037/a0017376				
13 14 15	657 658	26.	Pluess M, Belsky J. Prenatal programming of postnatal plasticity? <i>Dev Psychopathol</i> . 2011;23(1):29-38. doi:10.1017/S0954579410000623				
16 17 18 19 20	659 660 661	27.	DeMaster D, Bick J, Johnson U, Montroy JJ, Landry S, Duncan AF. Nurturing the preterm infant brain: leveraging neuroplasticity to improve neurobehavioral outcomes. <i>Pediatr Res.</i> 2019;85(2):166-175. doi:10.1038/s41390-018-0203-9				
20 21 22 23	662 663	28.	World Health Organization (WHO). Global nutrition targets 2025: low birth weight policy brief. Published online 2014.				
23 24 25 26	664 665	29.	Kramer MS. Determinants of low birth weight: methodological assessment and meta-analysis. <i>Bull World Health Organ.</i> 1987;65(5):663-737.				
27 28 29	666 667	30.	Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. <i>Lancet Lond Engl.</i> 2008;371(9606):75-84. doi:10.1016/S0140-6736(08)60074-4				
30 31 32 33	668 669 670	31.	Carson C, Redshaw M, Gray R, Quigley MA. Risk of psychological distress in parents of preterm children in the first year: evidence from the UK Millennium Cohort Study. <i>BMJ Open</i> . 2015;5(12):e007942. doi:10.1136/bmjopen-2015-007942				
34 35 36 37	671 672 673	32.	Vigod SN, Villegas L, Dennis CL, Ross LE. Prevalence and risk factors for postpartum depression among women with preterm and low-birth-weight infants: a systematic review. <i>BJOG Int J Obstet Gynaecol</i> . 2010;117(5):540-550. doi:10.1111/j.1471-0528.2009.02493.x				
38 39 40	674 675	33.	Johnson S, Wolke D. Behavioural outcomes and psychopathology during adolescence. <i>Early Hum Dev.</i> 2013;89(4):199-207. doi:10.1016/j.earlhumdev.2013.01.014				
41 42 43 44	676 677 678	34.	Lautarescu A, Victor S, Lau-Zhu A, Counsell SJ, Edwards AD, Craig MC. The factor structure of the Edinburgh Postnatal Depression Scale among perinatal high-risk and community samples in London. <i>Arch Womens Ment Health</i> . 2022;25(1):157-169. doi:10.1007/s00737-021-01153-0				
45 46 47 48 49	679 680 681 682	35.	Ministry of Housing, Communities & Local Government. The English indices of deprivation 2019. Published online 2019. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/fil				
50 51 52 53	683 684 685	36.	Boyd A, Golding J, Macleod J, et al. Cohort Profile: The 'Children of the 90s'—the index offspring of the Avon Longitudinal Study of Parents and Children. <i>Int J Epidemiol</i> . 2013;42(1):111-127. doi:10.1093/ije/dys064				
54 55 56 57 58 59	686 687 688	37.	Cox JL, Holden JM, Sagovsky R. Detection of postnatal depression: development of the 10-item Edinburgh Postnatal Depression Scale. <i>Br J Psychiatry</i> . 1987;150(6):782-786. doi:10.1192/bjp.150.6.782				
60							

2 3 4 5 6	689 690 691	38.	Levis B, Negeri Z, Sun Y, Benedetti A, Thombs BD. Accuracy of the Edinburgh Postnatal Depression Scale (EPDS) for screening to detect major depression among pregnant and postpartum women: systematic review and meta-analysis of individual participant data. <i>BMJ</i> . 2020;371. doi:10.1136/bmi.m4022					
7 9	692		2020;3/1. doi:10.1136/bmj.m4022					
8 9	693	39.	Achenbach TM, Rescorla LA. Manual for the ASEBA Preschool Forms & Profiles.; 2000.					
10 11 12 13 14 15 16 17 18	694 695 696 697	40.	Allison C, Baron-Cohen S, Wheelwright S, et al. The Q-CHAT (Quantitative Checklist for Autism in Toddlers): a normally distributed quantitative measure of autistic traits at 18-24 months of age: preliminary report. <i>J Autism Dev Disord</i> . 2008;38(8):1414-1425. doi:10.1007/s10803-007-0509-7					
	698 699 700	41.	Allison C, Matthews FE, Ruta L, et al. Quantitative Checklist for Autism in Toddlers (Q-CHAT). A population screening study with follow-up: the case for multiple time-point screening for autism. <i>BMJ Paediatr Open</i> . 2021;5(1):e000700. doi:10.1136/bmjpo-2020-000700					
20 21 22	701 702	42.	Bayley N. <i>Bayley Scales of Infant and Toddler Development - Third Edition</i> . 3rd ed. Harcourt Assessment; 2006.					
23 24 25	703 704	43.	Albers CA, Grieve AJ. Review of Bayley scales of infant and toddler development-third edition. <i>J Psychoeduc Assess</i> . 2007;25(2):180-190. doi:10.1177/0734282906297199					
26 27 28 29	705 706 707	44.	Anderson PJ, De Luca CR, Hutchinson E, Roberts G, Doyle LW, the Victorian Infant Collaborative Group. Underestimation of developmental delay by the new Bayley-III scale. <i>Arch Pediatr Adolesc Med</i> . 2010;164(4):352-356. doi:10.1001/archpediatrics.2010.20					
30 31	708	45.	Rubin DB. Inference and missing data. <i>Biometrika</i> . 1976;63(3):581-592. doi:10.2307/2335739					
32 33 34	709 710	46.	Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. L. Erlbaum Associates; 1988.					
35 36 37 38	711 712 713	47.	Selya AS, Rose JS, Dierker LC, Hedeker D, Mermelstein RJ. A practical guide to calculating Cohen's f2, a measure of local effect size, from PROC MIXED. <i>Front Psychol</i> . 2012;3. doi:10.3389/fpsyg.2012.00111					
39 40 41 42 43 44	714 715	48.	Harel O. The estimation of R 2 and adjusted R 2 in incomplete data sets using multiple imputation. <i>J Appl Stat.</i> 2009;36(10):1109-1118. doi:10.1080/02664760802553000					
	716 717	49.	Plomin R, Haworth CMA, Davis OSP. Common disorders are quantitative traits. <i>Nat Rev Genet</i> . 2009;10(12):872-878. doi:10.1038/nrg2670					
45 46 47 48	718 719 720	50.	Conroy S, Pariante CM, Marks MN, et al. Maternal psychopathology and infant development at 18 months: the impact of maternal personality disorder and depression. <i>J Am Acad Child Adolesc Psychiatry</i> . 2012;51(1):51-61. doi:10.1016/j.jaac.2011.10.007					
49 50 51 52 53 54 55 56 57 58 59 60	721 722 723	51.	Kingston D, Kehler H, Austin MP, et al. Trajectories of maternal depressive symptoms during pregnancy and the first 12 months postpartum and child externalizing and internalizing behavior at three years. <i>PloS One</i> . 2018;13(4):e0195365. doi:10.1371/journal.pone.0195365					
	724 725 726	52.	Wiggins LD, Rubenstein E, Daniels J, et al. A phenotype of childhood autism is associated with preexisting maternal anxiety and depression. <i>J Abnorm Child Psychol</i> . 2019;47(4):731-740. doi:10.1007/s10802-018-0469-8					

1			
2 3 4 5 6	727 728 729	53.	Babb JA, Deligiannidis KM, Murgatroyd CA, Nephew BC. Peripartum depression and anxiety as an integrative cross-domain target for psychiatric preventative measures. <i>Behav Brain Res</i> . 2015;0:32-44. doi:10.1016/j.bbr.2014.03.039
7 8 9 10	730 731 732	54.	Pohl AL, Crockford SK, Blakemore M, Allison C, Baron-Cohen S. A comparative study of autistic and non-autistic women's experience of motherhood. <i>Mol Autism</i> . 2020;11(1):3. doi:10.1186/s13229-019-0304-2
11 12 13 14	733 734 735	55.	Colvert E, Tick B, McEwen F, et al. Heritability of autism spectrum disorder in a UK population-based twin sample. <i>JAMA Psychiatry</i> . 2015;72(5):415-423. doi:10.1001/jamapsychiatry.2014.3028
15 16 17 18 19 20 21	736 737 738 739 740	56.	Egger HL, Emde RN. Developmentally sensitive diagnostic criteria for mental health disorders in early childhood: the diagnostic and statistical manual of mental disorders-IV, the research diagnostic criteria-preschool age, and the diagnostic classification of mental health and developmental disorders of infancy and early childhood-revised. <i>Am Psychol</i> . 2011;66(2):95-106. doi:10.1037/a0021026
21 22 23 24	741 742	57.	Henshaw C. Mood disturbance in the early puerperium: a review. <i>Arch Women's Ment Health</i> . 2003;6(2):s33-s42. doi:10.1007/s00737-003-0004-x
25 26 27 28	743 744 745	58.	Heron J, O'Connor TG, Evans J, Golding J, Glover V. The course of anxiety and depression through pregnancy and the postpartum in a community sample. <i>J Affect Disord</i> . 2004;80(1):65-73. doi:10.1016/j.jad.2003.08.004
29 30 31 32	746 747 748	59.	Biel MG. Parental psychiatric symptoms and children's outcomes: toward understanding and responding to intergenerational risk in child psychiatry. <i>J Am Acad Child Adolesc Psychiatry</i> . 2018;57(9):632-633. doi:10.1016/j.jaac.2018.06.010
33 34 35 36	749 750 751	60.	National Institute for Health and Care Excellence. Preterm labour and birth (NICE guideline 25). Published online November 2015. Accessed January 27, 2019. https://www.nice.org.uk/guidance/ng25
37 38 39 40 41	752 753 754 755	61.	Office for National Statistics. Birth characteristics in England and Wales: 2020. Published January 13, 2022. Accessed February 5, 2022. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/bu lletins/birthcharacteristicsinenglandandwales/2020#birth-characteristics
42 43 44 45 46	756 757 758	62.	Londero AP, Rossetti E, Pittini C, Cagnacci A, Driul L. Maternal age and the risk of adverse pregnancy outcomes: a retrospective cohort study. <i>BMC Pregnancy Childbirth</i> . 2019;19(1):261. doi:10.1186/s12884-019-2400-x
47 48 49 50	759 760 761	63.	Goh DA, Gan D, Kung J, et al. Child, maternal and demographic factors influencing caregiver- reported autistic trait symptomatology in toddlers. <i>J Autism Dev Disord</i> . 2018;48(4):1325-1337. doi:10.1007/s10803-018-3471-7
51 52 53 54	762 763 764	64.	Friedlander S, Weiss DS, Traylor J. Assessing the influence of maternal depression on the validity of the Child Behavior Checklist. <i>J Abnorm Child Psychol</i> . 1986;14(1):123-133. doi:10.1007/bf00917228
55 56	765		
57 58	766		
59 60	767		

Variable	Number (%
Sex: Male	274 (53.8)
Index of Multiple Deprivation (IMD) quintiles	
1 (least deprived) ^a	65 (12.8)
2	87 (17 2)
3	characteristics (n=Number (%)*274 (53.8)65 (12.8)87 (17.2)108 (21.3)173 (34.2)73 (14.4)39.7 [20 - 43]18 (3.5)28 (5.5)51 (10.0)412 (80.9)3290 [450 - 4750]54 (10.6)332 (65.2)124 (24.4)32 (6.3)21 (4.2)23.2 [15.3 - 43.6]34.2 (4.8)[17 - 52]272 (53.4)56 (11.0)28 (5.5)18 (3.5)4 (0.8)30 (5.9)9 (1.8)88 (17.3)100 (11.4)[55 - 125]46.9 (9.5)[28 - 69]30.5 (9.3)[8 - 70]4 [0 - 28]415 (8.2)21 (4.1)73 (14.3)
	100(21.3) 172(24.2)
5 (most deprived)	72(14.4)
Contrational and at high (constant) and ion [none al	
Gestational age at birth (weeks), median [range]	39.7 [20-43
Gestational category	
Extremely preterm (<28 weeks)	18 (3.5)
Very preterm (28-32 weeks)	28 (5.5)
Late preterm (32-37 weeks)	51 (10.0)
Term (≥37 weeks)	412 (80.9)
Birthweight (g), median [range]	3290 [450 - 47:
Multiple pregnancy	54 (10.6)
Maternal parity	
0	332 (65.2)
1	124 (24 4)
2	32 (6 3)
3+	21(42)
Maternal BMI (ka/m²) median [range]	21(4.2)
Maternal age at infant's birth (years) mean (SD) [ronga]	23.2[13.3-43]
Maternal age at mant's birth (years), mean (SD) [lange]	54.2(4.0)
Motornal othniaity	$\begin{bmatrix} 17 - 32 \end{bmatrix}$
Maternal etimicity	272 (52.4)
White	2/2 (53.4)
Black/Black British	56 (11.0)
Asian/Asian British	28 (5.5)
Chinese	18 (3.5)
Mixed – White & Asian	4 (0.8)
Mixed – White & Black	4 (0.8)
Any other	30 (5.9)
Do not wish to answer	9 (1.8)
No data	88 (17.3)
Bayley III cognitive composite score, mean (SD) [range]	100 (11.4)
	[55 - 125]
CBCL total T score mean (SD) [range]	46 9 (9 5)
	[28 - 69]
O-CHAT total score mean (SD) [range]	305(93)
Q ern ri total scole, mean (SD) [range]	[8 - 70]
FDDS score median [range]	10^{-70}
EDDS score, $n(0/)$	4[0-28]
<u>EFD5 SCOLE, II (70)</u>	
<13	415 (8.2)
<u>≥15</u>	21 (4.1)
No data	73 (14.3)

T-11. 1. C-

* unless otherwise specified

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

1 2

Table 2: CBCL and Q-CHAT model predictors using multiple imputation without interaction. (Cf. Supplementary Ta	able 3 for complete
case analysis)	

	CB	BCL		Q-CHAT		
	B [95%CI]	р	f ²	B [95%CI]	р	f ²
Maternal EPDS	0.93 [0.43, 1.44]	<.001 ***	0.05	0.27 [0.03, 0.52]	.031 *	0.01
Maternal BMI	-0.09 [-0.44, 0.26]	.621	-	0.06 [-0.13, 0.24]	.538	-
Multiple pregnancy	3.15 [-3.07, 9.37]	.320	-	1.33 [-2.62, 5.28]	.509	-
Parity						
1	-2.52 [-5.96, 0.93]	.151	-	-2.14 [-4.02, -0.27]	.025 a	-
2	-3.23 [-9.16, 2.70]	.285	-	0.88 [-1.99, 3.75]	.548	-
3+	-1.37 [-8.36, 5.61]	.699	-	-0.49 [-4.57, 3.60]	.815	-
IMD rank	-1.48 [-3.33, 0.37]	.117	-	-1.50 [-2.60, -0.40]	.008 **	0.02
Gestational age at birth (weeks)	0.10 [-0.65, 0.85]	.786	-	0.26 [-0.17, 0.70]	.233	-
Birthweight (kg)	0.56 [-2.65, 3.78]	.731	-	-1.24 [-2.93, 0.46]	.151	-
Sex:female	-4.14 [-6.96, -1.31]	.004 **	0.06	-1.95 [-3.42, -0.48]	.009 **	0.05
Corrected age at assessment (months)	-0.90 [-2.17, 0.37]	.166	-	-0.16 [-0.91, 0.59]	.677	-
Cognition	-0.05 [-0.20, 0.09]	.467	-	-0.27 [-0.35, -0.20]	<.001 ***	0.12

p<0.05 *; p<0.01 **; p<0.001 ***

CBCL model adjusted $R^2 = 0.0676$. Q-CHAT model adjusted $R^2 = 0.193$.

