

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Economic analysis of the first pass effect in mechanical thrombectomy for acute ischemic stroke treatment in Spain.

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054816
Article Type:	Original research
Date Submitted by the Author:	23-Jun-2021
Complete List of Authors:	González Diaz, Eva; Cruces University Hospital, Neurointerventional radiology, Radiology department Rodríguez-Paz, Carlos; Hospital Álvaro Cunqueiro, Neuroradiology Unit, Department of Radiology Fernandez-Prieto, Andres; Hospital Universitario La Paz, Neurointerventional radiology, Radiology department Martínez-Galdámez, Mario; University Clinical Hospital of Valladolid, Neuroradiology Unit Martínez-Moreno, Rosa; Hospital Universitario Virgen de las Nieves Ortega Quintanilla, Joaquín; Hospital Universitario Virgen del Rocío Tomasello, Alejandro; Vall d'Hebron University Hospital, Interventional Neuroradiology Section, Department of Radiology; Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR) Zamarro, Joaquín; Hospital Clinico Universitario Virgen de la Arrixaca, Interventional Neuroradiology Liebeskind, David; University of California Los Angeles, Neurovascular Imaging Core and UCLA Stroke Center, Department of Neurology Zaidat, Osama; St Vincent Mercy Hospital Mueller-Kronast, nils; Advanced Neuroscience Network/Tenet South Florida
Keywords:	HEALTH ECONOMICS, Stroke < NEUROLOGY, Interventional radiology < RADIOLOGY & IMAGING, Neuroradiology < NEUROLOGY

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Economic analysis of the first pass effect in mechanical thrombectomy for acute ischemic

stroke treatment in Spain.

3	
4	Eva González-Diaz ¹ , MD; Carlos Rodríguez-Paz ² , MD; Andres Fernandez-Prieto ³ , MD; Mario
5	Martínez-Galdámez ⁴ , MD; Rosa Martínez-Moreno ⁵ , MD; Joaquín Ortega Quintanilla ⁶ , MD;
6	Alejandro Tomasello ^{7,8} , MD; Joaquín Zamarro ⁹ ; MD; David S. Liebeskind, MD ¹⁰ ; Osama O.
7	Zaidat ¹¹ , MD, MS; Nils H. Mueller-Kronast, MD ¹² .
8	
9	
10	
11	¹ Neurointerventional radiology, Radiology department, Cruces University Hospital, Barakaldo,
12	Basque Country, Spain.
13	² Neuroradiology Unit, Department of Radiology, Hospital Álvaro Cunqueiro, Vigo, Spain
14	³ Neurointerventional radiology, Radiology department, Hospital Universitario La Paz, Madrid,
15	Spain.
16	⁴ Neuroradiology Unit, University Clinical Hospital of Valladolid, Valladolid, Spain
17	⁵ Hospital Universitario Virgen de las Nieves, Granada, Spain.
18	⁶ Interventional Neuroradiology, Hospital Universitario Virgen del Rocío, Sevilla, Andalucía,
19	Spain
20	⁷ Interventional Neuroradiology Section, Department of Radiology, Vall d'Hebron University
21	Hospital, Barcelona, Spain.
22	⁸ Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Barcelona,
23	Spain
24	⁹ Interventional Neuroradiology, Hospital Clinico Universitario Virgen de la Arrixaca, Murcia,
25	Spain

BMJ Open

2		
3 4	26	¹⁰ Neurovascular Imaging Core and UCLA Stroke Center, Department of Neurology,
5 6	27	University of California Los Angeles, Los Angeles, California, USA
7 8	28	¹¹ St Vincent Mercy Hospital, Toledo, Ohio, USA
9 10	29	¹² Advanced Neuroscience Network/Tenet South Florida, Delray Beach, Florida, USA
11 12 13	30	
13 14 15	31	
16 17	32	
18	52	
19 20	33	Corresponding author : Eva González-Diaz, <u>evagonzalezdiaz@yahoo.com</u> ,
21 22 23	34	Neurointerventional Radiology, Radiology department, Cruces University Hospital, Plaza
23 24 25	35	Cruces S/N 48903, Barakaldo, Basque Country, Spain, +34669309168
26 27	36	
28 29	37	
30 31	38	
32 33 34	39	Keywords: First-pass effect, health economics, ischaemic stroke, mechanical thrombectomy,
35 36	40	net monetary benefit, reperfusion, Spain
37		4
38 39	41	Word count: 2,498
40 41	42	Total number of tables and figures: 2 Tables, 3 Figures
42 43	43	
44 45		
46		
47		
48		
49		
50 51		
52		
53		
54		
55		
56		
5/ 58		
50 59		
60		

44 Abstract

Objective: The mechanical thrombectomy (MT) benefit is related to the degree of reperfusion 46 achieved. First Pass Effect (FPE) is defined as complete/near revascularization of the large 47 vessel occlusion (modified Thrombolysis in Cerebral Infarction (mTICI) 2c-3) after a single 48 device pass. This study assessed the health benefit and economic impact of achieving FPE for 49 acute ischemic stroke (AIS) patients from the Spanish National Health System (NHS) 50 perspective.

Design: A lifetime Markov model was used to estimate incremental costs and health outcomes (measured in quality-adjusted life-years [QALY]) of patients that achieve FPE. A sub-analysis of the STRATIS registry was performed to obtain clinical outcomes. The base-case included all patients that achieved at least a final mTICI ≥2b, while the alternative scenario included all patients regardless of their final mTICI (0-3). Treatment costs were updated to reflect current practice based on expert panel consensus, while other acute and long-term costs were obtained from a previous cost-effectiveness analysis of MT performed in Spain. Sensitivity analyses were performed to assess the model's robustness.

Setting: Spanish healthcare perspective.

Participants: AIS patients in Spain.

Interventions: FPE following MT.

62 Outcome measures: The model estimated QALYs, lifetime costs and net monetary benefit
63 (NMB) for the FPE and non-FPE group, depending on the inclusion of reperfusion groups and
64 formal care costs.

Results: STRATIS sub-analysis estimated significantly better clinical outcomes at 90-days for
the FPE group in all scenarios. In the base-case, the model estimated lifetime cost-saving per
patient of €16,583 and an incremental QALY gain of 1.2 years of perfect health for the FPE

Page 5 of 37

1 2 BMJ Open

3 4	68	group. Cost-savings and QALY gains were greater in the alternative scenario (-€44,289; 1.75).
5 6	69	In all scenarios, cost-savings were driven by the long-term cost reduction.
/ 8 9	70	Conclusion: Achieving FPE after MT can lead to better health outcomes per AIS patient. and
) 10 11	71	important cost-savings for the Spanish NHS.
12 13	72	
14 15 16	73	
17 18	74	Article Summary
19 20	75	Strengths and limitations of this study
21 22 23	76	• A Markov model estimated the lifetime health and cost implications of achieving FPE
24 25	77	in AIS patients treated with Mechanical Thrombectomy in Spain from the NHS
26 27	78	perspective.
28 29 30	79	• The model allows to quantify the benefits of aiming mechanical thrombectomy
31 32	80	techniques that may increase the first pass effect success rates.
33 34	81	• A limitation of this study is that clinical efficacy and patient characteristics were based
35 36 37	82	on the STRATIS registry, which included centers outside Spain.
38 39	83	• Another limitation is that some model parameters, such as acute and long-term costs
40 41	84	have been derived from literature, which have been validated by clinical experts.
42 43 44	85	
45 46	86	
47 48	87	
49 50 51	88	
52 53	89	
54 55	90	
56 57 58	91	
50 59 60	92	
		4

INTRODUCTION

The annual number of strokes in the European Union is forecasted to increase by 34% in 2035, mainly due to its aging population. With improving survival rates after stroke, almost 1 million more people will be living with a stroke as a chronic condition, rising from 3.7 million in 2015 to 4.6 million in 2035 (1). It is estimated that the incidence and prevalence of strokes will increase by 35% and 31% respectively in Spain by 2035 (2), which will inevitably raise the associated economic burden.

Mechanical thrombectomy (MT) is the most effective reperfusion treatment used in acute ischemic stroke (AIS) management in patients with large vessel occlusion (LVO) (3,4). Its cost-effectiveness has already been demonstrated in Spain; improving functional outcomes is associated with a higher quality of life and reduced health costs, leading to €44,378 in savings per patient compared to thrombolysis with intravenous tissue-type plasminogen activator (IV-tPA) alone (5).

Clinical evidence suggests that the number of passes during a MT inversely correlates with the functional outcome of the procedure (6,7). Achieving complete/near revascularization of the LVO (modified Thrombolysis in Cerebral Infarction [mTICI] 2c-3) after a single pass with MT, known as first pass effect (FPE), is associated with significant improvements in clinical outcomes and can be considered an independent predictor of good functional outcomes (8). Recent studies have begun to try to identify factors or predictors of first pass effect which may impact the choice of thrombectomy device and technique in the future (8–11).

Page 7 of 37

BMJ Open

117 The objective of this study is to assess the health outcome benefits and economic impact of 118 achieving FPE for the AIS patients from the National Health System (NHS) perspective in 119 Spain.

125 Model structure

METHODS

A previously published cost-effectiveness model comparing MT + IV-tPA with IV-tPA alone in a Spanish NHS setting was modified to reflect only patients that received MT treatment which afterwards were stratified to reflect those who achieved FPE and those who didn't (Non-FPE) (5), and allowed to estimate lifetime health and costs outcomes of the two patient groups. As in the previous modelling, this analysis is also over the patient's lifetime and from the Spanish NHS perspective. The model was developed using Microsoft Excel (Microsoft Corporation, Redmond, WA, USA).

0 133

The model had a two-phase structure, consisting of an acute-subacute phase from stroke onset to 90 days, and a rest-of-life phase 91 days after stroke to the end of patient's life. In the acute-subacute phase, patients enter the model once reperfusion status (FPE vs Non-FPE) has been determined, and then are assigned to one of the seven mutually exclusive health states based on Modified Ranking Scale (mRS; 0-no symptoms, 6-death) to reflect several degrees of disability at 90 days. Afterwards, patients enter a Markov structure, from 91 days after the stroke to the end of the patients' life. In this phase, patients could remain in the same health state or transition to different states during each annual cycle until the end of life, depending on the occurrence of a recurrent stroke or death from other causes (age-gender specific
mortality). A half-cycle correction was used to account for transitions occurring in the middle
of a cycle.

) 145

Patient population

147 The model simulates a hypothetical cohort of 1,000 patients with clinic-demographic 148 characteristics based on the STRATIS registry (Systematic Evaluation of Patients Treated With 149 Neurothrombectomy Devices for Acute Ischemic Stroke) (12). The base-case analysis 150 stratified patients into FPE and Non-FPE groups considering STRATIS registry patients that 151 achieved a final mTICI≥2b. The alternative scenario included all STRATIS registry patients 152 regardless of their final mTICI (0-3).

154 Clinical data

155 Clinical data was obtained from a sub-analysis of the STRATIS registry (12) in which FPE and 156 Non-FPE groups were compared. Moreover, it was considered that patients were at risk of 157 experiencing adverse events (symptomatic intracranial hemorrhage and malignant cerebral 158 edema) during the acute-subacute phase, therefore adverse events data was also obtained from 159 STRATIS registry sub-analysis.

161 Categorical variables were compared using χ^2 (Chi-square) test and Mantel-Haenszel Chi-162 square test when appropriate. Proportion differences were compared by z-test both one-sided 163 and two-sided tests are performed (considering 5% and 2.5% significance level respectively). 164 All statistical analyses were performed using SAS version 9.4.

Page 9 of 37

BMJ Open

Background age-gender related mortality was obtained from the latest available Life Table in Spain (data from 2018) (13) and relative risks of death by mRS score were used to adjust agegender-related mortality (14) to account for the increased risks observed among stroke survivors (Supplementary Material Table A1 & A2). Recurrence stroke rates were obtained from Mohan et al. (15) (Supplementary Material (Table A3).