B = unstandardised coefficient.

CBCL = Child Behaviour Checklist score at 18 months. Q-CHAT = Quantitative Checklist for Autism in Toddlers score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-equivalent age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months.

^a Wald test of whole parity variable in Q-CHAT model: F(3, 476.9) = 1.88, p = .133

Effect size (Cohen's f^2 , calculated from squared part correlations for predictors significant to 0.05): 0.02 = small, 0.15 = medium and 0.35 = large.⁴⁶

- indicates data not given, as predictor not significant to 0.05.
| | CBCL | | Q-CHA | Т |
|--------------------------------------|----------------------|---------|----------------------|-----------|
| | B [95%CI] | р | B [95%CI] | р |
| Maternal EPDS | 0.89 [-0.24, 2.02] | .121 | 0.24 [-0.28, 0.75] | .365 |
| Maternal BMI | -0.01 [-0.39, 0.37] | .955 | 0.00 [-0.16, 0.17] | .982 |
| Multiple pregnancy | 1.76 [-6.65, 10.17] | .681 | 0.97 [-2.07, 4.01] | .532 |
| Parity | | | | |
| 1 | -2.75 [-6.49, 0.99] | .149 | -1.42 [-3.30, 0.46] | .139 |
| 2 | -3.49 [-10.36, 3.37] | .317 | 0.16 [-2.84, 3.16] | .917 |
| 3+ | -1.17 [-9.69, 7.35] | .788 | -1.13 [-4.24, 1.98] | .476 |
| IMD rank | -1.41 [-3.54, 0.73] | .195 | -1.68 [-2.64, -0.72] | .001 ** |
| Gestation: term | 1.25 [-8.34, 10.85] | .797 | 2.64 [-1.74, 7.02] | .236 |
| Birthweight (kg) | -1.01 [-4.08, 2.05] | .516 | -2.25 [-3.73, -0.78] | .003 ** |
| Sex: female | -4.64 [-7.83, -1.44] | .005 ** | -2.22 [-3.72, -0.71] | .004 ** |
| Corrected age at assessment (months) | -0.83 [-2.27, 0.62] | .261 | -0.39 [-1.18, 0.04] | .335 |
| Cognition | -0.03 [-0.20, 0.14] | .720 | -0.22 [-0.29,0.15] | <.001 *** |
| EPDS x gestation:term | -0.01 [-1.30, 1.28] | .991 | -0.02 [-0.60, 0.56] | .950 |

Table 3: CBCL and Q-CHAT model predictors using complete case analysis with interaction of 'EPDS x term'.

p<0.05 *; p<0.01 **; p<0.001 ***

CBCL model adjusted $R^2 = 0.0865$. Q-CHAT model adjusted $R^2 = 0.215$.

B = unstandardised coefficient.

CBCL = Child Behaviour Checklist score at 18 months. Q-CHAT = Quantitative Checklist for Autism in Toddlers score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-equivalent age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Gestation: term = dummy variable, term (\geq 37 weeks) vs preterm (<37 weeks) gestation at birth. Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months. EPDS x gestation: term = interaction term between maternal EPDS score and term gestation at birth.

Fig.1 Children's predicted CBCL scores at 18 months are positively correlated to the maternal EPDS score at term-equivalent age.

Fig.2 Children's predicted Q-CHAT scores at 18 months are positively correlated to the maternal EPDS score at term-equivalent age.

Fig.1 Children's predicted CBCL scores at 18 months are positively correlated to the maternal EPDS score at term-equivalent age

158x158mm (220 x 220 DPI)

Fig.2 Children's predicted Q-CHAT scores at 18 months are positively correlated to the maternal EPDS score at term-equivalent age.

158x158mm (220 x 220 DPI)

Supplemental material

Supplementary Table 1: CBCL internalising symptom model predictors using multiple imputation.

Supplementary Table 2: CBCL externalising symptom model predictors using multiple imputation.

Supplementary Table 3: CBCL and Q-CHAT model predictors using complete case analysis without interaction.

Supplementary Table 4: EPDS score predictors.

Supplementary Table 5: EPDS score predictors including interaction 'term x time-lag'.

s inclue. g the distribution of mater. Supplementary Figure 1: Histogram showing the distribution of maternal EPDS scores at term-equivalent age.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
3/
38
39 40
40
41 42
4∠ ⊿2
43 11
44 15
45 46

Supplementary Table 1: CBCL internalising symptom model predictors using multiple imputation.

	B [95%CI]	р	f ²
Maternal EPDS	0.22 [0.08, 0.36]	.003 **	0.03
Maternal BMI	-0.04 [-0.13, 0.06]	.436	-
Multiple pregnancy	0.58 [-1.10, 2.27]	.497	-
Parity			
1	-0.37 [-1.41, 0.67]	.487	-
2	-1.33 [-3.09, 0.42]	.136	-
3+	0.64 [-1.34, 2.62]	.524	-
IMD rank	-0.41 [-0.91, 0.10]	.115	-
Gestational age at birth (weeks)	0.22 [-0.00, 0.44]	.053	-
Birthweight (kg)	-0.97 [-1.90, -0.05]	.038 *	0.005
Sex: female	-0.51 [-1.35, 0.33]	.232	-
Corrected age at assessment (months)	0.02 [-0.41, 0.45]	.923	-
Cognition	-0.05 [-0.10, -0.01]	.016 *	0.01

p<0.05 *; p<0.01 **; p<0.001 ***

Adjusted $\mathbf{R}^2 = 0.0566$.

B = unstandardised coefficient.

Outcome variable = Child Behaviour Checklist internalising sub-score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-equivalent age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months.

Effect size (Cohen's f^2 , calculated from squared part correlations for predictors significant to 0.05): 0.02 = small, 0.15 = medium and $0.35 = \text{large.}^1$

- indicates data not given, as predictor not significant to 0.05.

 BMJ Open

		-	-
	B [95%CI]	р	f ²
Maternal EPDS	0.40 [0.20, 0.61]	<.001 ***	0.05
Maternal BMI	0.01 [-0.17, 0.15]	.933	-
Multiple pregnancy	2.51 [-0.29, 5.31]	.079	-
Parity			
1	-1.06 [-2.53, 0.42]	.160	-
2	-0.61 [-3.55, 2.33]	.682	-
3+	-0.96 [-4.47, 2.56]	.593	-
IMD rank	-0.24 [-1.11, 0.63]	.585	-
Gestational age at birth (weeks)	-0.07 [-0.40, 0.27]	.701	-
Birthweight (kg)	1.03 [-0.38, 2.44]	.153	-
Sex: female	-1.80 [-3.07, -0.53]	.006 **	0.06
Corrected age at assessment (months)	-0.40 [-0.95, 0.16]	.161	-
Cognition	0.03 [-0.03, 0.10]	.322	-
0<0.05 *; p<0.01 **; p<0.001 ***			
Adjusted $R^2 = 0.0612$.			

Supplementary Table 2: CBCL externalising symptom model predictors using multiple imputation.

B = unstandardised coefficient.

Outcome variable = Child Behaviour Checklist externalising sub-score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-equivalent age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months.

Effect size (Cohen's f^2 , calculated from squared part correlations for predictors significant to 0.05): 0.02 = small, 0.15 = medium and 0.35 = large.¹

- indicates data not given, as predictor not significant to 0.05.

B [95%CI] p B [95%CI] Maternal EPDS 0.88 [0.35, 1.41] .001 ** 0.21 [-0.02, 0.44] Maternal BMI -0.01 [-0.38, 0.37] .963 0.01 [-0.16, 0.17] Multiple pregnancy 1.50 [-6.87, 9.87] .724 0.43 [-2.50, 3.37] Parity -2.83 [-6.60, 0.94] .141 -1.54 [-3.41, 0.34] 2 -3.49 [-10.3, 3.35] .316 0.13 [-2.85, 3.10] 3+ -1.38 [-10.0, 7.30] .755 -1.43 [-4.50, 1.64] IMD rank -1.44 [-3.56, 0.67] .181 -1.75 [-2.70, -0.79] <.0 Gestational age at birth (weeks) 0.01 [-0.90, 0.91] .987 0.10 [-0.33, 0.54] .0 Birthweight (kg) -0.65 [-4.38, 3.08] .733 -1.81 [-3.63, 0.00] .0 Sex: female -4.57 [-7.82, -1.31] .006 ** -2.12 [-3.60, -0.64] .0 Corrected age at assessment (months) -0.84 [-2.26, 0.59] .247 -0.41 [-1.18, 0.35] .0		CBCL		Q-CHA	Т
Maternal EPDS 0.88 [0.35, 1.41] .001 ** 0.21 [-0.02, 0.44] Maternal BMI -0.01 [-0.38, 0.37] .963 0.01 [-0.16, 0.17] Multiple pregnancy 1.50 [-6.87, 9.87] .724 0.43 [-2.50, 3.37] Parity -2.83 [-6.60, 0.94] .141 -1.54 [-3.41, 0.34] 2 -3.49 [-10.3, 3.35] .316 0.13 [-2.85, 3.10] 3+ -1.38 [-10.0, 7.30] .755 -1.43 [-4.50, 1.64] IMD rank -1.44 [-3.56, 0.67] .181 -1.75 [-2.70, -0.79] <.0		B [95%CI]	р	B [95%CI]	р
Maternal BMI -0.01 [-0.38, 0.37] .963 0.01 [-0.16, 0.17] Multiple pregnancy 1.50 [-6.87, 9.87] .724 0.43 [-2.50, 3.37] Parity -2.83 [-6.60, 0.94] .141 -1.54 [-3.41, 0.34] 2 -3.49 [-10.3, 3.35] .316 0.13 [-2.85, 3.10] 3+ -1.38 [-10.0, 7.30] .755 -1.43 [-4.50, 1.64] IMD rank -1.44 [-3.56, 0.67] .181 -1.75 [-2.70, -0.79] <.0 Gestational age at birth (weeks) 0.01 [-0.90, 0.91] .987 0.10 [-0.33, 0.54] Birthweight (kg) -0.65 [-4.38, 3.08] .733 -1.81 [-3.63, 0.00] Sex: female -4.57 [-7.82, -1.31] .006 ** -2.12 [-3.60, -0.64] .0 Corrected age at assessment (months) -0.84 [-2.26, 0.59] .247 -0.41 [-1.18, 0.35]	Maternal EPDS	0.88 [0.35, 1.41]	.001 **	0.21 [-0.02, 0.44]	.069
Multiple pregnancy 1.50 [-6.87, 9.87] .724 0.43 [-2.50, 3.37] Parity -2.83 [-6.60, 0.94] .141 -1.54 [-3.41, 0.34] 2 -3.49 [-10.3, 3.35] .316 0.13 [-2.85, 3.10] 3+ -1.38 [-10.0, 7.30] .755 -1.43 [-4.50, 1.64] IMD rank -1.44 [-3.56, 0.67] .181 -1.75 [-2.70, -0.79] <.0 Gestational age at birth (weeks) 0.01 [-0.90, 0.91] .987 0.10 [-0.33, 0.54] .0 Birthweight (kg) -0.65 [-4.38, 3.08] .733 -1.81 [-3.63, 0.00] .0 .0 Sex: female -4.57 [-7.82, -1.31] .006 ** -2.12 [-3.60, -0.64] .0 Corrected age at assessment (months) -0.84 [-2.26, 0.59] .247 -0.41 [-1.18, 0.35]	Maternal BMI	-0.01 [-0.38, 0.37]	.963	0.01 [-0.16, 0.17]	.930
1 -2.83 [-6.60, 0.94] .141 -1.54 [-3.41, 0.34] 2 -3.49 [-10.3, 3.35] .316 0.13 [-2.85, 3.10] 3+ -1.38 [-10.0, 7.30] .755 -1.43 [-4.50, 1.64] IMD rank -1.44 [-3.56, 0.67] .181 -1.75 [-2.70, -0.79] <.0	Multiple pregnancy	1.50 [-6.87, 9.87]	.724	0.43 [-2.50, 3.37]	.772
1 -2.83 [-6.60, 0.94] .141 -1.54 [-3.41, 0.34] 2 -3.49 [-10.3, 3.35] .316 0.13 [-2.85, 3.10] 3+ -1.38 [-10.0, 7.30] .755 -1.43 [-4.50, 1.64] IMD rank -1.44 [-3.56, 0.67] .181 -1.75 [-2.70, -0.79] <.0	Parity				
2 -3.49 [-10.3, 3.35] .316 0.13 [-2.85, 3.10] 3+ -1.38 [-10.0, 7.30] .755 -1.43 [-4.50, 1.64] IMD rank -1.44 [-3.56, 0.67] .181 -1.75 [-2.70, -0.79] <.0	1	-2.83 [-6.60, 0.94]	.141	-1.54 [-3.41, 0.34]	.108
3+ -1.38 [-10.0, 7.30] .755 -1.43 [-4.50, 1.64] IMD rank -1.44 [-3.56, 0.67] .181 -1.75 [-2.70, -0.79] <.0	2	-3.49 [-10.3, 3.35]	.316	0.13 [-2.85, 3.10]	.933
IMD rank -1.44 [-3.56, 0.67] .181 -1.75 [-2.70, -0.79] <.0	3+	-1.38 [-10.0, 7.30]	.755	-1.43 [-4.50, 1.64]	.360
Gestational age at birth (weeks) 0.01 [-0.90, 0.91] .987 0.10 [-0.33, 0.54] Birthweight (kg) -0.65 [-4.38, 3.08] .733 -1.81 [-3.63, 0.00] Sex: female -4.57 [-7.82, -1.31] .006 ** -2.12 [-3.60, -0.64] .00 Corrected age at assessment (months) -0.84 [-2.26, 0.59] .247 -0.41 [-1.18, 0.35]	IMD rank	-1.44 [-3.56, 0.67]	.181	-1.75 [-2.70, -0.79]	<.001 **
Birthweight (kg) -0.65 [-4.38, 3.08] .733 -1.81 [-3.63, 0.00] Sex: female -4.57 [-7.82, -1.31] .006 ** -2.12 [-3.60, -0.64] .00 Corrected age at assessment (months) -0.84 [-2.26, 0.59] .247 -0.41 [-1.18, 0.35]	Gestational age at birth (weeks)	0.01 [-0.90, 0.91]	.987	0.10 [-0.33, 0.54]	.639
Sex: female -4.57 [-7.82, -1.31] .006 ** -2.12 [-3.60, -0.64] .0 Corrected age at assessment (months) -0.84 [-2.26, 0.59] .247 -0.41 [-1.18, 0.35]	Birthweight (kg)	-0.65 [-4.38, 3.08]	.733	-1.81 [-3.63, 0.00]	.050
Corrected age at assessment (months) -0.84 [-2.26, 0.59] .247 -0.41 [-1.18, 0.35]	Sex: female	-4.57 [-7.82, -1.31]	.006 **	-2.12 [-3.60, -0.64]	.005 **
	Corrected age at assessment (months)	-0.84 [-2.26, 0.59]	.247	-0.41 [-1.18, 0.35]	.290
Cognition -0.03 [-0.20, 0.13] -0.23 [-0.30, -0.15] <.0	Cognition	-0.03 [-0.20, 0.13]	.689	-0.23 [-0.30, -0.15]	<.001 **

Supplementary Table 3: CBCL and O-CHAT model predictors using complete case analysis without interaction.