Quality of life

Health outcomes were measured using quality-adjusted life years (QALY), a measure that weights life-years gained with an intervention by its utility value. Utilities assigned to health states can take values from 0 (death) to 1 (optimal health) and negative values (state worse than death). Utilities by mRS score were obtained from Rivero-Arias et al. 2010 (16), with values ranging from 0.93 (mRS 0) to -0.54 (mRS 5) (Supplementary Material (Table A4).

179 Costs

The study considered the Spanish NHS perspective, consequently, only direct medical costs were considered, including treatment and adverse events management costs, acute and longterm care costs. Treatment costs were updated to reflect the costs for each patient group (FPE vs Non-FPE) and were kept in line with the new treatment approaches according to local practice based on a panel of experts' consensus. Treatment costs in both groups FPE and Non-FPE included the costs of AIS diagnosis, and adjunctive IV-tPA in 30% of the cases according to local practice (Table A5, Supplementary Material).

Adverse events, acute and long-term costs by mRS score were kept consistent with the previous
model (5). For each scenario, a second analysis was performed to include formal care costs
such as nursing/residential costs. All costs are presented in Euros and were inflated to reflect

191 Euros in 2020 (Table 1). Costs and health outcomes were discounted at an annual discount rate

192 of 3% consistent with the relevant health technology assessment guidelines for Spain (17).

194Table 1. Adjusted Acute and long-term costs (Euros 2020)

	Acute costs	Annual long-term cost			
mRS	Total Acute care cost (€)	Total Long-term healthcarecost (without nursing andresidential care cost)(€)	Total including nursing and residential care cost (€)		
mRS 0	4,718	1,340	2,767		
mRS 1	5,242	1,489	3,074		
mRS 2	5,766	1,638	3,382		
mRS 3	6,468	23,250	33,061		
mRS 4	7,187	25,833	53,339		
mRS 5	7,906	28,417	67,400		
mRS 6	4,046				

198 Economic model outcomes and sensitivity analysis

The model estimates the lifetime total costs and QALYs for each patient group. To quantify
the net economic value of FPE, the net monetary benefit (NMB) was calculated, considering a
willingness-to-pay (WTP) threshold of €30,000/QALY, (NMB=(Incremental QALYs×WTP)Incremental Costs) (18,19).

Deterministic Sensitivity Analysis (DSA) and Probabilistic Sensitivity Analysis (PSA) were conducted to evaluate results' robustness (20). DSA assigns a one-way variation to input parameters including discount rates, mRS at 90 days, age, health states utilities, recurrent stroke rates, relative risk of death, and all costs (treatment, acute and long-term costs). In PSA, 10,000 Monte Carlo simulations were run after assigning a probability distribution to all key

¹⁹⁵¹⁹⁶ Note: Table adapted from De Andrés-Nogales et al., 2017 (6)

Page 11 of 37

1 2 **BMJ** Open

3 4	209
5 6	210
7 8	211
9 10 11	212
12 13	213
14 15	214
16 17 18	215
19 20	216
21 22	217
23 24 25	218
26 27	219
28 29	220
30 31 32	221
33 34	222
35 36	223
37 38 30	224
40 41	225
42 43	226
44 45 46	227
40 47 48	228
49 50	229
51 52	230
55 55	231
56 57	232
58 59	

60

09 parameters simultaneously (mRS scores at 90 days (Dirichlet), mortality relative risks (Lognormal), starting age (Normal), utilities (Beta) and costs (Gamma)), to account for the 10 11 general uncertainty around model inputs (5).

13 Patient and public involvement

14 This study was conducted without patient and public involvement. Therefore, patients were not 15 involved in the study design, reporting or interpretation of the findings. This study included a 16 post-hoc analysis of an existing study, therefore institutional review board approval was not 17 obtained for this analysis. Moreover, no research approval was required for model input 18 parameters that were obtained from literature or based on panel of experts consensus.

er revie

22 RESULTS

24 Based on STRATIS sub-analysis, the mean age of stroke considered in the model was 68 years. 25 Both groups have similar characteristics at baseline. Descriptive statistics on the FPE and Non-26 FPE groups are reported in Supplementary Material, Tables A6-A7-A8-A9.

27 Our results suggest that the FPE group had significantly better clinical outcomes at 90 days 28 after stroke compared to the Non-FPE group in the base-case scenario (mRS 0-2: 66.2% vs 29 54.6%, p-value<0.005). Similar results in the alternative scenario were observed (mRS 0-2: 30 66.9% vs 50.6%, p-value<0.0001) (Figure 1). Adverse events results across scenario 31 populations are presented in the Supplementary Material (Table A10).

[Insert Figure 1]

In the base-case scenario, the model estimates an average lifetime cost per patient equal to $\in 97,206$ for the FPE group and $\in 113,790$ for the Non-FPE group. Of these, 83% were associated with long-term costs. Overall, the FPE group generated a cost reduction of $\in 16,583$ per patient in a lifetime horizon. Cost reductions are predicted to be greater when nursing/residential care cost are included, leading to a savings of $\in 30,072$ per patient.

In terms of health outcomes, the model estimates that achieving FPE lead to a QALY gain of 1.2 years (7.89 vs 6.69), while the number of independent people at 90 days is also projected to increase by 116 (662 vs 546) in this hypothetical cohort. However, there is an estimated increase in the total number of recurrent strokes in the FPE group due to patients living longer (283 vs 257).

The model suggests that achieving FPE lead to a NMB of €52,634 considering a WTP of €30,000/QALY gained. The NMB was expected to increase to €66,122 when nursing/residential care cost are considered. FPE provides greater net economic value demonstrating higher efficacy with lower costs from the payer perspective in a lifetime time horizon (Table 2). In the alternative scenario, similar results were observed, which may confirm the greater benefits that achieving FPE (between 32%-47% higher) may provide when all patients regardless their final mTICI are considered (QALY gain of 1.75 years and €21,910 cost reduction; when considering nursing/residential costs, a cost reduction of \notin 44,289 and a NMB of €96,684) (Table 2).

255 Table 2. Summary of Base-case and Alternative scenario Results

		Base-case		Alt	ternative scen	ario
Costs	FPE	Non-FPE	Incremen-	FPE	Non-FPE	Incremen-
			tal			tal
Treatment (€)	9,086	10,432	-1,346	9,086	10,432	-1,346
			•			

Adverse event costs (€)	269	582	-313	238	551	-314
Acute costs (€)	5,259	5,353	-94	5,250	5,387	-137
Long term care costs (€)	79,296	94,263	-14,968	78,039	98,469	-20,430
Long term care costs (With nursing/residential care cost) (€)	144,072	172,527	-28,456	141,678	184,487	-42,809
Recurrent stroke costs (€)	3,297	3,160	137	3,313	2,997	316
Total costs (€)	97,206	113,790	-16,583	95,925	117,836	-21,910
NMB (€)			52,634			74,306
Total costs (With nursing/residential care cost) (€)	161,982	192,054	-30,072	159,565	203,854	-44,289
NMB (With nursing/residential care cost) (€)			66,122			96,684
Total QALYs	7.89	6.69	1.2	7.96	6.21	1.75
Total life years	10.99	10.06	0.92	11.03	9.71	1.32

29 256

258 Sensitivity analysis

According to the DSA, in both scenarios (base-case and alternative), the key drivers of the
analysis included long-term stroke care costs, starting age, health state utilities by mRS score,
and relative risk of death. However, none of these key parameters changed the direction of the
results; therefore, in all the simulations, the NMB remained positive (minimum value: €34,609;
maximum value: €73,620), showing the results were robust to input parameters variations
(Figure 2). In the PSA, FPE was estimated to be cost-neutral or cost-saving in 98.4%of the
Monte Carlo simulations (Figure 3).

54 267

[Insert Figure 2]

[Insert Figure 3]

DISCUSSION

Clinical evidence suggests that achieving FPE after a single pass is associated with favourable outcomes after a MT procedure (6,7). Our study estimated the health gains from achieving FPE and examined the associated economic impact from the Spanish NHS perspective over a lifetime horizon.

Clinical outcomes, based on a sub-analysis from the STRATIS registry, showed that achieving mTICI 2c-3 reperfusion after a single pass leads to significantly better overall mRS distribution and functional independence (mRS 0-2). The difference in the proportion in mRS 0-2 between FPE and Non-FPE groups ranged between 11.5% to 16.3% depending on the cohort of patients (Figure 1). Similar findings have been described in literature (8). An analysis of North American Solitaire Acute Stroke Registry conducted by Zaidat et al. suggested that if patients achieved mTICI 3, the FPE lead to better clinical outcomes compared to the rest of the cohort that did not achieve FPE (61.3% vs 35.3%, p-value:<0.0001) (8).

The base-case results suggest that achieving FPE yields better health outcomes than Non-FPE group, providing an incremental QALY gain of 1.2 (in alternative scenario, QALY gain of 1.75), equivalent to 438 days in perfect health (657 days for alternative scenario). From the cost perspective, both scenarios suggest that the FPE group is associated with lower health care costs, leading to a cost-saving of €16,583 in the base-case scenario, €30,072 when considering nursing/residential healthcare costs, and -€21,910 to €44,289 in the alternative scenario) (Table 2). Cost savings in both scenarios were mainly driven by reductions in long-term costs associated with the management of functionally dependent patients. Furthermore, all results were tested by performing DSA and PSA which demonstrated that our results are robust. In

BMJ Open

both scenarios and sub-scenarios, the Non-FPE group was associated with lower health benefitsand higher health care costs.

A recently published study (21) estimated the short-term cost implications of FPE in several countries, including Spain. The authors estimated the procedural/hospitalization and annual are costs differences considering a 1-year time horizon. Similar to our work, the study showed lower procedural/hospitalization and annual care costs for patients that achieved FPE vs. Non-FPE across countries considered. Furthermore, our findings are compatible with other studies undertaken in the United States that have demonstrated that achieving TICI 3 lead to healthcare and societal cost savings relative to achieving TICI 2b for LVO (22,23).

Overall, the results of this study showed that raising the FPE rate will not only increase the quality of life for patients, but also decrease the overall health care costs. Achieving FPE can potentially be one of the primary goals in the treatment of patients with ischemic stroke due to LVO from both a clinical and economic perspective. Because this analysis was performed from the Spanish NHS perspective, only the direct costs are considered. There could be larger savings associated with achieving FPE if indirect costs, such as informal care and productivity losses, were included.

To our knowledge, this is one of the first studies that aim to evaluate the lifetime health and cost implications of achieving FPE in AIS patients in Spain from the NHS perspective. Among the strengths of this study are the Markov structure (allows to better reflect the patient pathway in terms of lifetime costs and benefits) and the inclusion of comprehensive diagnostics and treatments costs, main adverse events management, and recurrent strokes, to account for all health outcomes and associated costs after a stroke.

This study has some limitations. First, clinical efficacy and patient characteristics were based on the STRATIS registry, which included centers outside Spain. Furthermore, the STRATIS registry is based on specific stent retrievers and might not be applicable to other types of devices with different safety and efficacy profile. Also, the average age for a stroke onset in Spain might be higher than our assumption for all patients (68 years), which could potentially lead to an overestimation of health outcomes. However, age was included in the DSA, varied to an upper limit of 75 years, and this did not lead to dramatic changes in the results as the NMB remained positive in all scenarios. Third, patients were assumed to remain in a given mRS score until they experienced a recurrent stroke or death. Other factors that may have an effect on mRS scores, such as comorbidities, were not included. However, this aspect should affect both patient cohorts equally. Acute and long-term costs were obtained from the original cost-effectiveness model and the same limitations for costs would apply. Finally, resource consumption was based on a panel of experts' consensus and clinical practice and subject to heterogeneity between centres. However, these assumptions were tested in the DSA and PSA and did not alter the overall results.

⁷ 339 CONCLUSION

Achieving FPE after MT can lead to important health care cost-saving and better functional
clinical outcomes per patient compared to not achieving FPE. Costs saving to the Spanish NHS
ranged from -€16,583 to -€44,289 depending on the patient cohort and long-term costs.
Increasing FPE rates will lead to greater cost savings to the health care system.

1		
2 3 4	345	
5 6	346	Acknowledgements
7 8 0	347	The authors acknowledge Medtronic and Valeska Seguel Ravest for its support and editorial
9 10 11	348	assistance.
12 13	349	
14 15 16	350	
17 18	351	Funding: This study was sponsored by Medtronic. There is no grant number available for this
19 20	352	study.
21 22 23	353	
23 24 25	354	
26 27	355	Competing interests: EGD, CRP, AFP, RMM, JOQ, JZ declare no conflicts of interest. MMG
28 29 30 31 32	356	is a proctor and consultant of Medtronic. AT is a consultant, proctor and advisor of Medtronic
	357	(Consultancy Anaconda, Balt, Stryker and Perflow). NHMK is a scientific consultant regarding
33 34	358	trial design and conduct for Medtronic. OOZ is a consultant for Neuravi/Cerenovus, Stryker,
35 36	359	Penumbra, and Medtronic. DSL is an imaging core laboratory consultant for Cerenovus,
37 38 39	360	Genentech, Medtronic, and Stryker.
40 41	361	
42 43	362	
44 45 46	363	Contributors: EGD, CRP, AFP, RMM, JOQ, JZ, AT and MMG: contributed in the design,
40 47 48	364	data collection, analysis, interpretation and drafting, reviewing, and revising the manuscript.
49 50	365	NHMK, OOZ and DSL: reviewing and revising the manuscript
51 52	366	
53 54 55	367	
56 57	368	Patient consent for publication: Not required.
58 59		
60		16

1

2 3 4	369	Data Sharing Statement: All relevant model inputs used in this study are included in the				
5 6	370	articl	e and supplement.			
7 8 0	371					
9 10 11	372					
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	373	Refe	rences			
	374	1.	Stevens, Eleanor; Emmett, Eva; Wang, Yanzhong; McKevitt, Christopher; Wolfe C.			
	375		The burden of stroke in Europe report. Stroke Alliance Eur. 2017;131 p.			
	376	2.	Luengo-Fernandez R, Violato M, Candio P, Leal J. Economic burden of stroke across			
	377		Europe: A population-based cost analysis. Eur Stroke J. 2020;5(1):17–25.			
	378	3.	Turc G, Bhogal P, Fischer U, Khatri P, Lobotesis K, Mazighi M, et al. European			
	379		Stroke Organisation (ESO) – European Society for Minimally Invasive Neurological			
	380		Therapy (ESMINT) Guidelines on Mechanical Thrombectomy in Acute Ischaemic			
	381		StrokeEndorsed by Stroke Alliance for Europe (SAFE). Eur Stroke J. 2019;4(1):6–12.			
	382	4.	Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et			
	383		al. 2018 Guidelines for the Early Management of Patients With Acute Ischemic			
39 40	384		Stroke: A Guideline for Healthcare Professionals From the American Heart			
41 42 43	385		Association/American Stroke Association. Vol. 49, Stroke. 2018. 46–110 p.			
44 45 46	386	5.	de Andrés-Nogales F, Álvarez M, de Miquel MÁ, Segura T, Gil A, Cardona P, et al.			
47 48	387		Cost-effectiveness of mechanical thrombectomy using stent retriever after intravenous			
49 50	388		tissue plasminogen activator compared with intravenous tissue plasminogen activator			
51 52	389		alone in the treatment of acute ischaemic stroke due to large vessel occlusion in Spa.			
55 55 55	390		Eur Stroke J. 2017;2(3):272–84.			
57 58	391	6.	Bai Y, Pu J, Wang H, Yang D, Hao Y, Xu H, et al. Impact of Retriever Passes on			
59 60	392		Efficacy and Safety Outcomes of Acute Ischemic Stroke Treated with Mechanical			

1 2 3 4	393		Thrombectomy. Cardiovasc Intervent Radiol. 2018;41(12):1909–16.
5 6 7	394	7.	Bai X, Zhang X, Yang W, Zhang Y, Wang T, Xu R, et al. Influence of first-pass effect
8 9	395		on recanalization outcomes in the era of mechanical thrombectomy: a systemic review
10 11 12	396		and meta-analysis. Neuroradiology. 2020;(77).
13 14 15	397	8.	Zaidat OO, Castonguay AC, Linfante I, Gupta R, Martin CO, Holloway WE, et al.
15 16 17	398		First pass effect: A new measure for stroke thrombectomy devices. Stroke.
18 19 20	399		2018;49(3):660–6.
20 21 22	400	9.	Zaidat OO, Haussen DC, Hassan AE, Jadhav AP, Mehta BP, Mokin M, et al. Impact of
23 24	401		Stent Retriever Size on Clinical and Angiographic Outcomes in the STRATIS Stroke
25 26 27	402		Thrombectomy Registry. Stroke. 2019;50(2):441–7.
28 29 30	403	10.	Nguyen TN, Malisch T, Castonguay AC, Gupta R, Sun CHJ, Martin CO, et al. Balloon
31 32	404		guide catheter improves revascularization and clinical outcomes with the solitaire
33 34	405		device : Analysis of the north american solitaire acute stroke registry. Stroke.
35 36 37	406		2014;45(1):141–5.
38 39 40	407	11.	Di Maria F, Kyheng M, Consoli A, Desilles JP, Gory B, Richard S, et al. Identifying
40 41 42	408		the predictors of first-pass effect and its influence on clinical outcome in the setting of
43 44	409		endovascular thrombectomy for acute ischemic stroke: Results from a multicentric
45 46 47	410		prospective registry. Int J Stroke. 2020;16(1):20-8.
48 49	411	12.	Mueller-Kronast NH, Zaidat OO, Froehler MT, Jahan R, et al. Systematic Evaluation
50 51 52	412		of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke:
53 54	413		Primary Results of the STRATIS Registry. Stroke. 2017;48(10):2760-8.
55 56 57	414	13.	Instituto Nacional de Estadistica. 2018 Mortality tables of Spanish population.
58 59 60	415		National results. In: INEbase. [Internet]. 2018 [cited 2020 Oct 10]. Available from:
			10

2 3 4	416		www.ine.es
6 7	417	14.	Slot KB, Berge E, Sandercock P, Lewis SC, Dorman P, Dennis M. Causes of death by
8 9 10 11 12 13 14 15 16 17	418		level of dependency at 6 months after ischemic stroke in 3 large cohorts. Stroke.
	419		2009;40(5):1585–9.
	420	15.	Mohan KM, Wolfe CDA, Rudd AG, Heuschmann PU, Kolominsky-Rabas PL, Grieve
	421		AP. Risk and cumulative risk of stroke recurrence: A systematic review and meta-
18 19 20	422		analysis. Stroke. 2011;42(5):1489–94.
21 22	423	16.	Rivero-Arias O, Ouellet M, Gray A, Wolstenholme J, Rothwell PM, Luengo-
23 24	424		Fernandez R. Mapping the modified rankin scale (mRS) measurement into the generic
25 26 27	425		EuroQol (EQ-5D) health outcome. Med Decis Mak. 2010;30(3):341–54.
28 29 30	426	17.	López Bastida J, Oliva J, Antoñanzas F, García-Altés A, Gisbert R, Mar J, et al.
30 31 32	427		Propuesta de guía para la evaluación económica aplicada a las tecnologías sanitarias.
33 34 35	428		Gac Sanit. 2010;24(2):154–70.
35 36 37	429	18.	Sacristán JA, Oliva J, Del Llano J, Prietoa L, Pintod JL. Qué es una tecnología
38 39 40	430		sanitaria eficiente en Espaça? Gac Sanit. 2002;16(4):334-43.
41 42	431	19.	De Cock E, Miravitlles EM, González-Juanatey JR, Azanza-Perea JR. Valor umbral
43 44 45	432		del coste por año de vida ganado para recomendar la adopción de tecnologías
46 47	433		sanitarias en España: evidencias procedentes de una revisión de la literatura.
48 49 50	434		PharmacoEconomics Spanish Res Artic. 2007;4:97–107.
51 52	435	20.	Briggs AA. Decision Modelling for Health Economic Evaluation. Handbooks Heal
53 54 55	436		Econ Eval Ser. 2006;2–3.
56 57 58	437	21.	Zaidat OO, Ribo M, Mattle HP, Saver JL, Bozorgchami H, Yoo AJ, et al. Health
59 60	438		economic impact of first-pass success among patients with acute ischemic stroke

Page 21 of 37

BMJ Open

1 2							
2 3 4	439		treated with mechanical thrombectomy: A United States and European perspective.	J			
5 6 7	440		Neurointerv Surg. 2020;1–7.				
8 9	441	22.	Kunz WG, Almekhlafi MA, Menon BK, Saver JL, Hunink MG, Dippel DWJ, et al.				
10 11 12	442		Public health and cost benefits of successful reperfusion after thrombectomy for				
13 14 15	443		stroke. Stroke. 2020;899–907.				
16 17	444	23.	Wu X, Khunte M, Gandhi D, Matouk C, Hughes DR, Sanelli P, et al. Implications of	of			
18 19	445		achieving TICI 2b vs TICI 3 reperfusion in patients with ischemic stroke: A cost-				
20 21	446		effectiveness analysis. J Neurointerv Surg. 2020;12(12):1161-5.				
22 23 24 25	447						
26 27 28	448						
28 29 30 31	449	Figur	re Legends				
32 33	450	Figur	re 1. mRS outcomes at 90 days Base case and Alternative Scenario.				
34 35 36	451	Acronyms: FPE (First Pass Effect); mRS (modified Rankin Score);					
37 38	452	Figure 2. Tornado diagram of deterministic sensitivity analysis					
39 40	453	Acron	Acronyms: FPE (First Pass Effect); mRS (modified Rankin Score); RR (Relative Risk)				
41 42 43	454	Figur	re 3. Probabilistic sensitivity analysis				
43 44 45 46 47 48 49 50 51	455	Acron	nyms: QALYs (Quality-Adjusted Life Years).				
	456						
52 53 54 55 56							
57 58							
60				20			

Economic analysis of the first pass effect in mechanical thrombectomy for acute ischemic stroke treatment in Spain.

Supplementary Material

Eva González-Diaz¹, MD; Carlos Rodríguez-Paz², MD; Andres Fernandez-Prieto³, MD; Mario Martínez-Galdámez⁴, MD; Rosa Martínez-Moreno⁵, MD; Joaquín Ortega Quintanilla⁶, MD; Alejandro Tomasello^{7,8}, MD; Joaquín Zamarro⁹; MD; David S. Liebeskind, MD¹⁰; Osama O. Zaidat¹¹, MD, MS; Nils H. Mueller-Kronast, MD¹².

¹ Neurointerventional radiology, Radiology department, Cruces University Hospital, , Barakaldo, Basque Country, Spain.

²Neuroradiology Unit, Department of Radiology, Hospital Álvaro Cunqueiro, Vigo, Spain

³Neurointerventional radiology, Radiology department, Hospital Universitario La Paz, Madrid, Spain.

⁴Neuroradiology Unit, University Clinical Hospital of Valladolid, Valladolid, Spain

⁵Hospital Universitario Virgen de las Nieves, Granada, Spain.

⁶ Interventional Neuroradiology, Hospital Universitario Virgen del Rocío, Sevilla, Andalucía, Spain

⁷ Interventional Neuroradiology Section, Department of Radiology, Vall d'Hebron University Hospital Barcelona, Spain.