CBCL adjusted
$$R^2 = 0.0862$$
. Q-CHAT adjusted $R^2 = 0.2103$.

B = unstandardised coefficient.

 CBCL = Child Behaviour Checklist externalising sub-score at 18 months. Q-CHAT = Quantitative Checklist for Autism in Toddlers score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-equivalent age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Gestation (weeks) = dummy variable: 34-36+6 weeks and \geq 37 weeks gestation at birth. Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months.

Supplementary Table 4: EPDS score predictors.

	IRR [95%CI]	р
Time-lag (weeks)	1.01 [0.97, 1.05]	.647
Gestation:term	0.91 [0.64, 1.31]	.627
IMD rank	1.00 [1.00, 1.00]	.103
Multiple pregnancy	0.66 [0.46, 0.96]	.031 *
Parity		
1	0.79 [0.66, 0.95]	.011 *
2	0.87 [0.60, 1.28]	.491
3+	0.84 [0.54, 1.31]	.445
Birthweight (kg)	0.98 [0.83, 1.17]	.847
Sex:female	1.13 [0.98, 1.31]	.098
p<0.05 *; p<0.01 **; p<0.	.001 ***	
Pseudo $R^2 = 0.0228$		
DD - incidence reteretio		

IRR = incidence rate ratio

Outcome variable = maternal Edinburgh Postnatal Depression Scale (EPDS) score at term-equivalent age. Time-lag (weeks) = time in weeks between birth and EPDS assessment. Gestation:term = dummy variable, term (\geq 37 weeks) vs preterm (<37 weeks) gestation at birth. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren).

Supplementary	Table 5: EPDS sc	ore predictors incl	uding interaction	'term x time-lag'.
---------------	------------------	---------------------	-------------------	--------------------

	IRR [95%CI]	р
Time-lag (weeks)	1.00 [0.97, 1.04]	.823
Gestation: term	0.88 [0.58, 1.34]	.553
IMD rank	1.00 [1.00, 1.00]	.104
Multiple pregnancy	0.66 [0.46, 0.96]	.029 *
Parity		
1	0.79 [0.66, 0.95]	.010 *
2	0.87 [0.60, 1.28]	.480
3+	0.85 [0.55, 1.31]	.458
Birthweight (kg)	0.97 [0.83, 1.15]	.756
Sex:female	1.13 [0.98, 1.30]	.100
Term x time-lag (weeks)	1.01 [0.94, 1.10]	.735
<0.05 *; p<0.01 **; p<0.00	1 ***	
Pseudo $R^2 = 0.0230$		
DD in siden as note notic		

IRR = incidence rate ratio

Outcome variable = maternal Edinburgh Postnatal Depression Scale (EPDS) score at term-equivalent age. Time-lag (weeks) = time in weeks between birth and EPDS assessment. Gestation: term = dummy variable, term (\geq 37 weeks) vs preterm (<37 weeks) gestation at birth. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Term x time-lag (weeks): interaction term between term gestation at birth and time-lag between birth and maternal EPDS assessment.

Page 37 of 38

 BMJ Open

Supplemental reference list

 1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. L. Erlbaum Associates; 1988.

For peer review only

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1, 2
		(b) Provide in the abstract an informative and balanced summary of what was	
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5,6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6, 7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7
0		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7
-		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7, 8
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7, 8
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	9
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	9, 10
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	9, 10, 11
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(e) Describe any sensitivity analyses	
Dogulta			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	7,11
i articipanto	15	eligible examined for eligibility confirmed eligible included in the study	
		completing follow-up and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic clinical social)	9, 11
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg. average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	11
	1.7	report numbers of outcome events of summary medsures over time	1

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	11, 12
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11, 12
Discussion			
Key results	18	Summarise key results with reference to study objectives	12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	15, 16, 17
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	13, 14, 17
Generalisability	21	Discuss the generalisability (external validity) of the study results	13, 14
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	3

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Postnatal maternal depressive symptoms and behavioural outcomes in term- and preterm-born toddlers: a longitudinal UK community cohort study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058540.R3
Article Type:	Original research
Date Submitted by the Author:	05-Aug-2022
Complete List of Authors:	Kleine, Ira; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Vamvakas, George; King's College London, Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience Lautarescu, Alexandra; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine; King's College London, Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience Falconer, Shona; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Chew, Andrew; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Counsell, Serena ; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Counsell, Serena ; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Pickles, Andrew; King's College London, Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience Edwards, David; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine Nosarti, Chiara; King's College London, Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty of Life Sciences & Medicine
Primary Subject Heading :	Mental health
Secondary Subject Heading:	Paediatrics
Keywords:	MENTAL HEALTH, Child & adolescent psychiatry < PSYCHIATRY, Developmental neurology & neurodisability < PAEDIATRICS, Depression & mood disorders < PSYCHIATRY, NEONATOLOGY

1	
2	
4	
5	· · · · · · · · · · · · · · · · · · ·
6 7	SCHOLARONE™
8	Manuscripts
9	Manascripts
10	
12	
13	
14	
15 16	
17	
18	
19	
20	
22	
23	
24 25	
26	
27	
28 29	
30	
31	
32	
34	
35	
36	
37 38	
39	
40	
41 42	
43	
44	
45 46	
47	
48	
49 50	
50	
52	
53	
54 55	
56	
57	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Page 3 of 39

2 3	1	Postnatal maternal depressive symptoms and behavioural outcomes in term- and
4 5	2	preterm-born toddlers: a longitudinal UK community cohort study.
6 7	3	Kleine, Ja (MBBS): Vamvakas, G ^b (MSc): Lautarescu A ^{a,c} (MPhil): Falconer, S ^a (PhD): Chew
8	<u>ح</u>	A ^a (MD): Counsell SI ^a (PhD): Pickles A ^b (EMedSci): Edwards AD ^a (EMedSci): Nosarti C ^{a,d}
9 10	5	(PhD)
11 12	5	
13	7	^a Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Faculty
14 15	,	of Life Sciences & Medicine King's College London St Thomas' Hospital London SE1
16 17	0	7ELL LIV
18	9	/En, UK.
19 20	10	Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and
21 22	11	Neuroscience, King's College London, London SES 8AF, UK.
23	12	^c Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and
24 25	13	Neuroscience, King's College London, London SE5 8AF, UK.
26 27	14	^d Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and
27 28	15	Neuroscience, King's College London, London SE5 8AF, UK.
29 30	16	
31	17	Post-publication corresponding author's contact information
32 33	18	Prof Chiara Nosarti
34 35	19	Centre for the Developing Brain, School of Bioengineering and Imaging Sciences
36	20	King's College London
37 38	21	St Thomas' Hospital
39 40	22	London
41	23	SE1 7EH
42 43	24	UK
44 45	25	chiara.nosarti@kcl.ac.uk
46 47	26	+44 (0)207 848 0133
48 ⊿9	27	
50	28	
51 52	29	
53 54	30	
55	31	
56 57	32	
58 59	33	
60	34	

2		
4	35	Abstract
5 6	36	Objectives: To examine the association between maternal depressive symptoms in the
7 8 9 10 11	37	immediate postnatal period and offspring's behavioural outcomes in a large cohort of term-
	38	and preterm-born toddlers.
	39	Design and Participants: Data were drawn from the Developing Human Connectome
12	40	Project. Maternal postnatal depressive symptoms were assessed at term-equivalent age, and
13 14	41	children's outcomes were evaluated at a median corrected age of 18.4 months (range 17.3 –
15 16	42	24.3).
17	43	Exposure and outcomes: Preterm birth was defined as <37 weeks completed gestation.
18 19	44	Maternal depressive symptoms were assessed with the Edinburgh Postnatal Depression Scale
20 21	45	(EPDS). Toddlers' outcome measures were parent-rated Child Behaviour Checklist 1 ^{1/2} -5
22	46	Total (CBCL) and Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores.
23 24	47	Toddlers' cognition was assessed with the Bayley Scales of Infant and Toddler Development
25 26	48	– Third Edition (Bayley-III).
27 28	49	Results: Higher maternal EPDS scores were associated with toddlers' higher CBCL (B=0.93,
29	50	95% CI 0.43-1.44, p<0.001, f ² =0.05) and Q-CHAT scores (B=0.27, 95% CI 0.03-0.52,
30 31	51	p=.031, f ² =0.01). Maternal EPDS, toddlers' CBCL and Q-CHAT scores did not differ
32 33	52	between preterm (n=97; 19.1% of the total sample) and term participants. Maternal EPDS
34	53	score did not disproportionately affect preterm children with respect to CBCL or Q-CHAT
35 36	54	scores.
37 38	55	Conclusions: Our findings indicate that children whose mothers reported increased
39 40	56	depressive symptoms in the early postnatal period, including subclinical symptoms, exhibit
41	57	more parent-reported behavioural problems in toddlerhood. These associations were
42 43	58	independent of gestational age. Further research is needed to confirm the clinical significance
44 45	59	of these findings.
46	60	
47 48	61	
49 50	62	
51	63	
52 53 54 55 56	64	
	65	
	66	
58	67	
59 60	68	
	00	

1 2		
2 3	69	Strengths and limitations of this study
4 5	70	• Prospective study with a large sample, using multiple imputation to reduce non-
6 7	71	response bias.
8 9	72	• Maternal depressive symptoms assessed as a continuous variable, providing more
10 11	73	nuanced information about the significance of subclinical symptoms.
12	74	• Maternal depressive symptoms assessed earlier than in previous studies, enabling
13 14	75	recognition of early screening opportunities for families.
15 16	76	• Potential common method variance bias through parent-completed child behavioural
17 18	77	assessments.
19	78	• Unknown paternal and parental factors, such as comorbid psychiatric conditions, that
20	79	may confound our findings.
22 23	80	
24 25	81	Keywords
26 27	82	Postpartum Depression; Child Development; Autism; Mental Health; Child Behavior; Mood
28	83	Disorder; Preterm Birth.
29 30	84	
31 32	85	
33 34	86	
35	87	
36 37	88	
38 39	89	
40 41	90	
42	91	
45 44	92	
45 46	93	
47 48	94	
49 50	95	
51	96	
52 53	9/	
54 55	98	
56 57	99 100	
58	101	
59 60	101	

Introduction

Postnatal depression affects approximately 12% of mothers worldwide.¹ In contrast to 'baby blues', which is a state of emotional lability that affects between 13.7%-76.0% of women in the first few days after birth and typically resolves spontaneously within two weeks,² postnatal depression is more severe and starts in the first few months post-partum¹. Stressful life events have been linked to a heightened risk of developing postnatal depression;³ for example, mothers of preterm infants have a significantly higher risk of postpartum depression compared to mothers of term infants,⁴ likely due to heightened stress associated with perinatal complications.⁵

Women with postnatal depression tend to be less responsive to their baby's needs and to display less affection.⁶ Therefore, in the short-term postpartum depression may affect mother-infant interactions⁷ and in the long-term it may lead to alterations in brain development,⁸ emotional difficulties,⁹ less secure attachment, cognitive and behavioural problems in childhood, and a possible increased risk of autism spectrum disorder (ASD).^{10,11} Large cohort studies, such as the Avon Longitudinal Study of Parents and Children (ALSPAC), have shown that these associations are even evident when maternal depression is measured on a continuum of symptoms rather than a dichotomous diagnosis,^{12–14} supporting the notion that elevated sub-diagnostic psychiatric symptoms can also negatively impact on children's development.¹⁵

Studies investigating the underlying causes that may link maternal postnatal depression to child outcomes have implicated several biological and environmental variables. For instance, genetic and epigenetic factors have been shown to both mediate and mitigate the intergenerational transmission of psychiatric disorders,¹⁶ while lower quality parenting, interparental conflict, and socioeconomic deprivation have been shown to exacerbate children's developmental risk of emotional and behavioural problems.¹¹ In addition, being born preterm (i.e. <37 weeks' gestation, as per the World Health Organization definition ¹⁷) has been associated with alterations in early brain development,¹⁸ as well as neurological, behavioural and cognitive problems in childhood and beyond.^{19,20} Therefore, it is complex to disentangle the possible effects of postnatal maternal mental health and those of perinatal clinical factors on specific outcomes in preterm children, as these may involve both maternal psychosocial and biological variables, as well as child preterm-related neurodevelopmental morbidity.

1 2	
3	136
4 5	137
6 7	138
8	139
9 10	140
11 12	141
13 14	142
15	143
16 17	144
18 19	145
20	146
21 22	147
23 24	148
25	149
26 27	150
28 29	150
30	151
31	152
33 34	153
35	154
36 37	155
38 39	156
40	157
41 42	158
43 44	159
45 46	160
40 47	161
48	162

Furthermore, a question that remains unanswered is whether preterm birth accentuates the 37 association between maternal postnatal depression and child outcome. Two theoretical .38 frameworks exist that hypothesise certain infants may be influenced differently by external .39 stimuli: the diathesis stress model proposes that certain vulnerability factors make affected 40 infants more prone to suboptimal environmental influences with subsequent poorer .41 outcomes,^{21,22} whereas the differential susceptibility model frames such factors as plasticity-42 mediating, thus leading to poorer outcomes in negative environments, as well as better 43 outcomes in supportive environments.^{22,23} Previous studies investigating differential 44 susceptibility have shown mixed findings studying a range of environmental and clinical 45 exposures,^{24,25} with child outcomes including attachment, internalising and externalising 46 behaviour, and academic competence.²⁵ Both low birthweight in term infants (small for 47 gestational age, SGA) ²⁶ and preterm birth (PTB) ^{23,24,27} have been explored as distinct 48 potential susceptibility factors. This distinction is based on the different pathophysiological 49 processes underlying the respective conditions of SGA and PTB, both, or a combination, of .50 which can cause low birthweight.²⁸ For example, SGA is a marker of intra-uterine growth .51 restriction related to placental dysfunction,²⁹ whereas PTB can be caused by a multitude of .52 factors, including infection and inflammation.³⁰ .53

Given that mothers of preterm children experience elevated levels of distress,³¹ are at high .55 risk of developing postnatal depression,³² and that preterm children themselves are vulnerable .56 to psychiatric sequelae,³³ in addition to investigating the association between very early .57 maternal postnatal depressive symptoms and child behavioural and emotional outcomes, we .58 further aimed to investigate the interaction between preterm birth and maternal depressive .59 symptoms on child outcomes. Previous work focusing on the differential susceptibility of .60 .61 preterm born children to various environmental stimuli, as described above, had not yet studied maternal depressive symptoms as a proposed exposure. We specifically aimed to .62 49 investigate the continuum of maternal depressive symptoms rather than solely focussing on 163 50 51 clinically significant maternal depression, so as to provide more nuanced information about 164 52 53 165 the importance of subclinical depressive symptoms on child outcomes. We hypothesised that 54 55 early postnatal maternal depressive symptoms would be more elevated in mothers of preterm 166 56 compared to term infants and that these would impact preterm children's behavioural and 167 57 58 emotional outcomes to a greater degree than their term counterparts. 168 59

3 4 5 6 7 8 9 10 11 12 13 14 15 16	170	Methods
	171	Sample
	172	Participants were enrolled in the Developing Human Connectome Project (DHCP,
	173	http://www.developingconnectome.org/), a neuroimaging-focused project, with eligibility
	174	criteria including pregnant women (aged ≥ 16 years) with a gestational age of 20–42 weeks,
	175	and newborn infants aged 24-44 weeks; infants enrolled in the DHCP had magnetic
	176	resonance imaging (MRI) at term-equivalent age. Exclusion criteria for the DHCP included:
	177	contraindications to MRI, babies being too unwell to tolerate a scan, and language difficulties
17	178	preventing informed consent. ³⁴ Toddlers were invited to the Centre for the Developing Brain,
18 19	179	St Thomas' Hospital, London, for neurodevelopmental assessment at 18 months post-
20 21	180	expected delivery date; appointments were made according to family availability as close as
22 23	181	possible to this time-point. Inclusion criteria for our follow-up study were: mother and baby
24	182	attendance for MRI at term-equivalent age; completed toddler neurodevelopmental
25 26	183	assessment. These inclusion criteria were met by 509 toddlers by the date of closure for this
27 28	184	analysis (26/02/2020). Of the 509 toddlers, 51 were one of a twin pregnancy, and three were
29	185	one of a triplet pregnancy; the sample contained 22 sibling pairs and one set of triplets. This
30 31	186	study was approved by the UK National Research Ethics Authority (14/LO/1169) and
32 33	187	conducted in accordance with the World Medical Association's Code of Ethics (Declaration
34 35	188	of Helsinki). Written informed consent was given by children's carer(s) at recruitment into
36	189	the study.
37 38	190	
39 40	191	Maternal variables
41 42	192	Maternal age, parity, Body Mass Index (BMI), ethnicity and postcode were collected at
43	193	enrolment into the DHCP study. Our sample was ethnically representative of the surrounding
44 45	194	geographical area. Parity was coded as 0, 1, 2, or \geq 3 previous children. Index of Multiple
46 47	195	Deprivation (IMD) rank was computed from the current maternal postcode using the 2019
48 40	196	IMD classification; it combines locality-specific information about income, employment,
49 50	197	education, health, crime, housing and living environment, thus providing a proxy for family
51 52 53 54 55	198	socioeconomic status. ³⁵ Lower IMD rank corresponds to greater social deprivation. Our
	199	sample was generally less deprived than the surrounding geographical areas, as well as the
	200	UK as a whole, reflecting trends observed in other UK longitudinal studies. ³⁶
50 57	201	
58 59 60	202	Maternal depressive symptoms were measured using the Edinburgh Postnatal Depression
	203	Scale (EPDS) ³⁷ on the day of infant's MRI at term-equivalent age. Mothers of infants born at

Page 9 of 39

BMJ Open

term were tested in the first few weeks postnatally, whereas mothers of preterm-born infants were tested once they reached term-corrected age. The EPDS is a 10-item screening questionnaire completed by mothers, with higher scores reflecting a higher likelihood of depressive disorders. A score of 13 can be used as a cut-off indicating high-level symptoms, although a cut-off of 11 maximises the sensitivity and specificity of the screening tool for depression.³⁸ Mothers completed the EPDS independently in a private room in our Centre, with no interaction with the researcher. Participants were informed that the results would be discussed with them, and consented to information being shared with their General Practitioner in the case of high scores. The EPDS questionnaire was scored by a member of the DHCP team.³⁴

Child variables

Infant *clinical characteristics* were gathered from clinical notes where available, or from maternal report, and included: sex, gestational age at birth, birth weight, and pregnancy size (singleton/twin/triplet).

Behavioural outcomes were assessed using the Child Behaviour Checklist/1^{1/2}-5 (CBCL), a parent-completed 100-item questionnaire, in which the parent rates the child's behaviour over the preceding two months using a 3-point Likert scale ("not true", "somewhat or sometimes true", and "very true or often true"). Responses are categorised into syndrome profiles, and these are subsequently grouped into internalising (emotional reactivity, anxiety/depression, somatic complaints, and withdrawal), externalising (attention problems, aggressive behaviour) and total (internalising, externalising, sleep and other) problem scales. Higher scores indicate increased emotional and behavioural problems. Total scores are classified into a normal range (<83rd centile, T <60), borderline range (83rd-90th centile, T 60-63), and clinical range (>90th centile, $T \ge 64$).³⁹ The CBCL is known to have high reliability, validity and cross-informant agreement for measuring children's emotional and behavioural problems.³⁹

We used the Quantitative Checklist for Autism in Toddlers (Q-CHAT) as an additional behavioural screening tool to broaden the exploration of mental health outcomes in toddlers. The Q-CHAT is a parent-completed 25-item questionnaire, in which the child's behaviour is scored on a 5-point (0-4) frequency scale. Higher total scores correspond to a higher frequency of behaviours also observed in autism spectrum conditions. The Q-CHAT shows

1 2		
3 4 5 6 7	238	good test-retest reliability, face validity and specificity, yet poor positive predictive value for
	239	autism, ^{40,41} highlighting that higher Q-CHAT scores may reflect developmental immaturity
	240	rather than autism. ⁴¹
8 9	241	
10	242	Cognitive assessment was performed using the Bayley Scales of Infant and Toddler
11 12	243	Development – Third Edition (Bayley-III). The Bayley-III provides scores for a child's
13 14	244	overall cognitive, language and motor development. The cognitive standardised composite
15 16 17	245	score was used in this study; scores between 70-84 indicate mild cognitive impairment,
	246	scores between 55-69 indicate moderate impairment, and scores lower than 55 indicate severe
18 19	247	impairment ⁴² . Reliability and validity of the Bayley-III have been shown to be robust, ⁴³
20 21	248	although some studies report its underestimation of developmental problems. ⁴⁴
22 23 24	249	
	250	Assessments were carried out by staff experienced in the neurocognitive assessments of
25 26	251	toddlers.
27 28	252	
29	253	Analysis
30 31	254	Descriptive statistics and one-way ANOVA tests were performed in IBM SPSS Statistics for
32 33	255	Windows v.25. All other analyses were carried out in Stata v.16.
34 35	256	
36	257	Multiple imputation (MI) was carried out to account for missing data in CBCL (11/509,
37 38	258	2.24%), Q-CHAT (9/509, 1.8%), maternal EPDS (73/509, 14.3%), maternal BMI (27/509,
39 40	259	5.3%) and IMD rank (3/509, 0.6%). Variables were imputed simultaneously using the 'mi
41 42	260	impute chained' procedure that performs imputation by chained equations. The imputation
43	261	models had the same structural form as the analysis models, and included all variables that
44 45	262	appear in the corresponding analysis models (maternal EPDS, maternal BMI, multiple
46 47	263	pregnancy, parity, IMD rank, gestational age at birth, birthweight, sex, corrected age at
48 49	264	assessment, and Bayley III Cognitive Composite score). In the imputation models we also
49 50 51 52 53 54 55 55	265	included variables that were associated with the incomplete variables at the 20% level. As
	266	such, maternal age was included in the imputation model because it was found to be a
	267	significant predictor of the total CBCL raw score (p=0.001), the Q-CHAT score (p=0.021)
	268	and EPDS score (p=0.122) when it was included as an independent variable in regression
57	269	models.
58 59	270	
60		

Page 11 of 39

BMJ Open

Maternal EPDS and CBCL were imputed using Poisson regression; Q-CHAT, maternal BMI, and the IMD rank were imputed using linear regression. 40 MI datasets were created. To assess the stability of our MI parameters, we extracted the Monte Carlo error of each parameter estimate and examined whether the error for the coefficient was less than 10% of the parameter's standard error estimate. MI estimates were used for the primary analyses and compared to the estimates from complete-case (CC, individuals who had no missing data pre-imputation) analyses. Conditional normality was inspected in the complete-case analyses using QQ plots of the residuals of the models. Sensitivity analyses with and without extreme values were conducted. Initially, we fit the model using all available data, constructed the residuals and examined the QQ plot. Extreme values were then removed, models re-fitted without these values, and new QQ plots of residuals constructed again to check for any new extreme values. This process was repeated as many times as needed to remove all extreme values. During this process, the resulting estimates from the models were being examined as to whether they had substantially changed. We found that the removal of extreme values did not make any difference to the estimated parameters, and hence present the results from the full sample.

The analysis models were multiple linear regressions fitted using the 'mi estimate' procedure, which estimates effects after application of Rubin's rules.⁴⁵ To account for the small amount of clustering in our data (twin/triplet siblings), the models' standard errors were obtained using Stata's robust cluster estimator 'vce(cluster *idvar*)'. For continuous variables, Cohen's f-squared effect sizes were calculated using $f^2 = (R_{AB}^2 - R_A^2)/(1 - R_{AB}^2)$, where R_{AB}^2 is the R-squared value from a regression model that includes the variable of interest as well as all the covariates used in the model, and R_A^2 is the R-squared value from the regression model that includes only the covariates.^{46,47} For binary variables, Cohen's f-squared effect sizes were produced after estimating first the Cohen's d using the formula: $f^2 = \frac{d}{2k}$, where k is the number of groups. As a measure of dispersion, Cohen's d used the average root mean-square error over the MI datasets. Adjusted R-squared values after MI were extracted after estimating the model with the user-written 'mibeta' command with the 'fisherz' option,⁴⁸ which calculates R-squared measures for linear regression with MI data. The significance of the joint effect of the categorical variable parity was assessed using 'mi test' which performs Wald tests of composite linear hypotheses.

Primary outcome measures were children's total CBCL raw score and Q-CHAT score. Secondary outcome measures were CBCL internalising and externalising scores. The effect of maternal EPDS score was adjusted for IMD rank, maternal age, maternal BMI, maternal parity, pregnancy size, and the following child's variables: continuous gestational age, birth weight, Bayley-III cognitive composite score, and corrected age at assessment. The interaction between preterm birth and maternal depressive symptoms was explored using a complete case analysis in both CBCL and Q-CHAT models, using a dichotomised measure of gestational age. EPDS, CBCL and Q-CHAT scores were compared between term (≥37 weeks gestation) and preterm infants (<37 weeks gestation) using the complete case dataset. Our regressions were thus run twice: with and without the interaction term. As all mothers had their EPDS score measured near term (or term-corrected in the case of mothers of preterm infants), we further investigated the association between time elapsing between baby's birth and mother's EPDS assessment and EPDS score, in order to avoid erroneously identifying 'baby blues' in mothers of term-born infants versus postnatal depression in mothers of preterm infants. This post-hoc analysis was performed using Poisson regression. Patient and Public Involvement The current study was developed in consultation with the Weston Programme for Family Centered Research, which involves parents to define what research is valuable to them, and to allow them to lead it with support from the scientists in the Centre for the Developing Brain. **Results** *Descriptive statistics* Our sample of 509 toddlers were followed up at a median corrected age of 18.4 months (range 17.3 - 24.3 months). 51 (10.0%) of these were twins, and 3 (0.59%) were triplets. Of the 509, 21 (4.13%) mothers scored above a clinical cut-off (\geq 13) on the EPDS;(26) the distribution of maternal EPDS scores is shown graphically in Supplementary Figure 1. Demographic data are shown in Table 1. Complete data were available for 400 (78.6%) participants. Missing data were imputed and thus all 509 subjects were included in the primary and secondary analyses. One participant was excluded from the cognition analysis after examining the quintiles of the residuals against the theoretical quintiles of a normal distribution. The mean CBCL T score was 46.9 (SD 9.5) (Table 1); using CBCL-specified

BMJ Open

2		
3 4 5 6 7 8 9 10 11 12	338	cut-offs, ³⁹ 449 (90.2%) of participants had a CBCL score in the normal range, 30 (6.0%)
	339	were borderline, and 19 (3.8%) scored in the clinical range. The mean Q-CHAT score was
	340	30.5 (SD 9.3) (Table 1). The mean Bayley III Cognitive Composite score in our sample was
	341	100 (SD 11.4) (Table 1), which corresponds to the standardised test mean; ⁴² 480 (94.3%) of
	342	participants had a normal cognitive score, 24 (4.7%) had mild impairment, 5 (1%) had
	343	moderate impairment, and nil had severe impairment. This distribution is not dissimilar from
13 14	344	that of the normative sample. ⁴²
15 16	345	
17	346	Association between maternal EPDS score and toddler CBCL and Q-CHAT scores
18 19	347	Predictors of children's CBCL and Q-CHAT scores after multiple imputation are shown in
20 21	348	Table 2. Higher maternal EPDS score was associated with children's higher CBCL Total
22 23	349	score (B=0.93, 95% CI 0.43-1.44, p<0.001, f ² =0.05) and Q-CHAT score (B=0.27, 95% CI
24	350	0.03-0.52, p=.031, f ² =0.01) (Table 2). These associations are presented graphically in Figure
25 26	351	1 and Figure 2, respectively. Boys had higher CBCL and Q-CHAT scores than girls. Higher
27 28	352	Q-CHAT scores were associated with lower IMD rank (i.e., greater socio-economic
29	353	deprivation) and lower Bayley-III cognitive composite scores. Parity was not a significant
31	354	predictor of outcome in any of the models (Table 2).
32 33	355	
34 35	356	Maternal EPDS score did not disproportionately affect preterm children with respect to
36	357	CBCL or Q-CHAT scores (Table 3).
37 38	358	
39 40	359	Association between maternal EPDS score and toddler CBCL internalising and externalising
41 42	360	scores
43	361	Higher maternal EPDS score was associated with both internalising (B=0.22, 95% CI 0.08-
44 45	362	0.36, p<0.01, f ² =0.03) and externalising (B=0.40, 95% CI 0.20-0.61, p<0.001, f ² =0.05)
46 47	363	symptoms in children (Supplementary Table 1 and 2, respectively). Comparison of the
48 40	364	imputed model analyses to the complete-case analyses showed that results were consistent for
49 50 51 52 53 54 55 56 57 58 59 60	365	the CBCL model (Supplementary Table 3). Comparison for the Q-CHAT model showed that
	366	maternal EPDS was a significant predictor in the imputed model, but not in the complete-case
	367	analysis (Supplementary Table 3).
	368	
	369	Effect of time-lag between baby's birth and mother's EPDS assessment and EPDS score
	370	Mothers who gave birth prematurely (<37 weeks gestation) had their EPDS score assessed on
	371	average 7.7 weeks later post-delivery than mothers who gave birth at term (preterm

372 participants M=8.9 (SD 4.8), term participants M=1.2 (SD 1.3); t(99.4)=15.5, p<.001). The

time-lag between birth and EPDS assessment did not predict maternal EPDS score, and there

374 was no evidence of a significant interaction between gestation and birth-to-assessment time-

lag (Supplementary Table 4 and 5, respectively).