⁸Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain

⁹ Interventional Neuroradiology, Hospital Clinico Universitario Virgen de la Arrixaca, Murcia, Spain

¹⁰Neurovascular Imaging Core and UCLA Stroke Center, Department of Neurology, University of California Los Angeles, Los Angeles, California, USA

¹¹ St Vincent Mercy Hospital, Toledo, Ohio, USA

¹² Advanced Neuroscience Network/Tenet South Florida, Delray Beach, Florida, USA

Corresponding author: Eva Gonzalez-Diaz, <u>evagonzalezdiaz@yahoo.com</u>, Neurointerventional Radiology, Radiology department, Cruces University Hospital, Plaza Cruces S/N 48903, Barakaldo, Basque Country, Spain, +34669309168

Table A1. Relative risk of death by mRS [1]

mRS score	RR
mRS 0	1.00
mRS 1	1.00
mRS 2	1.12
mRS 3	1.66
mRS 4	1.92
mRS 5	2.57

Table A2. Lifetable Spain by age and gender [2]

Other-cause mortality			
Age	Male	Female	
0	0.276%	0.245%	
1	0.023%	0.018%	
2	0.013%	0.008%	
3	0.012%	0.009%	
4	0.014%	0.007%	
5	0.010%	0.009%	
6	0.007%	0.006%	
7	0.007%	0.005%	
8	0.009%	0.007%	
9	0.007%	0.004%	
10	0.007%	0.006%	
11	0.008%	0.007%	
12	0.007%	0.007%	
13	0.010%	0.005%	
14	0.008%	0.013%	
15	0.013%	0.011%	
16	0.021%	0.011%	
17	0.016%	0.015%	
18	0.030%	0.014%	
19	0.026%	0.010%	
20	0.029%	0.014%	
21	0.034%	0.015%	
22	0.030%	0.014%	
23	0.037%	0.014%	
24	0.039%	0.019%	
25	0.032%	0.019%	
26	0.048%	0.015%	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
3
4
5
6
0
7
8
9
10
11
11
12
13
14
15
16
17
10
IŎ
19
20
21
22
23
23
24
25
26
27
28
29
20
20
31
32
33
34
35
36
20
3/
38
39
40
41
42
43
11
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
57
ЪΩ

27	0.036%	0.014%
28	0.049%	0.018%
29	0.055%	0.018%
30	0.046%	0.028%
31	0.054%	0.022%
32	0.048%	0.022%
33	0.052%	0.025%
34	0.062%	0.031%
35	0.062%	0.034%
36	0.066%	0.033%
37	0.065%	0.036%
38	0.071%	0.042%
39	0.082%	0.044%
40	0.091%	0.052%
41	0.098%	0.059%
42	0.107%	0.059%
43	0.123%	0.073%
44	0.120%	0.069%
45	0.143%	0.087%
46	0.169%	0.095%
47	0.191%	0.112%
48	0.228%	0.110%
49	0.244%	0.143%
50	0.289%	0.149%
51	0.325%	0.162%
52	0.349%	0.173%
53	0.388%	0.211%
54	0.473%	0.220%
55	0.517%	0.233%
56	0.557%	0.259%
57	0.601%	0.286%
58	0.675%	0.312%
59	0.720%	0.339%
60	0.803%	0.357%
61	0.805%	0.384%
62	0.077%	0.384%
62	1.0550	0.420%
03	1.055%	0.451%
64	1.116%	0.496%
65	1.219%	0.504%
66	1.318%	0.574%
67	1.436%	0.616%
68	1.514%	0.620%

For peer review	only - http://	bmjopen.bmj.com	/site/about/guidelines.xhtml	

69	1.700%	0.720%
70	1.911%	0.787%
71	1.990%	0.849%
72	2.215%	0.937%
73	2.370%	1.051%
74	2.627%	1.233%
75	2.872%	1.403%
76	3.074%	1.570%
77	3.492%	1.763%
78	4.139%	2.142%
79	4.500%	2.474%
80	5.153%	2.928%
81	5.708%	3.368%
82	6.436%	3.838%
83	7.209%	4.440%
84	8.410%	5.257%
85	9.184%	6.197%
86	10.539%	7.184%
87	11.846%	8.422%
88	13.304%	9.728%
89	15.057%	11.340%
90	16.914%	13.272%
91	19.683%	14.947%
92	20.636%	16.507%
93	23.300%	18.967%
94	25.526%	21.541%
95	27.536%	23.666%
96	29.487%	26.675%
97	31.265%	28.241%
98	32.711%	29.794%
99	26.429%	30.496%
100	48.238%	46.382%

 Table A3. Recurrent Stroke Rates [3]

Year	Recurrent Stroke Rate
Year 1	4.91%
Year 2 onwards	2.01%

-

3
4
5
6
7
8
q
10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
20
27
20
29
30
31
32
33
34
35
36
50
57
38
39
40
41
42
43
44
45
45
40
47
48
49
50
51
52
53
54
55
55
56
57
58
59

1 2

Table A4. Health States Utilities [4]

mRS	Utility
mRS 0	0.936
mRS 1	0.817
mRS 2	0.681
mRS 3	0.558
mRS 4	0.265
mRS 5	-0.054
mRS 6	0

Table A5. Unit costs, consumption and total management costs for each group of patients [5] [6]

Item	Unit cost (€)	Units	Total cost (€)
Neurologist	36.19	1.0	36.19
Neuroradiologist	36.19	0.5	18.09
Resident Doctor	12.56	1.0	12.56
Nurse 1	22.01	0.5	11.01
Nurse 2	22.01	0.5	11.01
Technician	17.54	0.5	8.77
Cranial CT scan	84.83	1.0	84.83
Blood test	46.10	1.0	46.10
Electrocardiogram	40.26	1.0	40.26
Chest Radiograph	26.58	0.5	13.29
Computerized tomography angiography	279.25	1.0	279.25
Perfusion computerized tomography	252.17	0.5	126.08
Nursing Assistant 1	13.07	0.5	4.71
Orderly	13.07	0.5	6.53
Alteplase (0,9 mg/kg; average patient weight 75	9.85	67.5	199.67
kg), (30% of the patients)			
MRI (0.5% of the patients)	204.48	0.05	3.07
Costs group "FIRST PASS"			
Stent retriever	3.388	1.0	3.388
Intracranial catheter	2.178	1.0	2.178
Ballon guide catheter/ Long Sheath	786.5	1.0	786,5
Guide/Microguide (0.35/0.12/0.14)	484	1.0	484
Microcatheter	605	1.0	605
Introducer	15.73	1.0	15.73
Procedure pack + gloves	32.05	1.0	32.05
Vascular closure device	187.67	1.0	187.67
Diagnosis catheter + contrast	50.05	1.0	50.05

2				
3	PTA balloon catheter	250.23	0.3	75.07
4	Carotid stent	1,376.25	0.15	206.44
6	Anesthetist	36.19	3.0	108.56
7	Neurologist	36.19	0.2	7.24
8	Neuroradiologist	36.19	3.0	108.56
9 10	Orderly	13.07	0.5	6.53
10	Nurse	22.01	6.0	132.07
12	Cranial computerized tomography scan	84.83	1.0	84.83
13	Costs group "Non-FIRST PASS"			
14 15	Stent retriever	3,388	1.20	4,065.60
16	Intracranial catheter	2,178	1.20	2,613.60
17	Balloon guide catheter/ Long Sheath	786.5	1.00	786.50
18 10	Guide/Microguide (0.35/0.12/0.14)	484	1.20	580.80
20	Microcatheter	605	1.10	665.50
21	Introducer	15.73	1.00	15.73
22	Procedure pack + gloves	32.05	1.00	32.05
23 24	Vascular closure device	187.67	1.00	187.67
25	Diagnosis catheter + contrast	50.05	1.00	48,40
26	PTA balloon catheter	250.23	0.30	75.07
27	Carotid stent	1,376.25	0.15	206.44
28 29	Anesthetist	36.19	4.00	144.75
30	Neurologist	36.19	0.20	7.24
31	Neuroradiologist	36.19	4.00	144.75
32 33	Orderly	13.07	0.5	6.53
34	Nurse	22.01	8.00	176.09
35	Cranial computerized tomography scan	84.83	1.00	84.83
36			1	1

04.83

Characteristic	FPE (N=304)	Non FPE (N=350)	P value (FPE vs. non FPE)
Age (years)	69.9±14.93(304) 72.0(61-80)	66.7±14.70(350) 68.0(58-79)	0.7771
Sex (Male)	162/304(53.3%)	189/350(54.0%)	0.8558
Pre-stroke mRS			0.0152
0	220/304(72.4%)	280/350(80.0%)	
1	72/304(23.7%)	63/350(18.0%)	
2*	12/304(3.9%)	7/350(2.0%)	
Initial Qualifying NIHSS Score (Baseline NIHSS)	17.0±5.41(304) 17.0(13-21)	17.3±5.54(350) 18.0(12-21)	0.6769
Fotal ASPECTS Score	8.3±1.53(266) 9.0(8-9)	8.1±1.59(303) 8.0(8-9)	0.4737
IV tPA administered	181/304(59.5%)	237/350(67.7%)	0.0299
IA-tPA used	29/303(9.6%)	63/348(18.1%)	0.0018
General Anesthesia Used (Site-Reported)	78/303(25.7%)	109/348(31.3%)	0.1166
Stroke onset to puncture (min)	226.6±99.90(301) 215.0(150-295)	217.4±99.33(349) 194.0(143-278)	0.9172

Table A6 – Subject Demographics and Baseline Characteristics (Base-case Population) [7]

Summary statistics: Mean±SD(n), Median (IQR) for continuous and n/N (%) for categorical variables.

*Patients with Pre-mRS of 2 are enrolled under Rev B protocol.

Each P-value was based on T test (2-sided) for the mean difference and Z test (2-sided) for the proportion difference between FPE and non FPE;mRS scores between FPE and Non-FPE are compared using using Mantel-Haenszel Chi-square test.

Characteristic	FPE (N=317)	Non FPE (N=431)	P value (FPE vs. non FPE)
Age (years)	69.7±14.85(317) 72.0(61-80)	67.1±14.61(431) 68.0(58-79)	0.7459
Sex (Male)	170/317(53.6%)	225/431(52.2%)	0.6999
Pre-stroke mRS			0.0380
0	230/317(72.6%)	340/431(78.9%)	
1	75/317(23.7%)	81/431(18.8%)	
2*	12/317(3.8%)	10/431(2.3%)	
Initial Qualifying NIHSS Score (Baseline NIHSS)	17.1±5.41(317) 17.0(13-21)	17.3±5.54(431) 18.0(12-21)	0.6550
Total ASPECTS Score	8.3±1.51(275) 9.0(8-9)	8.1±1.65(378) 8.0(7-9)	0.1184
IV tPA administered	193/317(60.9%)	285/431(66.1%)	0.1402
IA-tPA used	31/316(9.8%)	79/428(18.5%)	0.0010
General Anesthesia Used (Site-Reported)	80/316(25.3%)	138/428(32.2%)	0.0402
Stroke onset to puncture (min)	227.2±100.86(314) 213.5(150-295)	222.9±101.11(428) 199.5(146-290)	0.9660

Table A7 – Subject Demographics and Baseline Characteristics (Alternative scenarioPopulation) [7]

Summary statistics: Mean±SD(n), Median (IQR) for continuous and n/N (%) for categorical variables.

*Patients with Pre-mRS of 2 are enrolled under Rev B protocol.

Each P-value was based on T test (2-sided) for the mean difference and Z test (2-sided) for the proportion difference between FPE and non FPE;mRS scores between FPE and Non-FPE are compared using using Mantel-Haenszel Chi-square test.