Discussion

378 Principal findings

Our results showed that more maternal self-reported depressive symptoms shortly after birth were associated with greater parent-reported toddlers' behavioural problems. Given that fewer than 5% of the mothers in our cohort had EPDS scores above a clinical threshold,³⁷ our findings indicate that even subclinical depressive symptoms – i.e. not only diagnostic postnatal depression - adversely impact children's behavioural outcomes. In addition, our cohort was typically developing with few CBCL scores reaching a concerning threshold; our results could be interpreted within the conceptual framework of mental illness lying on a continuum with typical behavioural traits.⁴⁹ Our findings further showed that preterm birth did not influence the association between self-reported maternal depressive symptoms and parent-reported infants' behavioural outcomes in toddlerhood. This indicates that in this context preterm birth may not be regarded as a vulnerability or plasticity factor. Interestingly, mothers of preterm infants did not report more depressive symptoms compared to mothers of term infants in this study.

38 392

Comparison to prior literature

Our results with respect to internalising and externalising symptoms are in line with previous studies, including large population cohort studies, that showed an association between postnatal maternal depression and young children's emotional and behavioural problems.¹¹ Another previous study in 18-month old toddlers found that maternal depression was associated with internalising and dysregulated behaviour, but not externalising symptoms.⁵⁰ This difference between our and Conroy et al.'s findings may have arisen from their exclusion of infants born <36 weeks and their use of a clinical diagnosis of depression for mothers, rather than the continuous self-reported approach we employed. Interestingly, our finding that even subclinical depressive symptoms may adversely impact parent-reported child behavioural outcomes is in line with recent data showing that low- as well as high-level depressive symptoms are associated with internalising and externalising symptoms in children aged 3 years.⁵¹

BMJ Open

2 3	400	
4 5 7 8 9 10 11	400	The regults showing an association between maternal negtratal depressive symptoms and the
	407	O CHAT are less robust and need to be interpreted with coution. Firstly, these results must be
	408	Q-CHAT are less robust and need to be interpreted with caution. Firstly, these results must be
	409	viewed in the context of the Q-CHAT having a low positive predictive value for autism, with
	410	the measure perhaps being more reflective of developmental immaturity. ⁴¹ Although some
12 13	411	prior studies have shown an association between antenatal maternal depression and
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	412	offspring's ASD, ^{10,52} and postnatal depression has been suggested as a potential focus of
	413	cross-domain studies of ASD, ⁵³ there is no clear aetiological role of maternal postnatal
	414	depression in the development of ASD per se. Also, given that mothers with ASD are more
	415	likely to suffer from perinatal depression than mothers without ASD, ⁵⁴ and ASD is highly
	416	heritable, ⁵⁵ maternal depression may actually be a confounding rather than causative factor in
	417	our observed results. Overall, therefore, our findings with respect to the Q-CHAT do not
	418	provide support for a role of maternal depression in the aetiology of autism traits, but rather
	419	suggest that maternal depression can influence toddler behaviour.
	420	
	421	The finding that preterm infants were not disproportionately affected by maternal depressive
	422	symptoms supports Hadfield et al.'s findings that maternal distress at 9 months did not
	423	differentially impact very preterm (<34 weeks) or late preterm (34-36 ⁺⁶ weeks) infants with
	424	respect to socioemotional outcomes, although paternal distress did have an impact on very
36	425	preterm infants' outcomes. ²⁴ However, our results differ from Gueron-Sela et al.'s finding
38	426	that very preterm (28-33 weeks) 12 month old infants' social outcomes were more influenced
39 40	427	by maternal emotional distress at 6 months than term infants' outcomes. ²³ The inconsistent
41 42	428	findings may be due to methodological differences: for instance, our infant assessment being
43	429	conducted at 18 months corrected age when social competency is more developed, our
44 45	430	assessment of maternal depressive symptoms being in the very early postnatal period, or our
46 47	431	use of the CBCL and Q-CHAT tools as markers of toddler behaviour. Importantly, the lack of
48 49	432	support for a diathesis-stress or differential susceptibility model of maternal mental state on
50	433	preterm infants in our study must be viewed in the context of our results also showing no
51 52	434	difference in CBCL and Q-CHAT scores between term and preterm infants. This is in
53 54	435	contrast to the existing literature that preterm infants are more likely than term infants to
54 55 56 57	436	develop behavioural problems, such as ADHD, in childhood and adolescence. ^{20,33} It is
	437	possible that the phenotypes of neurodevelopmental and neuropsychiatric disorders assessed
58 59 60	438	with the chosen behavioural measures may not be sufficiently expressed at 18 months

corrected age.⁵⁶ In addition, as briefly discussed above, much of the existing literature emphasises the risk of extreme (<28 weeks) or very preterm (28-33 weeks) birth on later behavioural outcomes,^{20,33} whereas only 3.5% and 5.5% of our participants fell within the extreme and very preterm group, respectively, and we thus may not have the power to show any subtle effects.

Strengths & limitations of the study

The strengths of this study lie primarily in its large sample and prospective data collection. Moreover, the use of multiple imputation methodology has facilitated retention of a complete dataset, thus minimising non-response bias and increasing parameter precision. A strength in comparison to prior population cohort studies is that we assessed very early maternal depressive symptoms, and our sample is perhaps more representative of today's society – with increasing maternal age – than large cohort studies conducted in the 1990s-2000s. Given the complex interplay of biological and environmental factors in the aetiology of behavioural disorders, the inclusion of a substantive proportion of preterm infants in our cohort also offers an important insight into the role of preterm birth in behavioural outcomes; moreover, our results represent the full gestational spectrum, rather than discrete gestational categories. In addition, using maternal depressive symptoms as a continuous, rather than dichotomous, variable allows a more nuanced understanding of the role maternal postnatal depressive symptoms may play in influencing children's outcomes.

There are several limitations to this study that necessitate our findings to be considered with caution. Firstly, differences in birth-to-EPDS-assessment time-lags are a potential confounder, given the time-sensitive nature of early-onset temporary baby blues and later-onset pathological postnatal depression. Mothers of infants born at term were assessed early post-delivery, within the period one would anticipate baby blues to present, whereas mothers of preterm participants were on average assessed later, when postnatal depression predominates.^{1,57} Although our post-hoc analyses showed that the time elapsed from birth to EPDS assessment was not associated with maternal EPDS score, providing reassurance that our assessments of mothers of term-born infants were not inflated by the common temporary symptoms of baby blues, it is possible that we did not capture the full extent of later-onset depressive symptoms in mothers of term-born infants. This may explain why maternal EPDS scores did not differ between preterm and term groups in our complete dataset analysis, contrary to the current literature,³¹ as well as why our rate of postpartum depression, using an

BMJ Open

473 EPDS cut-off of 13, was low (4.1%) compared to the previously documented UK community
474 prevalence rate of 8.9% at eight weeks postpartum.⁵⁸ Our results must therefore be
475 interpreted with some caution.

Secondly, although statistical techniques were used to impute missing data and mitigate this problem, 14.3% of maternal EPDS scores were missing. This rate of missingness may relate to some mothers being reluctant to complete a questionnaire at the time their child is having an MRI, or due to simultaneous childcare duties. Thirdly, a number of important confounders that are likely to affect children's behavioural outcomes were not assessed in this study, including genetic risk for psychiatric disorders,⁵⁹ parental psychiatric co-morbidities,⁵⁰ chronicity of postnatal depressive symptoms,⁵¹ antenatal maternal depression, paternal depression and subsequent parent-infant attachment, and inter-parental conflict.¹¹ Thus, we are unable to conclude whether our observed associations between early postnatal maternal depressive symptoms and children's behavioural outcomes are moderated or mediated by other parental and/or psychiatric factors.

29 488

Fourthly, whilst our study included a reasonable proportion of preterm infants (97/509, 19%), our sample was not random, as preterm children were selectively recruited for the DHCP; indeed, preterm infants are over-represented in our sample when compared to the UK population incidence (7.3%),⁶⁰ which may limit the study's generalisability to the general population. This over-representation of preterm infants may explain why our mean maternal age is higher than the national mean age of 30.7,⁶¹ given that increasing maternal age is associated with increased risk of adverse pregnancy outcomes.⁶² Our observed large maternal age range in itself also poses a limitation on the generalisability of our findings to the general population, and further research would be necessary to identify a possible moderation effect of high maternal age on both EPDS scores and child behavioural outcomes. Furthermore, although a 19% prevalence of preterm birth is high for a community sample, the proportion of very and extreme preterm infants in our sample is small, and this may not have provided sufficient power to detect any differential susceptibility effect of preterm birth on outcomes.

Sixthly, the effect sizes of the association between maternal EPDS score and behavioural
 problems were small; this raises questions regarding the clinical significance of our findings
 and potentially explains some of the inconsistency between this and previous studies. Even
 within our analyses, the association between maternal depressive symptoms and Q-CHAT

scores was not observed in our complete case analysis, thus calling into question the validity of this result. It is also important to highlight again the poor positive predictive value of the Q-CHAT for autism;⁴¹ higher Q-CHAT scores do not imply a diagnosis of ASD, and this distinction may also explain the contrast to previous studies. Finally, it is well documented that maternal depression influences reporting of Q-CHAT ⁶³ and CBCL scores.⁶⁴ Our study used maternal report of maternal depressive symptoms, and our outcome measures were parent-completed questionnaires; despite the CBCL showing good cross-informant agreement,³⁹ it is thus possible that reporting bias with common method variance could have skewed our results. **Implications of our findings** Of greatest importance to clinicians and policymakers is our finding that even *subclinical* self-reported maternal depressive symptoms are associated with parent-reported behavioural outcomes of offspring. This has significant implications for the risk-stratification of women and their babies in the postnatal period, during which contact with medical professionals is already established. Identifying high risk families and providing appropriate supportive measures at the early postnatal stage may help to prevent future psychiatric morbidity. **Future research** Further follow-up of large cohorts of preterm and term infants, to an age when behavioural phenotypes may become more pronounced, is needed to investigate whether the long-term developmental trajectories of term and ex-preterm infants are differentially susceptible to changes of postnatal maternal mental health. Future research should consider both maternal and paternal mental health, as well as socioeconomic and environmental factors on child outcomes. Such follow-up should use independent, objective assessments of child behavioural outcomes in order to avoid the common method variance inherent to parent-reported measures. Finally, it is crucial for future research to elucidate the interplay of biochemical and neurodevelopmental changes that may mediate and confound the translation of environmental exposures into distal behavioural phenotypes. Conclusion

58
 539 This prospective longitudinal cohort study found no evidence to support the concept of
 540 preterm birth as a vulnerability or plasticity factor with respect to the effect of maternal

Page 19 of 39

BMJ Open

depressive symptoms on behavioural development. However, we showed that early subclinical maternal postnatal depressive symptoms were associated with behavioural problems in children on parent-reported measures. This adds to the increasing body of literature indicating the role of subclinical and early postnatal depressive symptoms in the aetiology of childhood behavioural disorders. These findings are of great relevance to child and public health, and further research may strengthen its implications for developing strategies to facilitate effective screening and support for women and children, enabling all to reach their full potential.

7 549

550 Contributorship & acknowledgements

We thank all DHCP investigators for their contribution to the study. We thank Dr Oliver
Gale-Grant MRes (Centre for the Developing Brain, King's College London; Department of
Forensic & Neurodevelopmental Sciences, King's College London) for providing the IMD
rank data. We are very grateful to the families who generously took part in this research.

556 Conceptualization: SC, ADE, CN; Methodology: IK, GV, SC, AP, ADE, CN;
557 Investigation: SF, AC; Data curation: IK, AL; Formal analysis: IK, GV, AP, CN;
558 Writing – original draft preparation: IK; Writing – Review & Editing: GV, AL, SF, AC,
559 SC, AP, ADE, CN; Visualisation: IK, GV; Funding acquisition: SC, ADE; Supervision:
560 AP, ADE, CN.

3 561

Funding statement

The DHCP project was funded by the European Research Council under the European Union Seventh Framework Programme (FR/2007-2013)/ERC Grant Agreement no. 319456. The authors acknowledge infrastructure support from the National Institute for Health Research Mental Health Biomedical Research Centre at South London, Maudsley NHS Foundation Trust, King's College London, the National Institute for Health Research Mental Health Biomedical Research Centre at Guys, and St Thomas' Hospitals NHS Foundation Trust. The study was also supported in part by the Engineering and Physical Sciences Research Council / Wellcome Trust Centre for Medical Engineering at King's College London (grant WT 203148/Z/16/Z) and the Medical Research Council (UK) (grants MR/K006355/1 and MR/L011530/1) and the MRC Centre for Neurodevelopmental Disorders at King's College London. AP receives a NIHR SI award (NF-SI-0617-10120). AL is supported by the UK Medical Research Council (MR/N013700) and King's College London member of the MRC

3 4 5 6 7 8 9	575	Doctoral Training Partnership in Biomedical Sciences. The views expressed are those of the
	576	authors and not necessarily those of the NHS, the NIHR, or the Department of Health and
	577	Social Care.
	578	
10	579	<u>Conflict of interest / Competing interests</u>
12	580	ADE received financial support from the EU-AIMS-Trials (European Research Council
13 14	581	under the European Union Seventh Framework Programme) as co-Principal Investigator.
15 16	582	ADE received consulting fees from Chiesi Farmaceutici (advice on neuroprotection in
17 18 19 20 21 22 23 24	583	newborn infants) and Medtronix (unpaid participation in scientific advice committee). ADE
	584	has a patent on Xenon as an organ protectant (No P023708WO). ADE was Chair of the Data
	585	Monitoring and Ethics Committee for the Baby-Oscar Trial, and served on the Data
	586	Monitoring and Ethics Committee for the PAEN Trial.
	587	
25 26	588	There are no other relationships or activities that could appear to have influenced the
27 28	589	submitted work.
29	590	
30 31	591	Ethics approval
32 33	592	This study was approved by the UK National Research Ethics Authority (14/LO/1169) and
34 35	593	conducted in accordance with the World Medical Association's Code of Ethics (Declaration
36	594	of Helsinki).
37 38	595	
39 40	596	Consent to participate
41 42	597	Written informed consent was given by children's carer(s) at recruitment into the study.
43	598	
44 45	599	Consent for publication
46 47	600	Not applicable.
48 40	601	
50	602	Data sharing
51 52	603	Research data are available upon reasonable request.
53 54	604	
55	605	Code availability
סכ 57	606	Not applicable.
58 59 60	607	
	608	

2			
3 4	609	Ref	erences
5 6 7 8	610 611 612	1.	Woody CA, Ferrari AJ, Siskind DJ, Whiteford HA, Harris MG. A systematic review and meta- regression of the prevalence and incidence of perinatal depression. <i>J Affect Disord</i> . 2017;219:86-92. doi:10.1016/j.jad.2017.05.003
9 10 11 12 13	613 614 615 616	2.	Rezaie-Keikhaie K, Arbabshastan ME, Rafiemanesh H, Amirshahi M, Ostadkelayeh SM, Arbabisarjou A. Systematic Review and Meta-Analysis of the Prevalence of the Maternity Blues in the Postpartum Period. <i>J Obstet Gynecol Neonatal Nurs</i> . 2020;49(2):127-136. doi:10.1016/j.jogn.2020.01.001
14 15	617	3.	Beck CT. Predictors of postpartum depression: an update. Nurs Res. 2001;50(5):275-285.
16 17 18 19 20	618 619 620	4.	de Paula Eduardo JAF, de Rezende MG, Menezes PR, Del-Ben CM. Preterm birth as a risk factor for postpartum depression: A systematic review and meta-analysis. <i>J Affect Disord</i> . 2019;259:392-403. doi:10.1016/j.jad.2019.08.069
20 21 22 23 24	621 622 623	5.	Blom EA, Jansen PW, Verhulst FC, et al. Perinatal complications increase the risk of postpartum depression. The Generation R Study. <i>BJOG Int J Obstet Gynaecol</i> . 2010;117(11):1390-1398. doi:10.1111/j.1471-0528.2010.02660.x
25 26 27	624 625	6.	Beck CT. Postpartum depression: a metasynthesis. <i>Qual Health Res.</i> 2002;12(4):453-472. doi:10.1177/104973202129120016
28 29 30 31	626 627 628	7.	Grace SL, Evindar A, Stewart DE. The effect of postpartum depression on child cognitive development and behavior: a review and critical analysis of the literature. <i>Arch Womens Ment Health</i> . 2003;6(4):263-274. doi:10.1007/s00737-003-0024-6
32 33 34 35	629 630 631	8.	Lebel C, Walton M, Letourneau N, Giesbrecht GF, Kaplan BJ, Dewey D. Prepartum and postpartum maternal depressive symptoms are related to children's brain structure in preschool. <i>Biol Psychiatry</i> . 2016;80(11):859-868. doi:10.1016/j.biopsych.2015.12.004
36 37 38 39	632 633 634	9.	Goodman SH, Rouse MH, Connell AM, Broth MR, Hall CM, Heyward D. Maternal depression and child psychopathology: a meta-analytic review. <i>Clin Child Fam Psychol Rev.</i> 2011;14(1):1- 27. doi:10.1007/s10567-010-0080-1
40 41 42 43	635 636 637	10.	Hagberg KW, Robijn AL, Jick S. Maternal depression and antidepressant use during pregnancy and the risk of autism spectrum disorder in offspring. <i>Clin Epidemiol</i> . 2018;10:1599-1612. doi:10.2147/CLEP.S180618
44 45 46	638 639	11.	Stein A, Pearson RM, Goodman SH, et al. Effects of perinatal mental disorders on the fetus and child. <i>The Lancet</i> . 2014;384(9956):1800-1819. doi:10.1016/S0140-6736(14)61277-0
47 48 49 50	640 641 642	12.	Van Batenburg-Eddes T, Brion MJ, Henrichs J, et al. Parental depressive and anxiety symptoms during pregnancy and attention problems in children: a cross-cohort consistency study. <i>J Child Psychol Psychiatry</i> . 2013;54(5):591-600. doi:10.1111/jcpp.12023
52 53 54 55	643 644 645	13.	Barker ED, Jaffee SR, Uher R, Maughan B. The contribution of prenatal and postnatal maternal anxiety and depression to child maladjustment. <i>Depress Anxiety</i> . 2011;28(8):696-702. doi:10.1002/da.20856
56 57 58 59 60	646 647 648	14.	Pearson RM, Evans J, Kounali D, et al. Maternal depression during pregnancy and the postnatal period: risks and possible mechanisms for offspring depression at 18 years. <i>JAMA Psychiatry</i> . 2013;70(12):1312-1319. doi:10.1001/jamapsychiatry.2013.2163
1			
----------	------------	-----	--
2			
3	649	15.	Kleine I, Falconer S, Roth S, et al. Early postnatal maternal trait anxiety is associated with the
4	650		behavioural outcomes of children born preterm <33 weeks. <i>J Psychiatr Res</i> . 2020;131:160-168.
6	651		doi:10.1016/j.jpsychires.2020.09.010
7	652	16	Eader A. Nestler FL Charney DS. Psychobiology and molecular genetics of resilience. Nat Pay
8	653	10.	Neurosci 2009·10(6)·446-457 doi:10.1038/nrn2649
9	033		11000 0500. 2003,10(0). 110 137. doi.10.1030/mil2013
10	654	17.	World Health Organization. Preterm birth. Published February 19, 2018. Accessed May 18,
11	655		2022. https://www.who.int/news-room/fact-sheets/detail/preterm-birth
13			
14	656	18.	Dimitrova R, Pietsch M, Christiaens D, et al. Heterogeneity in brain microstructural
15	657		development following preterm birth. <i>Cereb Cortex</i> . 2020;30(9):4800-4810.
16	658		doi:10.1093/cercor/bhaa069
17	650	10	Eitzallon CC Sagar VK Taylor HC Para S. Anviaty and depressive disorders in children horn
18	059	19.	rizanen oC, Sagar IK, Tayloi HC, Bola S. Anxiely and depressive disorders in children bolin protorm: a moto analyzia. LDay Bolagy Dodigty IDBD 2021:42(2):154-162
19	00U 661		doi:10.1007/DBP.000000000000808
20 21	001		doi.10.1097/DD1.00000000000898
22	662	20.	Allotev J. Zamora J. Cheong-See F. et al. Cognitive, motor, behavioural and academic
23	663		performances of children born preterm: a meta-analysis and systematic review involving 64 061
24	664		children. BJOG Int J Obstet Gynaecol. 2018;125(1):16-25. doi:10.1111/1471-0528.14832
25			
26	665	21.	Jaekel J, Pluess M, Belsky J, Wolke D. Effects of maternal sensitivity on low birth weight
27	666		children's academic achievement: a test of differential susceptibility versus diathesis stress. J
28	667		Child Psychol Psychiatry. 2015;56(6):693-701. doi:10.1111/jcpp.12331
29 30		22	
31	668	22.	Belsky J, Bakermans-Kranenburg MJ, van IJzendoorn MH. For better and for worse: differential
32	669		susceptibility to environmental influences. Curr Dir Psychol Sci. 2007;16(6):300-304.
33	670		dol:10.1111/J.1467-8721.2007.00525.X
34	671	23	Gueron-Sela N Atzaba-Poria N Meiri G Marks K The caregiving environment and
35	672	29.	developmental outcomes of preterm infants: diathesis stress or differential suscentibility effects?
36	673		<i>Child Dev</i> 2015:86(4):1014-1030 doi:https://doi.org/10.1111/cdev.12359
37	0.0		
30 30	674	24.	Hadfield K, O'Brien F, Gerow A. Is level of prematurity a risk/plasticity factor at three years of
40	675		age? Infant Behav Dev. 2017;47:27-39. doi:10.1016/j.infbeh.2017.03.003
41			
42	676	25.	Belsky J, Pluess M. Beyond diathesis stress: differential susceptibility to environmental
43	677		influences. <i>Psychol Bull</i> . 2009;135(6):885-908. doi:10.1037/a0017376
44	670	26	Place M. Dalata I. Dreve stal and an environment of a set of a last state 2. Des Des days days
45	678	26.	Pluess M, Belsky J. Prenatal programming of postnatal plasticity? Dev Psychopathol.
46	679		2011;23(1):29-38. doi:10.1017/80934579410000625
47 78	680	27	DeMaster D. Rick I. Johnson II. Montroy II. Landry S. Duncan A.F. Nurturing the preterm
40	681	21.	infant brain: leveraging neuroplasticity to improve neuroplehavioral outcomes. <i>Pediatr Res</i>
50	682		2019·85(2)·166-175 doi:10.1038/s41390-018-0203-9
51	001		
52	683	28.	World Health Organization (WHO). Global nutrition targets 2025: low birth weight policy brief.
53	684		Published online 2014.
54			
55	685	29.	Kramer MS. Determinants of low birth weight: methodological assessment and meta-analysis.
20 57	686		Bull World Health Organ. 1987;65(5):663-737.
58	607	20	Coldenhara DL Culhana IE Jama ID Domana D Eridemial domanda
59	08/ 699	30.	Langet Lond Engl 2008:271(0606):75.84 doi:10.1016/S0140.6726(08)60074.4
60	000		Luncei Lonia Engi. 2000,571(7000).75-04. a01.10.1010/50140-0750(08)00074-4

2			
3 4 5 6	689 690 691	31.	Carson C, Redshaw M, Gray R, Quigley MA. Risk of psychological distress in parents of preterm children in the first year: evidence from the UK Millennium Cohort Study. <i>BMJ Open</i> . 2015;5(12):e007942. doi:10.1136/bmjopen-2015-007942
7 8 9 10	692 693 694	32.	Vigod SN, Villegas L, Dennis CL, Ross LE. Prevalence and risk factors for postpartum depression among women with preterm and low-birth-weight infants: a systematic review. <i>BJOG Int J Obstet Gynaecol</i> . 2010;117(5):540-550. doi:10.1111/j.1471-0528.2009.02493.x
11 12 13	695 696	33.	Johnson S, Wolke D. Behavioural outcomes and psychopathology during adolescence. <i>Early Hum Dev.</i> 2013;89(4):199-207. doi:10.1016/j.earlhumdev.2013.01.014
14 15 16 17 18	697 698 699	34.	Lautarescu A, Victor S, Lau-Zhu A, Counsell SJ, Edwards AD, Craig MC. The factor structure of the Edinburgh Postnatal Depression Scale among perinatal high-risk and community samples in London. <i>Arch Womens Ment Health</i> . 2022;25(1):157-169. doi:10.1007/s00737-021-01153-0
19 20 21 22 23	700 701 702 703	35.	Ministry of Housing, Communities & Local Government. The English indices of deprivation 2019. Published online 2019. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/fil e/835115/IoD2019_Statistical_Release.pdf
24 25 26 27	704 705 706	36.	Boyd A, Golding J, Macleod J, et al. Cohort Profile: The 'Children of the 90s'—the index offspring of the Avon Longitudinal Study of Parents and Children. <i>Int J Epidemiol</i> . 2013;42(1):111-127. doi:10.1093/ije/dys064
28 29 30 31	707 708 709	37.	Cox JL, Holden JM, Sagovsky R. Detection of postnatal depression: development of the 10-item Edinburgh Postnatal Depression Scale. <i>Br J Psychiatry</i> . 1987;150(6):782-786. doi:10.1192/bjp.150.6.782
32 33 34 35 36	710 711 712 713	38.	Levis B, Negeri Z, Sun Y, Benedetti A, Thombs BD. Accuracy of the Edinburgh Postnatal Depression Scale (EPDS) for screening to detect major depression among pregnant and postpartum women: systematic review and meta-analysis of individual participant data. <i>BMJ</i> . 2020;371. doi:10.1136/bmj.m4022
37 38	714	39.	Achenbach TM, Rescorla LA. Manual for the ASEBA Preschool Forms & Profiles.; 2000.
39 40 41 42 43	715 716 717 718	40.	Allison C, Baron-Cohen S, Wheelwright S, et al. The Q-CHAT (Quantitative Checklist for Autism in Toddlers): a normally distributed quantitative measure of autistic traits at 18-24 months of age: preliminary report. <i>J Autism Dev Disord</i> . 2008;38(8):1414-1425. doi:10.1007/s10803-007-0509-7
44 45 46 47 48	719 720 721	41.	Allison C, Matthews FE, Ruta L, et al. Quantitative Checklist for Autism in Toddlers (Q-CHAT). A population screening study with follow-up: the case for multiple time-point screening for autism. <i>BMJ Paediatr Open</i> . 2021;5(1):e000700. doi:10.1136/bmjpo-2020-000700
49 50 51	722 723	42.	Bayley N. <i>Bayley Scales of Infant and Toddler Development - Third Edition</i> . 3rd ed. Harcourt Assessment; 2006.
52 53 54	724 725	43.	Albers CA, Grieve AJ. Review of Bayley scales of infant and toddler development-third edition. <i>J Psychoeduc Assess</i> . 2007;25(2):180-190. doi:10.1177/0734282906297199
55 56 57 58	726 727 728	44.	Anderson PJ, De Luca CR, Hutchinson E, Roberts G, Doyle LW, the Victorian Infant Collaborative Group. Underestimation of developmental delay by the new Bayley-III scale. <i>Arch Pediatr Adolesc Med</i> . 2010;164(4):352-356. doi:10.1001/archpediatrics.2010.20
59 60	729	45.	Rubin DB. Inference and missing data. <i>Biometrika</i> . 1976;63(3):581-592. doi:10.2307/2335739