	FPE (N=304)	Non FPE (N=350)	P value (FPE vs. non FPE)
Atrial flutter/Atrial fibrillation	128/304(42.1%)	120/350(34.3%)	0.0398
Systemic Hypertension	217/304(71.4%)	262/350(74.9%)	0.3166
Diabetes mellitus	91/304(29.9%)	93/350(26.6%)	0.3401
Myocardial disease/Coronary artery disease	95/304(31.3%)	85/350(24.3%)	0.0467
Hyperlipidemia	129/304(42.4%)	155/350(44.3%)	0.6337
Peripheral artery disease	13/304(4.3%)	13/350(3.7%)	0.7137
Carotid artery disease	33/304(10.9%)	17/350(4.9%)	0.0040
Current or former tobacco use	137/304(45.1%)	162/350(46.3%)	0.7548
Neurological history			
Previous ischemic stroke	43/304(14.1%)	34/350(9.7%)	0.0795
Previous hemorrhagic stroke	3/304(1.0%)	3/350(0.9%)	0.8622
Previous TIA	20/304(6.6%)	17/350(4.9%)	0.3418
Brain aneurysm	3/304(1.0%)	1/350(0.3%)	0.2514

Table A8 – Medical and Neurological History (Base-case Population) [7]

Summary Statistics for categorical: n/N (%)

Each P-value was based on Z test (2-sided) for the proportion difference between FPE and non-FPE

	FPE (N=317)	Non FPE (N=431)	P value (FPE vs. non FPE)
Atrial flutter/Atrial fibrillation	134/317(42.3%)	152/431(35.3%)	0.0514
Systemic Hypertension	223/317(70.3%)	327/431(75.9%)	0.0907
Diabetes mellitus	91/317(28.7%)	111/431(25.8%)	0.3688
Myocardial disease/Coronary artery disease	96/317(30.3%)	112/431(26.0%)	0.1948
Hyperlipidemia	132/317(41.6%)	192/431(44.5%)	0.4278
Peripheral artery disease	13/317(4.1%)	16/431(3.7%)	0.7856
Carotid artery disease	35/317(11.0%)	27/431(6.3%)	0.0192
Current or former tobacco use	143/317(45.1%)	202/431(46.9%)	0.6338
Neurological history			
Previous ischemic stroke	46/317(14.5%)	43/431(10.0%)	0.0584
Previous hemorrhagic stroke	3/317(0.9%)	4/431(0.9%)	0.9795
Previous TIA	20/317(6.3%)	22/431(5.1%)	0.4794
Brain aneurysm	4/317(1.3%)	3/431(0.7%)	0.4271

Tahle A9_	Medical	and Neurol	ooical Hist	orv (Altorna	tive scenario	Population	171
1 uvie A9 –	meaicai	ana meuroi	ogicai misic	лу (Анегни	uive scenario		11

Summary Statistics for categorical: n/N (%)

Each P-value was based on Z test (2-sided) for the proportion difference between FPE and non-FPE

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1 2

Table A10. Adverse events Base-Case and alternative scenario

Patient group	symptomatic intracranial	malignant cerebral edema		
Base case	hemorrhage*	0		
FPE	0.7%	1%		
Non-FPE	2.3%	1.4%		
P-values are obtained from	0.1154	0.7303		
Fisher's exact test				
Patient group	symptomatic intracranial	malignant cerebral edema		
Alternative Scenario	hemorrhage			
FPE	0.6%	0.9%		
Non-FPE	2.1%	1.4%		
P-values are obtained from	0.1297	0.7403		
Fisher's exact test.				
*sICH is defined as any PH1, PH2, RIH, IVH or SAH per imaging core lab and associated with \geq				
4 points worsening on the NIHSS scale within 24 hours.				

 I or SAH per imag.

 in 24 hours.
References:

- 1. Slot KB, Berge E, Sandercock P, et al. Causes of death by level of dependency at 6 months after ischaemic stroke in 3 large cohorts. Stroke 2009; 40: 1585–1589.
- 2. Instituto Nacional de Estadística. 2018 Mortality tables of Spanish population. National results. In: INEbase. [Internet]. 2018 [cited 2020 Oct 10]. Available from: www.ine.es
- Mohan KM, Wolfe CDA, Rudd AG, Heuschmann PU, Kolominsky-Rabas PL, Grieve AP. Risk and cumulative risk of stroke recurrence: A systematic review and meta-analysis. Stroke. 2011;42(5):1489–94. E
- 4. Rivero-Arias O, Ouellet M, Gray A, Wolstenholme J, Rothwell PM, Luengo-Fernandez R. Mapping the modified rankin scale (mRS) measurement into the generic EuroQol (EQ-5D) health outcome. Med Decis Mak. 2010;30(3):341–54.
- 5. de Andrés-Nogales F, Álvarez M, de Miquel MÁ, Segura T, Gil A, Cardona P, et al. Costeffectiveness of mechanical thrombectomy using stent retriever after intravenous tissue plasminogen activator compared with intravenous tissue plasminogen activator alone in the treatment of acute ischaemic stroke due to large vessel occlusion in Spa. Eur Stroke J. 2017;2(3):272–84.
- 6. Expert opinion
- Mueller-Kronast NH, Zaidat OO, Froehler MT, Jahan R, et al. Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke: Primary Results of the STRATIS Registry. Stroke. 2017;48(10):2760–8.

CHEERS Checklist Items to include when reporting economic evaluations of health interventions

The **ISPOR CHEERS Task Force Report**, *Consolidated Health Economic Evaluation Reporting Standards (CHEERS)—Explanation and Elaboration: A Report of the ISPOR Health Economic Evaluations Publication Guidelines Good Reporting Practices Task Force*, provides examples and further discussion of the 24-item CHEERS Checklist and the CHEERS Statement. It may be accessed via the *Value in Health* or via the ISPOR Health Economic Evaluation Publication Guidelines – CHEERS: Good Reporting Practices webpage: http://www.ispor.org/TaskForces/EconomicPubGuidelines.asp

Section/item	Item No	Recommendation	Reported on page No/ line No
Title and abstract			
Title	1	Identify the study as an economic evaluation or use more specific terms such as "cost-effectiveness analysis", and describe the interventions compared.	Lines 1-2
Abstract	2	Provide a structured summary of objectives, perspective, setting, methods (including study design and inputs), results (including base case and uncertainty analyses), and conclusions.	Lines 44-71
Introduction			
Background and objectives	3	Provide an explicit statement of the broader context for the study. Present the study question and its relevance for health policy or	Lines 95-115
		practice decisions.	Lines 117-119
Methods			
Target population and subgroups	4	Describe characteristics of the base case population and subgroups analysed, including why they were chosen.	Lines 147-152
Setting and location	5	State relevant aspects of the system(s) in which the decision(s) need(s) to be made.	Line 127
Study perspective	6	Describe the perspective of the study and relate this to the costs being evaluated.	Line 127 Lines 180-182
Comparators	7	Describe the interventions or strategies being compared and state why they were chosen.	Lines 126-129
Time horizon	8	State the time horizon(s) over which costs and consequences are being evaluated and say why appropriate.	Line 129
Discount rate	9	Report the choice of discount rate(s) used for costs and outcomes and say why appropriate.	Lines 191-192
Choice of health outcomes	10	Describe what outcomes were used as the measure(s) of benefit in the evaluation and their relevance for the type of analysis performed.	Lines 199-202
Measurement of effectiveness	11a	<i>Single study-based estimates:</i> Describe fully the design features of the single effectiveness study and why the single study was a sufficient source of clinical effectiveness data.	NA

		11b	<i>Synthesis-based estimates:</i> Describe fully the methods used for identification of included studies and synthesis of clinical effectiveness data	NA
Magguramant	tand	12	If applicable, describe the population and methods used to	
websetion of r		12	aligit proferences for outcomes	
based outcom			enert preferences for outcomes.	NA
Estimating re	sources	132	Single study based economic evaluation: Describe approaches	
and costs	sources	1 <i>J</i> a	used to estimate resource use associated with the alternative	
and costs			interventions. Describe primary or secondary research methods	
			for valuing each resource item in terms of its unit cost	
			Describe any adjustments made to approximate to opportunity	
			costs	NA
		13h	Model based economic evaluation: Describe approaches and	
		150	data sources used to estimate resource use associated with	
			model health states. Describe primary or secondary research	
			methods for valuing each resource item in terms of its unit	
			cost. Describe any adjustments made to approximate to	
			opportunity costs	Lines 182-190
Currency pri	ce date	14	Report the dates of the estimated resource quantities and unit	
and conversion	on	17	costs. Describe methods for adjusting estimated unit costs to	
and conversio	511		the year of reported costs if necessary. Describe methods for	
			converting costs into a common currency base and the	
			exchange rate	Lines 190-191
Choice of mo	dal	15	Describe and give reasons for the specific type of decision	Lines 130-131
		15	analytical model used Providing a figure to show model	
			structure is strongly recommended	Linos 134 144
Assumptions		16	Describe all structural or other assumptions underpinning the	Lines 154-144
Assumptions		10	decision analytical model	Linos 124 144
Applytical	athoda	17	Describe all analytical methods supporting the evaluation. This	Lilles 134-144
Anarytical In	emous	17	could include methods for dealing with skewed missing or	
			censored data: extrapolation methods: methods for pooling	
			data: approaches to validate or make adjustments (such as half	
			cycle corrections) to a model: and methods for handling	Lines 143-144
			population beterogeneity and uncertainty	Lines 161-164
D			population heterogeneity and aneoraanty.	
Results		10		
Study parame	eters	18	Report the values, ranges, references, and, if used, probability	
			distributions for all parameters. Report reasons or sources for	
			distributions used to represent uncertainty where appropriate.	
			Providing a table to snow the input values is strongly	Table 1
т (1	4 1	10	recommended.	Tables AT - A9
Incremental c	costs and	19	For each intervention, report mean values for the main	
outcomes			categories of estimated costs and outcomes of interest, as well	
			as mean differences between the comparator groups. If	
		20	applicable, report incremental cost-effectiveness ratios.	Table 2
Characterisin	g	20a	Single study-based economic evaluation: Describe the effects	
uncertainty			or sampling uncertainty for the estimated incremental cost and	
			incremental effectiveness parameters, together with the impact	NA
			a block i b	

		of methodological assumptions (such as discount rate, study perspective).	NA
	20b	<i>Model-based economic evaluation:</i> Describe the effects on the results of uncertainty for all input parameters, and uncertainty related to the structure of the model and assumptions.	Lines 259-26
Characterising heterogeneity	21	If applicable, report differences in costs, outcomes, or cost- effectiveness that can be explained by variations between subgroups of patients with different baseline characteristics or other observed variability in effects that are not reducible by more information.	Table 2
Discussion			
Study findings, limitations, generalisability, and current knowledge	22	Summarise key study findings and describe how they support the conclusions reached. Discuss limitations and the generalisability of the findings and how the findings fit with current knowledge.	Lines 287-29 Lines 322-33
Other			
Source of funding	23	Describe how the study was funded and the role of the funder in the identification, design, conduct, and reporting of the analysis. Describe other non-monetary sources of support.	Lines 351-3
Conflicts of interest	24	Describe any potential for conflict of interest of study contributors in accordance with journal policy. In the absence of a journal policy, we recommend authors comply with International Committee of Medical Journal Editors	
		recommendations.	Lines 355-3

For consistency, the CHEERS Statement checklist format is based on the format of the CONSORT statement checklist

The **ISPOR CHEERS Task Force Report** provides examples and further discussion of the 24-item CHEERS Checklist and the CHEERS Statement. It may be accessed via the *Value in Health* link or via the ISPOR Health Economic Evaluation Publication Guidelines – CHEERS: Good Reporting Practices webpage: <u>http://www.ispor.org/TaskForces/EconomicPubGuidelines.asp</u>

The citation for the CHEERS Task Force Report is:

Husereau D, Drummond M, Petrou S, et al. Consolidated health economic evaluation reporting standards (CHEERS)—Explanation and elaboration: A report of the ISPOR health economic evaluations publication guidelines good reporting practices task force. Value Health 2013;16:231-50.

BMJ Open

BMJ Open

Economic impact of the first pass effect in mechanical thrombectomy for acute ischemic stroke treatment in Spain: a cost-effectiveness analysis from the national health system perspective.

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054816.R1
Article Type:	Original research
Date Submitted by the Author:	17-Dec-2021
Complete List of Authors:	González Diaz, Eva; Cruces University Hospital, Neurointerventional radiology, Radiology department Rodríguez-Paz, Carlos; Hospital Álvaro Cunqueiro, Neuroradiology Unit, Department of Radiology Fernandez-Prieto, Andres; Hospital Universitario La Paz, Neurointerventional radiology, Radiology department Martínez-Galdámez, Mario; University Clinical Hospital of Valladolid, Neuroradiology Unit Martínez-Moreno, Rosa; Hospital Universitario Virgen de las Nieves Ortega Quintanilla, Joaquín; Hospital Universitario Virgen del Rocío Tomasello, Alejandro; Vall d'Hebron University Hospital, Interventional Neuroradiology Section, Department of Radiology; Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR) Zamarro, Joaquín; Hospital Clinico Universitario Virgen de la Arrixaca, Interventional Neuroradiology Liebeskind, David; University of California Los Angeles, Neurovascular Imaging Core and UCLA Stroke Center, Department of Neurology Zaidat, Osama; St Vincent Mercy Hospital Mueller-Kronast, nils; Advanced Neuroscience Network/Tenet South Florida
Primary Subject Heading :	Health economics
Secondary Subject Heading:	Neurology, Radiology and imaging
Keywords:	HEALTH ECONOMICS, Stroke < NEUROLOGY, Interventional radiology < RADIOLOGY & IMAGING, Neuroradiology < NEUROLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

Economic impact of the first pass effect in mechanical thrombectomy for acute ischemic

stroke treatment in Spain: a cost-effectiveness analysis from the national health system

perspective. Eva González-Diaz¹, MD; Carlos Rodríguez-Paz², MD; Andres Fernandez-Prieto³, MD; Mario Martínez-Galdámez⁴, MD; Rosa Martínez-Moreno⁵, MD; Joaquín Ortega Quintanilla⁶, MD; Alejandro Tomasello^{7,8}, MD; Joaquín Zamarro⁹; MD; David S. Liebeskind, MD¹⁰; Osama O. Zaidat¹¹, MD, MS; Nils H. Mueller-Kronast, MD¹². ¹Neurointerventional radiology, Radiology department, Cruces University Hospital, Barakaldo, Basque Country, Spain. ² Neuroradiology Unit, Department of Radiology, Hospital Álvaro Cunqueiro, Vigo, Spain ³ Neurointerventional radiology, Radiology department, Hospital Universitario La Paz, Madrid, Spain. ⁴ Neuroradiology Unit, University Clinical Hospital of Valladolid, Valladolid, Spain ⁵ Hospital Universitario Virgen de las Nieves, Granada, Spain. ⁶ Interventional Neuroradiology, Hospital Universitario Virgen del Rocío, Sevilla, Andalucía, Spain ⁷ Interventional Neuroradiology Section, Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain. ⁸Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain

Page 3 of 39

1 2 BMJ Open

3 4	2
5 6	2
7 8	2
9 10	2
11 12	~
13 14	2
15 16	3
17 18	3
19 20	3
21 22	3
23 24	3
25 26	3
27 28	2
29 30 21	2
31 32	2
33 34 25	3
35 36	3
37 38 30	4
39 40 41	4
41 42 43	4
44 45	4
46 47	
48 49	
50 51	
52 53	
54 55	
56	
57 58	
59 60	

25	⁹ Interventional Neuroradiology, Hospital Clinico Universitario Virgen de la Arrixaca, Murcia,
26	Spain
27	¹⁰ Neurovascular Imaging Core and UCLA Stroke Center, Department of Neurology,
28	University of California Los Angeles, Los Angeles, California, USA
29	¹¹ St Vincent Mercy Hospital, Toledo, Ohio, USA
30	¹² Advanced Neuroscience Network/Tenet South Florida, Delray Beach, Florida, USA
31	
32	
33	
34	Corresponding author : Eva González-Diaz, <u>evagonzalezdiaz@yahoo.com</u> ,
35	Neurointerventional Radiology, Radiology department, Cruces University Hospital, Plaza
36	Cruces S/N 48903, Barakaldo, Basque Country, Spain, +34669309168
37	
38	
39	
40	Keywords: First-pass effect, health economics, ischaemic stroke, mechanical thrombectomy,
41	net monetary benefit, reperfusion, Spain
42	Word count: 2,773
43	Total number of tables and figures: 2 Tables, 3 Figures
44	

45 Abstract

Objective: The mechanical thrombectomy (MT) benefit is related to the degree of reperfusion achieved. First Pass Effect (FPE) is defined as complete/near revascularization of the large vessel occlusion (modified Thrombolysis in Cerebral Infarction (mTICI) 2c-3) after a single device pass. This study assessed the health benefit and economic impact of achieving FPE for acute ischemic stroke (AIS) patients from the Spanish National Health System (NHS) perspective.

Design: A lifetime Markov model was used to estimate incremental costs and health outcomes (measured in quality-adjusted life-years [QALY]) of patients that achieve FPE. A sub-analysis of the STRATIS registry was performed to obtain clinical outcomes. The base-case included all patients that achieved at least a final mTICI ≥2b, while the alternative scenario included all patients regardless of their final mTICI (0-3). Treatment costs were updated to reflect current practice based on expert panel consensus, while other acute and long-term costs were obtained from a previous cost-effectiveness analysis of MT performed in Spain. Sensitivity analyses were performed to assess the model's robustness.

Setting: Spanish healthcare perspective.

Participants: AIS patients in Spain.

Interventions: FPE following MT.

63 Outcome measures: The model estimated QALYs, lifetime costs and net monetary benefit
64 (NMB) for the FPE and non-FPE group, depending on the inclusion of reperfusion groups and
65 formal care costs.

Results: STRATIS sub-analysis estimated significantly better clinical outcomes at 90-days for
the FPE group in all scenarios. In the base-case, the model estimated lifetime cost-saving per
patient of €16,583 and an incremental QALY gain of 1.2 years of perfect health for the FPE

Page 5 of 39

1 2 BMJ Open

3 4	69	group. Cost-savings and QALY gains were greater in the alternative scenario (-€44,289; 1.75).
5 6 7	70	In all scenarios, cost-savings were driven by the long-term cost reduction.
7 8 9	71	Conclusion: Achieving FPE after MT can lead to better health outcomes per AIS patient. and
10 11	72	important cost-savings for the Spanish NHS.
12 13	73	
14 15 16	74	
17 18	75	Article Summary
19 20	76	Strengths and limitations of this study
21 22 23	77	• A Markov model estimated the lifetime health and cost implications of achieving FPE
24 25	78	in AIS patients treated with Mechanical Thrombectomy in Spain from the NHS
26 27 28	79	perspective.
28 29 30	80	• The model allows to quantify the benefits of aiming mechanical thrombectomy
31 32	81	techniques that may increase the first pass effect success rates.
33 34 25	82	• A limitation of this study is that clinical efficacy and patient characteristics were based
36 37	83	on the STRATIS registry, which included centers outside Spain.
38 39	84	• Another limitation is that some model parameters, such as acute and long-term costs
40 41 42	85	have been derived from literature, which have been validated by clinical experts.
42 43 44	86	
45 46	87	
47 48 40	88	
49 50 51	89	
52 53	90	
54 55	91	
50 57 58	92	
59 60	93	
		4

94 INTRODUCTION

The annual number of strokes in the European Union is forecasted to increase by 34% in 2035, mainly due to its aging population. With improving survival rates after stroke, almost 1 million more people will be living with a stroke as a chronic condition, rising from 3.7 million in 2015 to 4.6 million in 2035 (1). It is estimated that the incidence and prevalence of strokes will increase by 35% and 31% respectively in Spain by 2035 (2), which will inevitably raise the associated economic burden.

Mechanical thrombectomy (MT) is the most effective reperfusion treatment used in acute
ischemic stroke (AIS) management in patients with large vessel occlusion (LVO) (3,4). Its
cost-effectiveness has already been demonstrated in Spain; improving functional outcomes is
associated with a higher quality of life and reduced health costs, leading to €44,378 in savings
per patient compared to thrombolysis with intravenous tissue-type plasminogen activator (IVtPA) alone (5).

Clinical evidence suggests that the number of passes during a MT inversely correlates with the functional outcome of the procedure (6,7). Achieving complete/near revascularization of the LVO (modified Thrombolysis in Cerebral Infarction [mTICI] 2c-3) after a single pass with MT, known as first pass effect (FPE), is associated with significant improvements in clinical outcomes and can be considered an independent predictor of good functional outcomes (8). Recent studies have begun to try to identify factors or predictors of first pass effect which may impact the choice of thrombectomy device and technique in the future (8–11).

Page 7 of 39

BMJ Open

The objective of this study is to assess the health outcome benefits and economic impact of achieving FPE for the AIS patients from the National Health System (NHS) perspective in Spain.

126 Model structure

METHODS

A previously published cost-effectiveness model comparing MT + IV-tPA with IV-tPA alone in a Spanish NHS setting was modified to reflect only patients that received MT treatment which afterwards were stratified to reflect those who achieved FPE and those who didn't (Non-FPE) (5), and allowed to estimate lifetime health and costs outcomes of the two patient groups. As in the previous modelling, this analysis is also over the patient's lifetime and from the Spanish NHS perspective. The model was developed using Microsoft Excel (Microsoft Corporation, Redmond, WA, USA).

0 134

The model had a two-phase structure, consisting of an acute-subacute phase from stroke onset to 90 days, and a rest-of-life phase 91 days after stroke to the end of patient's life. In the acute-subacute phase, patients enter the model once reperfusion status (FPE vs Non-FPE) has been determined, and then are assigned to one of the seven mutually exclusive health states based on Modified Ranking Scale (mRS; 0-no symptoms, 6-death) to reflect several degrees of disability at 90 days. Afterwards, patients enter a Markov structure, from 91 days after the stroke to the end of the patients' life. In this phase, patients could remain in the same health state or transition to different states during each annual cycle until the end of life, depending on the occurrence of a recurrent stroke or death from other causes (age-gender specific
mortality). A half-cycle correction was used to account for transitions occurring in the middle
of a cycle.

Patient population

The model simulates a hypothetical cohort of 1,000 patients with clinic-demographic characteristics based on the STRATIS registry (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke) (12). STRATIS registry patients were classified into 2 groups: patients with a final mTICI \geq 2b (used for the base case analysis), and patients with final mTICI (0-3) (used for the alternative scenario). Afterwards, patients in both groups were stratified into FPE and non-FPE groups.

155 Clinical data

156 Clinical data was obtained from a sub-analysis of the STRATIS registry (12) in which FPE and 157 Non-FPE groups were compared. Moreover, it was considered that patients were at risk of 158 experiencing adverse events (symptomatic intracranial hemorrhage and malignant cerebral 159 edema) during the acute-subacute phase, therefore adverse events data was also obtained from 160 STRATIS registry sub-analysis.

162 Categorical variables were compared using χ^2 (Chi-square) test and Mantel-Haenszel Chi-163 square test when appropriate. Proportion differences were compared by z-test both one-sided 164 and two-sided tests are performed (considering 5% and 2.5% significance level respectively). 165 All statistical analyses were performed using SAS version 9.4.

Page 9 of 39

BMJ Open

Background age-gender related mortality was obtained from the latest available Life Table in Spain (data from 2018) (13) and relative risks of death by mRS score were used to adjust agegender-related mortality (14) to account for the increased risks observed among stroke survivors (Supplementary Material Table A1 & A2). Recurrence stroke rates were obtained from Mohan et al. (15) (Supplementary Material (Table A3).

Quality of life

Health outcomes were measured using quality-adjusted life years (QALY), a measure that weights life-years gained with an intervention by its utility value. Utilities assigned to health states can take values from 0 (death) to 1 (optimal health) and negative values (state worse than death). Utilities by mRS score were obtained from Rivero-Arias et al. 2010 (16), with values ranging from 0.93 (mRS 0) to -0.54 (mRS 5) (Supplementary Material (Table A4).

Costs

The study considered the Spanish NHS perspective, consequently, only direct medical costs were considered, including treatment and adverse events management costs, acute and longterm care costs. Treatment costs were updated to reflect the costs for each patient group (FPE vs Non-FPE) and were kept in line with the new treatment approaches according to local practice based on a panel of experts' consensus. Treatment costs in both groups FPE and Non-FPE included the costs of AIS diagnosis, and adjunctive IV-tPA in 30% of the cases according to local practice (Table A5, Supplementary Material).