2 3 4 5	730 731	46.	Cohen J. <i>Statistical Power Analysis for the Behavioral Sciences</i> . 2nd ed. L. Erlbaum Associates; 1988.
6 7 8 9	732 733 734	47.	Selya AS, Rose JS, Dierker LC, Hedeker D, Mermelstein RJ. A practical guide to calculating Cohen's f2, a measure of local effect size, from PROC MIXED. <i>Front Psychol</i> . 2012;3. doi:10.3389/fpsyg.2012.00111
10 11 12	735 736	48.	Harel O. The estimation of R 2 and adjusted R 2 in incomplete data sets using multiple imputation. <i>J Appl Stat.</i> 2009;36(10):1109-1118. doi:10.1080/02664760802553000
13 14 15	737 738	49.	Plomin R, Haworth CMA, Davis OSP. Common disorders are quantitative traits. <i>Nat Rev Genet</i> . 2009;10(12):872-878. doi:10.1038/nrg2670
16 17 18 19	739 740 741	50.	Conroy S, Pariante CM, Marks MN, et al. Maternal psychopathology and infant development at 18 months: the impact of maternal personality disorder and depression. <i>J Am Acad Child Adolesc Psychiatry</i> . 2012;51(1):51-61. doi:10.1016/j.jaac.2011.10.007
20 21 22 23	742 743 744	51.	Kingston D, Kehler H, Austin MP, et al. Trajectories of maternal depressive symptoms during pregnancy and the first 12 months postpartum and child externalizing and internalizing behavior at three years. <i>PloS One</i> . 2018;13(4):e0195365. doi:10.1371/journal.pone.0195365
24 25 26 27 28	745 746 747	52.	Wiggins LD, Rubenstein E, Daniels J, et al. A phenotype of childhood autism is associated with preexisting maternal anxiety and depression. <i>J Abnorm Child Psychol</i> . 2019;47(4):731-740. doi:10.1007/s10802-018-0469-8
29 30 31 32	748 749 750	53.	Babb JA, Deligiannidis KM, Murgatroyd CA, Nephew BC. Peripartum depression and anxiety as an integrative cross-domain target for psychiatric preventative measures. <i>Behav Brain Res</i> . 2015;0:32-44. doi:10.1016/j.bbr.2014.03.039
33 34 35 36	751 752 753	54.	Pohl AL, Crockford SK, Blakemore M, Allison C, Baron-Cohen S. A comparative study of autistic and non-autistic women's experience of motherhood. <i>Mol Autism</i> . 2020;11(1):3. doi:10.1186/s13229-019-0304-2
37 38 39 40	754 755 756	55.	Colvert E, Tick B, McEwen F, et al. Heritability of autism spectrum disorder in a UK population-based twin sample. <i>JAMA Psychiatry</i> . 2015;72(5):415-423. doi:10.1001/jamapsychiatry.2014.3028
41 42 43 44 45 46 47	757 758 759 760 761	56.	Egger HL, Emde RN. Developmentally sensitive diagnostic criteria for mental health disorders in early childhood: the diagnostic and statistical manual of mental disorders-IV, the research diagnostic criteria-preschool age, and the diagnostic classification of mental health and developmental disorders of infancy and early childhood-revised. <i>Am Psychol.</i> 2011;66(2):95-106. doi:10.1037/a0021026
47 48 49 50	762 763	57.	Henshaw C. Mood disturbance in the early puerperium: a review. <i>Arch Women's Ment Health</i> . 2003;6(2):s33-s42. doi:10.1007/s00737-003-0004-x
50 51 52 53 54	764 765 766	58.	Heron J, O'Connor TG, Evans J, Golding J, Glover V. The course of anxiety and depression through pregnancy and the postpartum in a community sample. <i>J Affect Disord</i> . 2004;80(1):65-73. doi:10.1016/j.jad.2003.08.004
55 56 57 58 59 60	767 768 769	59.	Biel MG. Parental psychiatric symptoms and children's outcomes: toward understanding and responding to intergenerational risk in child psychiatry. <i>J Am Acad Child Adolesc Psychiatry</i> . 2018;57(9):632-633. doi:10.1016/j.jaac.2018.06.010

2 3 4 5 6	770 771 772	60.	National Institute for Health and Care Excellence. Preterm labour and birth (NICE guideline 25). Published online November 2015. Accessed January 27, 2019. https://www.nice.org.uk/guidance/ng25
7 8 9 10 11	773 774 775 776	61.	Office for National Statistics. Birth characteristics in England and Wales: 2020. Published January 13, 2022. Accessed February 5, 2022. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/bu lletins/birthcharacteristicsinenglandandwales/2020#birth-characteristics
12 13 14 15	777 778 779	62.	Londero AP, Rossetti E, Pittini C, Cagnacci A, Driul L. Maternal age and the risk of adverse pregnancy outcomes: a retrospective cohort study. <i>BMC Pregnancy Childbirth</i> . 2019;19(1):261. doi:10.1186/s12884-019-2400-x
16 17 18 19 20	780 781 782	63.	Goh DA, Gan D, Kung J, et al. Child, maternal and demographic factors influencing caregiver- reported autistic trait symptomatology in toddlers. <i>J Autism Dev Disord</i> . 2018;48(4):1325-1337. doi:10.1007/s10803-018-3471-7
20 21 22 23 24	783 784 785	64.	Friedlander S, Weiss DS, Traylor J. Assessing the influence of maternal depression on the validity of the Child Behavior Checklist. <i>J Abnorm Child Psychol</i> . 1986;14(1):123-133. doi:10.1007/bf00917228
25	786		
26 27	787		
28 29 30 31	788		
	789		
32 33	790		
34 35	791		
36 37	792		
38 39	793		
40 41	794		
42 43	795		
44 45	796		
46 47	797		
48	798		
49 50	799		
51 52	800		
53 54	801		
55 56	802		
57 58	803		
59 60	804		

	Number (%)*
Sex: Male	274 (53.8)
Index of Multiple Deprivation (IMD) quintiles	, <i>,</i> , , , , , , , , , , , , , , , , ,
1 (least deprived) ^a	65 (12.8)
2	87 (17.2)
3	108 (21.3)
4	173 (34.2)
5 (most deprived)	73 (14.4)
Gestational age at birth (weeks), median [range]	39.7 [20 – 43]
Gestational category	
Extremely preterm (<28 weeks)	18 (3.5)
Very preterm (28-32 weeks)	28 (5.5)
Late preterm (32-37 weeks)	51 (10.0)
Term (≥37 weeks)	412 (80.9)
Birthweight (g), median [range]	3290 [450 - 475
Multiple pregnancy	54 (10.6)
Maternal parity	
0	332 (65.2)
1	124 (24.4)
2	32 (6.3)
3+	21 (4.2)
Maternal BMI (kg/m ²), median [range]	23.2 [15.3 - 43.6
Maternal age at infant's birth (years), mean (SD) [range]	34.2 (4.8)
	[17-52]
Maternal ethnicity	
Maternal ethnicity White	272 (53.4)
Maternal ethnicity White Black/Black British	272 (53.4) 56 (11.0)
Maternal ethnicity White Black/Black British Asian/Asian British	272 (53.4) 56 (11.0) 28 (5.5)
Maternal ethnicity White Black/Black British Asian/Asian British Chinese	272 (53.4) 56 (11.0) 28 (5.5) 18 (3.5)
Maternal ethnicity White Black/Black British Asian/Asian British Chinese Mixed – White & Asian	272 (53.4) 56 (11.0) 28 (5.5) 18 (3.5) 4 (0.8)
Maternal ethnicity White Black/Black British Asian/Asian British Chinese Mixed – White & Asian Mixed – White & Black	272 (53.4) 56 (11.0) 28 (5.5) 18 (3.5) 4 (0.8) 4 (0.8)
Maternal ethnicity White Black/Black British Asian/Asian British Chinese Mixed – White & Asian Mixed – White & Black Any other	$\begin{array}{r} 272 (53.4) \\ 56 (11.0) \\ 28 (5.5) \\ 18 (3.5) \\ 4 (0.8) \\ 4 (0.8) \\ 30 (5.9) \end{array}$
Maternal ethnicity White Black/Black British Asian/Asian British Chinese Mixed – White & Asian Mixed – White & Black Any other Do not wish to answer	$\begin{array}{r} 272 (53.4) \\ 56 (11.0) \\ 28 (5.5) \\ 18 (3.5) \\ 4 (0.8) \\ 4 (0.8) \\ 30 (5.9) \\ 9 (1.8) \end{array}$
Maternal ethnicity White Black/Black British Asian/Asian British Chinese Mixed – White & Asian Mixed – White & Black Any other Do not wish to answer No data	$\begin{array}{r} 272 (53.4) \\ 56 (11.0) \\ 28 (5.5) \\ 18 (3.5) \\ 4 (0.8) \\ 4 (0.8) \\ 30 (5.9) \\ 9 (1.8) \\ 88 (17.3) \end{array}$
Maternal ethnicity White Black/Black British Asian/Asian British Chinese Mixed – White & Asian Mixed – White & Black Any other Do not wish to answer No data Bayley III cognitive composite score, mean (SD) [range]	$\begin{array}{r} 272 (53.4) \\ 56 (11.0) \\ 28 (5.5) \\ 18 (3.5) \\ 4 (0.8) \\ 4 (0.8) \\ 30 (5.9) \\ 9 (1.8) \\ 88 (17.3) \\ 100 (11.4) \end{array}$
Maternal ethnicity White Black/Black British Asian/Asian British Chinese Mixed – White & Asian Mixed – White & Black Any other Do not wish to answer No data Bayley III cognitive composite score, mean (SD) [range]	$\begin{array}{c} 272 (53.4) \\ 56 (11.0) \\ 28 (5.5) \\ 18 (3.5) \\ 4 (0.8) \\ 4 (0.8) \\ 30 (5.9) \\ 9 (1.8) \\ 88 (17.3) \\ 100 (11.4) \\ [55 - 125] \end{array}$
Maternal ethnicity White Black/Black British Asian/Asian British Chinese Mixed – White & Asian Mixed – White & Black Any other Do not wish to answer No data Bayley III cognitive composite score, mean (SD) [range] CBCL total T score, mean (SD) [range]	$\begin{array}{r} 272 (53.4) \\ 56 (11.0) \\ 28 (5.5) \\ 18 (3.5) \\ 4 (0.8) \\ 4 (0.8) \\ 30 (5.9) \\ 9 (1.8) \\ 88 (17.3) \\ 100 (11.4) \\ [55 - 125] \\ 46.9 (9.5) \end{array}$
Maternal ethnicity White Black/Black British Asian/Asian British Chinese Mixed – White & Asian Mixed – White & Black Any other Do not wish to answer No data Bayley III cognitive composite score, mean (SD) [range] CBCL total T score, mean (SD) [range]	$\begin{array}{r} 272 (53.4) \\ 56 (11.0) \\ 28 (5.5) \\ 18 (3.5) \\ 4 (0.8) \\ 4 (0.8) \\ 30 (5.9) \\ 9 (1.8) \\ 88 (17.3) \\ 100 (11.4) \\ [55 - 125] \\ 46.9 (9.5) \\ [28 - 69] \end{array}$
Maternal ethnicity White Black/Black British Asian/Asian British Chinese Mixed – White & Asian Mixed – White & Black Any other Do not wish to answer No data Bayley III cognitive composite score, mean (SD) [range] CBCL total T score, mean (SD) [range] Q-CHAT total score, mean (SD) [range]	$\begin{array}{r} 272 (53.4) \\ 56 (11.0) \\ 28 (5.5) \\ 18 (3.5) \\ 4 (0.8) \\ 4 (0.8) \\ 30 (5.9) \\ 9 (1.8) \\ 88 (17.3) \\ 100 (11.4) \\ [55 - 125] \\ 46.9 (9.5) \\ [28 - 69] \\ 30.5 (9.3) \end{array}$
Maternal ethnicity White Black/Black British Asian/Asian British Chinese Mixed – White & Asian Mixed – White & Black Any other Do not wish to answer No data Bayley III cognitive composite score, mean (SD) [range] CBCL total T score, mean (SD) [range] Q-CHAT total score, mean (SD) [range]	$\begin{array}{c} 272 \ (53.4) \\ 56 \ (11.0) \\ 28 \ (5.5) \\ 18 \ (3.5) \\ 4 \ (0.8) \\ 4 \ (0.8) \\ 30 \ (5.9) \\ 9 \ (1.8) \\ 88 \ (17.3) \\ 100 \ (11.4) \\ [55 - 125] \\ 46.9 \ (9.5) \\ [28 - 69] \\ 30.5 \ (9.3) \\ [8 - 70] \end{array}$
Maternal ethnicity White Black/Black British Asian/Asian British Chinese Mixed – White & Asian Mixed – White & Black Any other Do not wish to answer No data Bayley III cognitive composite score, mean (SD) [range] CBCL total T score, mean (SD) [range] Q-CHAT total score, mean (SD) [range]	$\begin{array}{c} 272 \ (53.4) \\ 56 \ (11.0) \\ 28 \ (5.5) \\ 18 \ (3.5) \\ 4 \ (0.8) \\ 4 \ (0.8) \\ 30 \ (5.9) \\ 9 \ (1.8) \\ 88 \ (17.3) \\ 100 \ (11.4) \\ [55 - 125] \\ 46.9 \ (9.5) \\ [28 - 69] \\ 30.5 \ (9.3) \\ [8 - 70] \\ 4 \ [0 - 28] \end{array}$
Maternal ethnicity White Black/Black British Asian/Asian British Chinese Mixed – White & Asian Mixed – White & Black Any other Do not wish to answer No data Bayley III cognitive composite score, mean (SD) [range] CBCL total T score, mean (SD) [range] Q-CHAT total score, mean (SD) [range] EPDS score, median [range] EPDS score, n (%)	$\begin{array}{c} 272 \ (53.4) \\ 56 \ (11.0) \\ 28 \ (5.5) \\ 18 \ (3.5) \\ 4 \ (0.8) \\ 4 \ (0.8) \\ 30 \ (5.9) \\ 9 \ (1.8) \\ 88 \ (17.3) \\ 100 \ (11.4) \\ [55 - 125] \\ 46.9 \ (9.5) \\ [28 - 69] \\ 30.5 \ (9.3) \\ [8 - 70] \\ 4 \ [0 - 28] \end{array}$
Maternal ethnicity White Black/Black British Asian/Asian British Chinese Mixed – White & Asian Mixed – White & Black Any other Do not wish to answer No data Bayley III cognitive composite score, mean (SD) [range] CBCL total T score, mean (SD) [range] Q-CHAT total score, mean (SD) [range] EPDS score, median [range] EPDS score, n (%) <13	$\begin{array}{c} 272 (53.4) \\ 56 (11.0) \\ 28 (5.5) \\ 18 (3.5) \\ 4 (0.8) \\ 4 (0.8) \\ 30 (5.9) \\ 9 (1.8) \\ 88 (17.3) \\ 100 (11.4) \\ [55 - 125] \\ 46.9 (9.5) \\ [28 - 69] \\ 30.5 (9.3) \\ [8 - 70] \\ 4 [0 - 28] \\ \end{array}$
Maternal ethnicity White Black/Black British Asian/Asian British Chinese Mixed – White & Asian Mixed – White & Black Any other Do not wish to answer No data Bayley III cognitive composite score, mean (SD) [range] CBCL total T score, mean (SD) [range] Q-CHAT total score, mean (SD) [range] EPDS score, median [range] EPDS score, n (%) <13	$\begin{array}{r} 272 (53.4) \\ 56 (11.0) \\ 28 (5.5) \\ 18 (3.5) \\ 4 (0.8) \\ 4 (0.8) \\ 30 (5.9) \\ 9 (1.8) \\ 88 (17.3) \\ 100 (11.4) \\ [55 - 125] \\ 46.9 (9.5) \\ [28 - 69] \\ 30.5 (9.3) \\ [8 - 70] \\ 4 [0 - 28] \\ \hline \\ 415 (8.2) \\ 21 (4.1) \end{array}$

... . T-11 ~~-))

> * unless otherwise specified

> > For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	CBCL			Q-CHAT		
	B [95%CI]	р	f ²	B [95%CI]	р	f ²
Maternal EPDS	0.93 [0.43, 1.44]	<.001 ***	0.05	0.27 [0.03, 0.52]	.031 *	0.01
Maternal BMI	-0.09 [-0.44, 0.26]	.621	-	0.06 [-0.13, 0.24]	.538	-
Multiple pregnancy	3.15 [-3.07, 9.37]	.320	-	1.33 [-2.62, 5.28]	.509	-
Parity						
1	-2.52 [-5.96, 0.93]	.151	-	-2.14 [-4.02, -0.27]	.025 a	-
2	-3.23 [-9.16, 2.70]	.285	-	0.88 [-1.99, 3.75]	.548	-
3+	-1.37 [-8.36, 5.61]	.699	-	-0.49 [-4.57, 3.60]	.815	-
IMD rank	-1.48 [-3.33, 0.37]	.117	-	-1.50 [-2.60, -0.40]	.008 **	0.02
Gestational age at birth (weeks)	0.10 [-0.65, 0.85]	.786	-	0.26 [-0.17, 0.70]	.233	-
Birthweight (kg)	0.56 [-2.65, 3.78]	.731	-	-1.24 [-2.93, 0.46]	.151	-
Sex:female	-4.14 [-6.96, -1.31]	.004 **	0.06	-1.95 [-3.42, -0.48]	.009 **	0.05
Corrected age at assessment (months)	-0.90 [-2.17, 0.37]	.166	-	-0.16 [-0.91, 0.59]	.677	-
Cognition	-0.05 [-0.20, 0.09]	.467	-	-0.27 [-0.35, -0.20]	<.001 ***	0.12

 Table 2: CBCL and Q-CHAT model predictors using multiple imputation without interaction. (Cf. Supplementary Table 3 for complete case analysis)

p<0.05 *; p<0.01 **; p<0.001 ***

CBCL model adjusted $R^2 = 0.0676$. Q-CHAT model adjusted $R^2 = 0.193$.