Adverse events, acute and long-term costs by mRS score were kept consistent with the previous
model (5). For each scenario, a second analysis was performed to include formal care costs
such as nursing/residential costs. All costs are presented in Euros and were inflated to reflect

192 Euros in 2020 (Table 1). Costs and health outcomes were discounted at an annual discount rate

193 of 3% consistent with the relevant health technology assessment guidelines for Spain (17).

195 Table 1. Adjusted Acute and long-term costs (Euros 2020)

	Acute costs	Annual long-term cost			
mRS	Total Acute care cost (€)	Total Long-term healthcare cost (without nursing and residential care cost) (€)	Total including nursing and residential care cost (€)		
mRS 0	4,718	1,340	2,767		
mRS 1	5,242	1,489	3,074		
mRS 2	5,766	1,638	3,382		
mRS 3	6,468	23,250	33,061		
mRS 4	7,187	25,833	53,339		
mRS 5	7,906	28,417	67,400		
mRS 6	4,046	4			

 Note: Table adapted from De Andrés-Nogales et al., 2017 (6)

199 Economic model outcomes and sensitivity analysis

The model estimates the lifetime total costs and QALYs for each patient group. To quantify
the net economic value of FPE, the net monetary benefit (NMB) was calculated, considering a
willingness-to-pay (WTP) threshold of €30,000/QALY, (NMB=(Incremental QALYs×WTP)Incremental Costs) (18,19).

Deterministic Sensitivity Analysis (DSA) and Probabilistic Sensitivity Analysis (PSA) were conducted to evaluate results' robustness (20). DSA assigns a one-way variation to input parameters including discount rates, mRS at 90 days, age, health states utilities, recurrent stroke rates, relative risk of death, and all costs (treatment, acute and long-term costs). In PSA, 10,000 Monte Carlo simulations were run after assigning a probability distribution to all key

Page 11 of 39

1 2 **BMJ** Open

3 4	210
5	211
6	211
/ 8	212
9	_1_
10	213
11	
12 13	214
14	
15	215
16	0 1 (
17 18	216
19	217
20	217
21	218
22	210
23	219
25	-17
26	220
27 29	
20 29	221
30	
31	222
32	
33 34	223
35	224
36	224
37	225
38 39	223
40	226
41	
42 42	227
43 44	
45	228
46	
47 49	229
40 49	220
50	230
51	231
52 53	<i></i> 1
55 54	232
55	
56	233
57 59	
58 59	234

60

RESULTS

parameters simultaneously (mRS scores at 90 days (Dirichlet), mortality relative risks
(Lognormal), starting age (Normal), utilities (Beta) and costs (Gamma)), to account for the
general uncertainty around model inputs (5).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Patient and public involvement
This study was conducted without patient and public involvement. Therefore, patients were not
involved in the study design, reporting or interpretation of the findings. This study included a
post-hoc analysis of an existing study, therefore institutional review board approval was not
obtained for this analysis. Moreover, no research approval was required for model input
parameters that were obtained from literature or based on panel of experts consensus.

er revie

- Based on STRATIS sub-analysis, the mean age of stroke considered in the model was 68 years.
 Both groups have similar characteristics at baseline. Descriptive statistics on the FPE and Non FPE groups are reported in Supplementary Material, Tables A6-A7-A8-A9.
- Our results suggest that the FPE group had significantly better clinical outcomes at 90 days after stroke compared to the Non-FPE group in the base-case scenario (mRS 0-2: 66.2% vs 54.6%, p-value<0.005). Similar results in the alternative scenario were observed (mRS 0-2: 66.9% vs 50.6%, p-value<0.0001) (Figure 1). Adverse events results across scenario populations are presented in the Supplementary Material (Table A10).
 - [Insert Figure 1]

BMJ Open

In the base-case scenario, the model estimates an average lifetime cost per patient equal to $\in 97,206$ for the FPE group and $\in 113,790$ for the Non-FPE group. Of these, 83% were associated with long-term costs. Overall, the FPE group generated a cost reduction of $\in 16,583$ per patient in a lifetime horizon. Cost reductions are predicted to be greater when nursing/residential care cost are included, leading to a savings of $\in 30,072$ per patient.

In terms of health outcomes, the model estimates that achieving FPE lead to a QALY gain of 1.2 years (7.89 vs 6.69), while the number of independent people at 90 days is also projected to increase by 116 (662 vs 546) in this hypothetical cohort. However, there is an estimated increase in the total number of recurrent strokes in the FPE group due to patients living longer (283 vs 257).

The model suggests that achieving FPE lead to a NMB of €52,634 considering a WTP of €30,000/QALY gained. The NMB was expected to increase to €66,122 when nursing/residential care cost are considered. FPE provides greater net economic value demonstrating higher efficacy with lower costs from the payer perspective in a lifetime time horizon (Table 2). In the alternative scenario, similar results were observed, which may confirm the greater benefits that achieving FPE (between 32%-47% higher) may provide when all patients regardless their final mTICI are considered (QALY gain of 1.75 years and €21,910 cost reduction; when considering nursing/residential costs, a cost reduction of €44,289 and a NMB of €96,684) (Table 2).

FPE	Non-FPE	Inches			
		tal	FPE	Non-FPE	Increme tal
9,086	10,432	-1,346	9,086	10,432	-1,346
269	582	-313	238	551	-314
5,259	5,353	-94	5,250	5,387	-137
79,296	94,263	-14,968	78,039	98,469	-20,430
144,072	172,527	-28,456	141,678	184,487	-42,809
3,297	3,160	137	3,313	2,997	316
97,206	113,790	-16,583	95,925	117,836	-21,910
		52,634			74,306
161,982	192,054	-30,072	159,565	203,854	-44,289
		66,122			96,684
7.89	6.69	1.2	7.96	6.21	1.75
10.99	10.06	0.92	11.03	9.71	1.32
	269 5,259 79,296 144,072 3,297 97,206 161,982 7.89	269 582 5,259 5,353 79,296 94,263 144,072 172,527 3,297 3,160 07,206 113,790 161,982 192,054 7.89 6.69 10.99 10.06	269 582 -313 $5,259$ $5,353$ -94 $79,296$ $94,263$ $-14,968$ $144,072$ $172,527$ $-28,456$ $3,297$ $3,160$ 137 $07,206$ $113,790$ $-16,583$ $52,634$ $52,634$ $161,982$ $192,054$ $-30,072$ 7.89 6.69 1.2 10.99 10.06 0.92	269 582 -313 238 $5,259$ $5,353$ -94 $5,250$ $79,296$ $94,263$ $-14,968$ $78,039$ $144,072$ $172,527$ $-28,456$ $141,678$ $3,297$ $3,160$ 137 $3,313$ $07,206$ $113,790$ $-16,583$ $95,925$ $52,634$ $52,634$ $161,982$ $192,054$ $-30,072$ $159,565$ 7.89 6.69 1.2 7.96 10.06 0.92 11.03	269 582 -313 238 551 $5,259$ $5,353$ -94 $5,250$ $5,387$ $79,296$ $94,263$ $-14,968$ $78,039$ $98,469$ $144,072$ $172,527$ $-28,456$ $141,678$ $184,487$ $3,297$ $3,160$ 137 $3,313$ $2,997$ $07,206$ $113,790$ $-16,583$ $95,925$ $117,836$ $52,634$ $52,634$ $66,122$ $66,122$ $203,854$ 7.89 6.69 1.2 7.96 6.21 10.99 10.06 0.92 11.03 9.71

Table 2. Summary of Base-case and Alternative scenario Results

Sensitivity analysis

According to the DSA, in both scenarios (base-case and alternative), the key drivers of the analysis included long-term stroke care costs, starting age, health state utilities by mRS score, and relative risk of death. However, none of these key parameters changed the direction of the results; therefore, in all the simulations, the NMB remained positive (minimum value: €28,884; maximum value: €73,620), showing the results were robust to input parameters variations (Figure 2). In the PSA, FPE was estimated to be cost-neutral or cost-saving in 98.4% of the Monte Carlo simulations (Figure 3).

[Insert Figure 2]

1 ว		
2 3 4	272	[Insert Figure 3]
5 6	273	
7 8 9 10 11 21 3 14 15 16 7 8 9 20 21 22 32 4 25 26 27 8 9 30 31 32 33 43 5 36 37 8 9 0 41 42 34 45 46 47 8 9 50 51 52 53 45 56 7 8 9 0	274	

DISCUSSION

Clinical evidence suggests that achieving FPE after a single pass is associated with favourable
outcomes after a MT procedure (6,7). Our study estimated the health gains from achieving FPE
and examined the associated economic impact from the Spanish NHS perspective over a
lifetime horizon.

Clinical outcomes, based on a sub-analysis from the STRATIS registry, showed that achieving mTICI 2c-3 reperfusion after a single pass leads to significantly better overall mRS distribution and functional independence (mRS 0-2). The difference in the proportion in mRS 0-2 between FPE and Non-FPE groups ranged between 11.5% to 16.3% depending on the cohort of patients (Figure 1). Similar findings have been described in literature (8)(21)(22). An analysis of North American Solitaire Acute Stroke Registry conducted by Zaidat et al. suggested that if patients achieved mTICI 3, the FPE lead to better clinical outcomes compared to the rest of the cohort that did not achieve FPE (61.3% vs 35.3%, p-value:<0.0001) (8). The meta-analysis by Abbasi et al. reported on the association between FPE and clinical outcomes finding higher rates of functional independence for FPE compared to Non-FPE (56% vs 41%, p-value: <0.01) and lower mortality (17% vs 25%, p-value: <0.01) (21). Furthermore, a recent meta-analysis that conducted a per-pass analysis of recanalization and health outcomes in thrombectomy (22) suggests that the likelihood of functional independence in patients with final successful recanalization decreased after each pass. On the first pass, 55% of patients achieved mRS 0-2 (p-value: 0.033), while rates progressive declined after each subsequent pass, dropping to 26% for patients who required 5 or more passes for successful recanalization. The results of our analysis also confirm improved health outcomes from achieving FPE and are therefore coherent with existing literature.

The base-case results suggest that achieving FPE yields better health outcomes than Non-FPE group, providing an incremental QALY gain of 1.2, equivalent to 438 days in perfect health. From the cost perspective, the FPE group is associated with lower health care costs, leading to a cost-saving of €16,583 and €30,072 when considering nursing/residential healthcare costs (Table 2). QALYs and cost-savings resulted to be greater in the alternative scenario: the FPE group lead to 1.75 additional QALYs per patient (or 657 days in full health) and €21,910 in savings (€44,289 when considering nursing/residential healthcare costs). The greater results observed in the alternative scenario can be explained by a slight increase in good functional outcomes in the FPE group, accompanied by a decrease in the mRS 0-2 in the non-FPE group, which contributed to an even larger incremental difference between FPE and non-FPE outcomes in this scenario.

Cost savings in both scenarios were mainly driven by reductions in long-term costs associated with the management of functionally dependent patients. Furthermore, all results were tested by performing DSA and PSA which demonstrated that our results are robust. In both scenarios and sub-scenarios, the Non-FPE group was associated with lower health benefits and higher health care costs.

² 317

Improved health outcomes are generally associated with economic benefits. Even though there is less literature available on cost-implications from FPE, a recently published study (23) estimated the short-term cost implications of FPE in several countries, including Spain. The authors estimated the procedural/hospitalization and annual care costs differences considering a 1-year time horizon. Similar to our work, the study showed lower procedural/hospitalization and annual care costs for patients that achieved FPE vs. Non-FPE across countries considered. Furthermore, our findings are compatible with other studies undertaken in the United States

BMJ Open

that have demonstrated that achieving TICI 3 lead to healthcare and societal cost savingsrelative to achieving TICI 2b for LVO (24,25).

Overall, the results of this study showed that raising the FPE rate will not only increase the quality of life for patients, but also decrease the overall health care costs. Achieving FPE can potentially be one of the primary goals in the treatment of patients with ischemic stroke due to LVO from both a clinical and economic perspective. Because this analysis was performed from the Spanish NHS perspective, only the direct costs are considered. There could be larger savings associated with achieving FPE if indirect costs, such as informal care and productivity losses, were included.