B = unstandardised coefficient.

CBCL = Child Behaviour Checklist score at 18 months. Q-CHAT = Quantitative Checklist for Autism in Toddlers score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-equivalent age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months.

^a Wald test of whole parity variable in Q-CHAT model: F(3, 476.9) = 1.88, p = .133

Effect size (Cohen's f^2 , calculated from squared part correlations for predictors significant to 0.05): 0.02 = small, 0.15 = medium and 0.35 = large.⁴⁶

- indicates data not given, as predictor not significant to 0.05.

2
3
4
5
s c
6
/
8
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
25
26
27
27
20
29
30
31
32
33
34
35
36
37
38
30
10
40
41
42
43
44
45

1

	CBCL		Q-CHAT		
	B [95%CI]	р	B [95%CI]	р	
Maternal EPDS	0.89 [-0.24, 2.02]	.121	0.24 [-0.28, 0.75]	.365	
Maternal BMI	-0.01 [-0.39, 0.37]	.955	0.00 [-0.16, 0.17]	.982	
Multiple pregnancy	1.76 [-6.65, 10.17]	.681	0.97 [-2.07, 4.01]	.532	
Parity					
1	-2.75 [-6.49, 0.99]	.149	-1.42 [-3.30, 0.46]	.139	
2	-3.49 [-10.36, 3.37]	.317	0.16 [-2.84, 3.16]	.917	
3+	-1.17 [-9.69, 7.35]	.788	-1.13 [-4.24, 1.98]	.476	
IMD rank	-1.41 [-3.54, 0.73]	.195	-1.68 [-2.64, -0.72]	.001 **	
Gestation: term	1.25 [-8.34, 10.85]	.797	2.64 [-1.74, 7.02]	.236	
Birthweight (kg)	-1.01 [-4.08, 2.05]	.516	-2.25 [-3.73, -0.78]	.003 **	
Sex: female	-4.64 [-7.83, -1.44]	.005 **	-2.22 [-3.72, -0.71]	.004 **	
Corrected age at assessment (months)	-0.83 [-2.27, 0.62]	.261	-0.39 [-1.18, 0.04]	.335	
Cognition	-0.03 [-0.20, 0.14]	.720	-0.22 [-0.29,0.15]	<.001 ***	
EPDS x gestation:term	-0.01 [-1.30, 1.28]	.991	-0.02 [-0.60, 0.56]	.950	

p<0.05 *; p<0.01 **; p<0.001 ***

CBCL model adjusted $R^2 = 0.0865$. Q-CHAT model adjusted $R^2 = 0.215$.

B = unstandardised coefficient.

CBCL = Child Behaviour Checklist score at 18 months. Q-CHAT = Quantitative Checklist for Autism in Toddlers score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-equivalent age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Gestation: term = dummy variable, term (\geq 37 weeks) vs preterm (<37 weeks) gestation at birth. Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months. EPDS x gestation: term = interaction term between maternal EPDS score and term gestation at birth.

Fig.1 Children's predicted CBCL scores at 18 months are positively correlated to the maternal EPDS score at term-equivalent age.

Fig.2 Children's predicted Q-CHAT scores at 18 months are positively correlated to the maternal EPDS score at term-equivalent age.

Fig.1 Children's predicted CBCL scores at 18 months are positively correlated to the maternal EPDS score at

158x158mm (220 x 220 DPI)

Supplemental material

 Supplementary Table 1: CBCL internalising symptom model predictors using multiple imputation.

Supplementary Table 2: CBCL externalising symptom model predictors using multiple imputation.

Supplementary Table 3: CBCL and Q-CHAT model predictors using complete case analysis without interaction.

Supplementary Table 4: EPDS score predictors.

Supplementary Table 5: EPDS score predictors including interaction 'term x time-lag'.

Supplementary Figure 1: Histogram showing the distribution of maternal EPDS scores at term-equivalent age.

BMJ Open

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	

46

Supplementary Table 1: CBCL internalising symptom model predictors using multiple imputation.

			പ
	B [95%CI]	р	f²
Maternal EPDS	0.22 [0.08, 0.36]	.003 **	0.03
Maternal BMI	-0.04 [-0.13, 0.06]	.436	-
Multiple pregnancy	0.58 [-1.10, 2.27]	.497	-
Parity			
1	-0.37 [-1.41, 0.67]	.487	-
2	-1.33 [-3.09, 0.42]	.136	-
3+	0.64 [-1.34, 2.62]	.524	-
IMD rank	-0.41 [-0.91, 0.10]	.115	-
Gestational age at birth (weeks)	0.22 [-0.00, 0.44]	.053	-
Birthweight (kg)	-0.97 [-1.90, -0.05]	.038 *	0.005
Sex: female	-0.51 [-1.35, 0.33]	.232	-
Corrected age at assessment (months)	0.02 [-0.41, 0.45]	.923	_
Cognition	-0.05 [-0.10, -0.01]	.016 *	0.01

p<0.05 *; p<0.01 **; p<0.001 ***

Adjusted $R^2 = 0.0566$.

B = unstandardised coefficient.

Outcome variable = Child Behaviour Checklist internalising sub-score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-equivalent age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months.

Effect size (Cohen's f^2 , calculated from squared part correlations for predictors significant to 0.05): 0.02 = small, 0.15 = medium and 0.35 = large.¹

- indicates data not given, as predictor not significant to 0.05.

BMJ Open

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

1 2

Supplementary Table 2: CBCL externalising symptom model predictors using multiple imputation.

	B [95%CI]	р	\mathbf{f}^2
Maternal EPDS	0.40 [0.20, 0.61]	<.001 ***	0.05
Maternal BMI	0.01 [-0.17, 0.15]	.933	-
Multiple pregnancy	2.51 [-0.29, 5.31]	.079	-
Parity			
1	-1.06 [-2.53, 0.42]	.160	-
2	-0.61 [-3.55, 2.33]	.682	-
3+	-0.96 [-4.47, 2.56]	.593	-
IMD rank	-0.24 [-1.11, 0.63]	.585	-
Gestational age at birth (weeks)	-0.07 [-0.40, 0.27]	.701	-
Birthweight (kg)	1.03 [-0.38, 2.44]	.153	-
Sex: female	-1.80 [-3.07, -0.53]	.006 **	0.06
Corrected age at assessment (months)	-0.40 [-0.95, 0.16]	.161	-
Cognition	0.03 [-0.03, 0.10]	.322	-
p<0.05 *; p<0.01 **; p<0.001 ***			
A dijusted $\mathbf{R}^2 - 0.0612$			

Adjusted $R^2 = 0.0612$.

B = unstandardised coefficient.

Outcome variable = Child Behaviour Checklist externalising sub-score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-equivalent age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months.

Effect size (Cohen's f^2 , calculated from squared part correlations for predictors significant to 0.05): 0.02 = small, 0.15 = medium and 0.35 =large.¹

- indicates data not given, as predictor not significant to 0.05.

 BMJ Open

	CBCL		Q-CHAT	
	B [95%CI]	р	B [95%CI]	р
Maternal EPDS	0.88 [0.35, 1.41]	.001 **	0.21 [-0.02, 0.44]	.069
Maternal BMI	-0.01 [-0.38, 0.37]	.963	0.01 [-0.16, 0.17]	.930
Multiple pregnancy	1.50 [-6.87, 9.87]	.724	0.43 [-2.50, 3.37]	.772
Parity				
1	-2.83 [-6.60, 0.94]	.141	-1.54 [-3.41, 0.34]	.108
2	-3.49 [-10.3, 3.35]	.316	0.13 [-2.85, 3.10]	.933
3+	-1.38 [-10.0, 7.30]	.755	-1.43 [-4.50, 1.64]	.360
IMD rank	-1.44 [-3.56, 0.67]	.181	-1.75 [-2.70, -0.79]	<.001 **
Gestational age at birth (weeks)	0.01 [-0.90, 0.91]	.987	0.10 [-0.33, 0.54]	.639
Birthweight (kg)	-0.65 [-4.38, 3.08]	.733	-1.81 [-3.63, 0.00]	.050
Sex: female	-4.57 [-7.82, -1.31]	.006 **	-2.12 [-3.60, -0.64]	.005 **
Corrected age at assessment (months)	-0.84 [-2.26, 0.59]	.247	-0.41 [-1.18, 0.35]	.290
Cognition	-0.03 [-0.20, 0.13]	.689	-0.23 [-0.30, -0.15]	<.001 ***
><0.05 *; p<0.01 **; p<0.001 *** CBCL adjusted R ² = 0.0862. Q-CHAT adjusted R ² = 0.086	djusted $R^2 = 0.2103$.		10,	

Supplementary Table 3: CBCL and Q-CHAT model predictors using complete case analysis without interaction.

CBCL adjusted
$$R^2 = 0.0862$$
. Q-CHAT adjusted $R^2 = 0.2103$.

B = unstandardised coefficient.

CBCL = Child Behaviour Checklist externalising sub-score at 18 months. Q-CHAT = Quantitative Checklist for Autism in Toddlers score at 18 months. Maternal EPDS = maternal Edinburgh Postnatal Depression Scale score at term-equivalent age. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Gestation (weeks) = dummy variable: 34-36+6 weeks and \geq 37 weeks gestation at birth. Corrected age at assessment (months) = age at behavioural assessment, corrected for gestational age. Cognition = infant Bayley III score at 18 months.

2
3
4
5
6
7
8
g
10
11
17
12
17
14
16
10
1/
10
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

1

Supplementary Table 4: EPDS score predictors.

	IRR [95%CI]	р
Time-lag (weeks)	1.01 [0.97, 1.05]	.647
Gestation:term	0.91 [0.64, 1.31]	.627
IMD rank	1.00 [1.00, 1.00]	.103
Multiple pregnancy	0.66 [0.46, 0.96]	.031 *
Parity		
1	0.79 [0.66, 0.95]	.011 *
2	0.87 [0.60, 1.28]	.491
3+	0.84 [0.54, 1.31]	.445
Birthweight (kg)	0.98 [0.83, 1.17]	.847
Sex:female	1.13 [0.98, 1.31]	.098

p<0.05 *; p<0.01 **; p<0.001 ***

Pseudo $R^2 = 0.0228$

IRR = incidence rate ratio

Outcome variable = maternal Edinburgh Postnatal Depression Scale (EPDS) score at term-equivalent age. Time-lag (weeks) = time in weeks between birth and EPDS assessment. Gestation:term = dummy variable, term (\geq 37 weeks) vs preterm (\leq 37 weeks) gestation at birth. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren).

BMJ Open

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
20	
27 20	
20	
29	
50 21	
21	
2∠ 22	
ככ ⊃⊿	
24 25	
35	
20 27	
3/	
38	
39 40	
40	
41	
42	
43	
44	
45	

46

Supplementary Table 5: EPDS score predictors including interaction 'term x time-lag'.

	IRR [95%CI]	р
Time-lag (weeks)	1.00 [0.97, 1.04]	.823
Gestation: term	0.88 [0.58, 1.34]	.553
IMD rank	1.00 [1.00, 1.00]	.104
Multiple pregnancy	0.66 [0.46, 0.96]	.029 *
Parity		
1	0.79 [0.66, 0.95]	.010 *
2	0.87 [0.60, 1.28]	.480
3+	0.85 [0.55, 1.31]	.458
Birthweight (kg)	0.97 [0.83, 1.15]	.756
Sex:female	1.13 [0.98, 1.30]	.100
Term x time-lag (weeks)	1.01 [0.94, 1.10]	.735

p<0.05 *; p<0.01 **; p<0.001 ***

Pseudo $R^2 = 0.0230$

IRR = incidence rate ratio

Outcome variable = maternal Edinburgh Postnatal Depression Scale (EPDS) score at term-equivalent age. Time-lag (weeks) = time in weeks between birth and EPDS assessment. Gestation: term = dummy variable, term (\geq 37 weeks) vs preterm (<37 weeks) gestation at birth. Multiple pregnancy = dummy variable of twin/triplet pregnancy. Parity = dummy variable, one/two/three+ previous child(ren). Term x time-lag (weeks): interaction term between term gestation at birth and time-lag between birth and maternal EPDS assessment.

BMJ Open

 BMJ Open

Supplemental reference list

1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. L. Erlbaum Associates; 1988.

For peer review only

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1, 2
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5,6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6, 7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7
Participants	6	 (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up (b) For matched studies, give matching criteria and number of exposed and unexposed 	7
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7, 8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7, 8
Bias	9	Describe any efforts to address potential sources of bias	9
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	9, 10
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	9, 10, 11
		 (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) If applicable, explain how loss to follow-up was addressed (<u>e</u>) Describe any sensitivity analyses 	
Results			
Participants	13*	 (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage (c) Consider use of a flow diagram 	7, 11
Descriptive data	14*	 (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders (b) Indicate number of participants with missing data for each variable of interest (c) Summarise follow-up time (eg, average and total amount) 	9,11
Outcome data	15*	Report numbers of outcome events or summary measures over time	11

BMJ Open

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	11, 12
		(b) Report category boundaries when continuous variables were categorized(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	11
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11, 12
Discussion			
Key results	18	Summarise key results with reference to study objectives	12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	15, 16, 17
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	13, 14, 17
Generalisability	21	Discuss the generalisability (external validity) of the study results	13, 14
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	3
			-

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.