To our knowledge, this is one of the first studies that aim to evaluate the lifetime health and cost implications of achieving FPE in AIS patients in Spain from the NHS perspective. Among the strengths of this study are the Markov structure (allows to better reflect the patient pathway in terms of lifetime costs and benefits) and the inclusion of comprehensive diagnostics and treatments costs, main adverse events management, and recurrent strokes, to account for all health outcomes and associated costs after a stroke.

This study has some limitations. First, clinical efficacy and patient characteristics were based on the STRATIS registry, which included centers outside Spain. Moreover, the study's reliance on observational data may limit the result's interpretation due to the potential effect that unmeasured confounders (e.g., quality of stroke care, procedural technique) could have on the mRS score variation between groups. Furthermore, the STRATIS registry is based on specific stent retrievers and might not be applicable to other types of devices with different safety and efficacy profile. Also, the average age for a stroke onset in Spain might be higher than our

BMJ Open

assumption for all patients (68 years), which could potentially lead to an overestimation of health outcomes. However, age was included in the DSA, varied to an upper limit of 81 years, and this did not lead to dramatic changes in the results as the NMB remained positive in all scenarios. Third, patients were assumed to remain in a given mRS score until they experienced a recurrent stroke or death. Other factors that may have an effect on mRS scores, such as comorbidities, were not included. However, this aspect could affect both patient cohorts equally considering there are no differences in the baseline characteristics, nonetheless further studies on mRS decline in the long term are encouraged. Acute and long-term costs were obtained from the original cost-effectiveness model and the same limitations for costs would apply. Finally, resource consumption was based on a panel of experts' consensus and clinical practice and subject to heterogeneity between centres. However, these assumptions were tested in the DSA and PSA and did not alter the overall results.

364 CONCLUSION

Achieving FPE after MT can lead to important health care cost-saving and better functional
clinical outcomes per patient compared to not achieving FPE. Costs saving to the Spanish NHS
ranged from -€16,583 to -€44,289 depending on the patient cohort and long-term costs.
Increasing FPE rates will lead to greater cost savings to the health care system.

ez.

- 0 370

371 Acknowledgements

The authors acknowledge Medtronic and Valeska Seguel Ravest for its support and editorial
 assistance.
 374

BMJ Open

3 4	375	Funding: This study was sponsored by Medtronic. There is no grant number available for this
5 6 7	376	study.
/ 8 9	377	
10 11	378	Competing interests: EGD, CRP, AFP, RMM, JOQ, JZ declare no conflicts of interest. MMG
12 13 14 15 16 17 18 19 20	379	is a proctor and consultant of Medtronic. AT is a consultant, proctor and advisor of Medtronic
	380	(Consultancy Anaconda, Balt, Stryker and Perflow). NHMK is a scientific consultant regarding
	381	trial design and conduct for Medtronic. OOZ is a consultant for Neuravi/Cerenovus, Stryker,
	382	Penumbra, and Medtronic. DSL is an imaging core laboratory consultant for Cerenovus,
21 22	383	Genentech, Medtronic, and Stryker.
23 24 25	384	
23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	385	Contributors: EGD, CRP, AFP, RMM, JOQ, JZ, AT and MMG: contributed to the design,
	386	data collection, analysis, interpretation and drafting, reviewing, and revising the manuscript.
	387	NHMK, OOZ and DSL: reviewing and revising the manuscript
	388	
	389	Patient consent for publication: Not required.
	390	
	391	Data Sharing Statement: All relevant model inputs used in this study are included in the
	392	article and supplement.
44 45	393	
46 47 48	394	Ethics approval: This study is a post-hoc analysis of an existing study therefore institutional
49 50	395	review board approval was not obtained for this analysis.
51 52	396	
53 54	397	
55 56 57	398	References
58 59	399	1. Stevens, Eleanor; Emmett, Eva; Wang, Yanzhong; McKevitt, Christopher; Wolfe C.
60		18

BMJ Open

Page 20 of 39

1 2 3 4	400		The burden of stroke in Europe report. Stroke Alliance Eur. 2017;131 p.
5 6	401	2.	Luengo-Fernandez R, Violato M, Candio P, Leal J. Economic burden of stroke across
7 8 9	402		Europe: A population-based cost analysis. Eur Stroke J. 2020;5(1):17–25.
10 11 12	403	3.	Turc G, Bhogal P, Fischer U, Khatri P, Lobotesis K, Mazighi M, et al. European
13 14	404		Stroke Organisation (ESO) – European Society for Minimally Invasive Neurological
15 16 17	405		Therapy (ESMINT) Guidelines on Mechanical Thrombectomy in Acute Ischaemic
18 19 20	406		StrokeEndorsed by Stroke Alliance for Europe (SAFE). Eur Stroke J. 2019;4(1):6–12.
21 22	407	4.	Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et
23 24	408		al. 2018 Guidelines for the Early Management of Patients With Acute Ischemic
25 26 27	409		Stroke: A Guideline for Healthcare Professionals From the American Heart
27 28 29	410		Association/American Stroke Association. Vol. 49, Stroke. 2018. 46–110 p.
30 31 32 33	411	5.	de Andrés-Nogales F, Álvarez M, de Miquel MÁ, Segura T, Gil A, Cardona P, et al.
33 34	412		Cost-effectiveness of mechanical thrombectomy using stent retriever after intravenous
35 36 27	413		tissue plasminogen activator compared with intravenous tissue plasminogen activator
37 38 39	414		alone in the treatment of acute ischaemic stroke due to large vessel occlusion in Spa.
40 41 42	415		Eur Stroke J. 2017;2(3):272–84.
43 44	416	6.	Bai Y, Pu J, Wang H, Yang D, Hao Y, Xu H, et al. Impact of Retriever Passes on
45 46	417		Efficacy and Safety Outcomes of Acute Ischemic Stroke Treated with Mechanical
47 48 49	418		Thrombectomy. Cardiovasc Intervent Radiol. 2018;41(12):1909–16.
50 51 52	419	7.	Bai X, Zhang X, Yang W, Zhang Y, Wang T, Xu R, et al. Influence of first-pass effect
53 54	420		on recanalization outcomes in the era of mechanical thrombectomy: a systemic review
55 56	421		and meta-analysis. Neuroradiology. 2020;(77).
57 58 59 60	422	8.	Zaidat OO, Castonguay AC, Linfante I, Gupta R, Martin CO, Holloway WE, et al.
			19

Page 21 of 39

BMJ Open

423		First pass effect: A new measure for stroke thrombectomy devices. Stroke.
424		2018;49(3):660–6.
425	9.	Zaidat OO, Haussen DC, Hassan AE, Jadhav AP, Mehta BP, Mokin M, et al. Impact of
426		Stent Retriever Size on Clinical and Angiographic Outcomes in the STRATIS Stroke
427		Thrombectomy Registry. Stroke. 2019;50(2):441–7.
428	10.	Nguyen TN, Malisch T, Castonguay AC, Gupta R, Sun CHJ, Martin CO, et al. Balloon
429		guide catheter improves revascularization and clinical outcomes with the solitaire
430		device : Analysis of the north american solitaire acute stroke registry. Stroke.
431		2014;45(1):141–5.
432	11.	Di Maria F, Kyheng M, Consoli A, Desilles JP, Gory B, Richard S, et al. Identifying
433		the predictors of first-pass effect and its influence on clinical outcome in the setting of
434		endovascular thrombectomy for acute ischemic stroke: Results from a multicentric
435		prospective registry. Int J Stroke. 2020;16(1):20–8.
436	12.	Mueller-Kronast NH, Zaidat OO, Froehler MT, Jahan R, et al. Systematic Evaluation
437		of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke:
438		Primary Results of the STRATIS Registry. Stroke. 2017;48(10):2760-8.
439	13.	Instituto Nacional de Estadistica. 2018 Mortality tables of Spanish population.
440		National results. In: INEbase. [Internet]. 2018 [cited 2020 Oct 10]. Available from:
441		www.ine.es
442	14.	Slot KB, Berge E, Sandercock P, Lewis SC, Dorman P, Dennis M. Causes of death by
443		level of dependency at 6 months after ischemic stroke in 3 large cohorts. Stroke.
444		2009;40(5):1585–9.
445	15.	Mohan KM, Wolfe CDA, Rudd AG, Heuschmann PU, Kolominsky-Rabas PL, Grieve 20
	 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 	 423 424 425 9. 426 427 428 10. 429 430 431 432 11. 432 11. 433 434 435 436 12. 437 438 439 13. 440 441 442 14. 443 444 445 15.

BMJ Open

1 2

3 4	446		AP. Risk and cumulative risk of stroke recurrence: A systematic review and meta-
5 6 7	447		analysis. Stroke. 2011;42(5):1489–94.
8 9	448	16.	Rivero-Arias O, Ouellet M, Gray A, Wolstenholme J, Rothwell PM, Luengo-
10 11 12	449		Fernandez R. Mapping the modified rankin scale (mRS) measurement into the generic
13 14	450		EuroQol (EQ-5D) health outcome. Med Decis Mak. 2010;30(3):341–54.
15 16 17	451	17.	López Bastida J, Oliva J, Antoñanzas F, García-Altés A, Gisbert R, Mar J, et al.
18 19	452		Propuesta de guía para la evaluación económica aplicada a las tecnologías sanitarias.
20 21 22	453		Gac Sanit. 2010;24(2):154–70.
23 24 25	454	18.	Sacristán JA, Oliva J, Del Llano J, Prietoa L, Pintod JL. Qué es una tecnología
25 26 27	455		sanitaria eficiente en Espaça? Gac Sanit. 2002;16(4):334-43.
28 29 30	456	19.	De Cock E, Miravitlles EM, González-Juanatey JR, Azanza-Perea JR. Valor umbral
31 32	457		del coste por año de vida ganado para recomendar la adopción de tecnologías
33 34	458		sanitarias en España: evidencias procedentes de una revisión de la literatura.
35 36 37	459		PharmacoEconomics Spanish Res Artic. 2007;4:97–107.
38 39	460	20.	Briggs AA. Decision Modelling for Health Economic Evaluation. Handbooks Heal
40 41 42	461		Econ Eval Ser. 2006;2–3.
43 44 45	462	21.	Abbasi M, Liu Y, Fitzgerald S, Mereuta OM, Larco JLA, Rizvi A, et al. Systematic
46 47	463		review and meta-analysis of current rates of the first-pass effect by thrombectomy
48 49	464		technique and associations with clinical outcomes. J Neurointervent Surg. 2021; 13:
50 51 52	465		212-216.
53 54	466	22.	Larco JA, Abbasi M, Liu Y, Madhani SI, Shahid AH, Kadirvel R, et al. Per-pass
55 56	467		analysis of recanalization and good neurological outcome in thrombectomy for stroke:
57 58 59 60	468		Systematic review and meta-analysis. Interventional Neuroradiology. 2021.
			· c

Page 23 of 39

BMJ Open

1 2						
3 4	469	23. Zaidat OO, Ribo M, Mattle HP, Saver JL, Bozorgchami H, Yoo AJ, et al. Health				
5 6 7	470	economic impact of first-pass success among patients with acute ischemic stroke				
7 8 9 10 11 12	471	treated with mechanical thrombectomy: A United States and European perspective. J				
	472	Neurointerv Surg. 2020;1–7.				
13 14	473	24. Kunz WG, Almekhlafi MA, Menon BK, Saver JL, Hunink MG, Dippel DWJ, et al.				
15 16 17 18 19	474	Public health and cost benefits of successful reperfusion after thrombectomy for				
	475	stroke. Stroke. 2020;899–907.				
20 21	476	25. Wu X, Khunte M, Gandhi D, Matouk C, Hughes DR, Sanelli P, et al. Implications of				
22 23 24	477	achieving TICI 2b vs TICI 3 reperfusion in patients with ischemic stroke: A cost-				
24 25 26 27 28 29 30 31 32 33	478	effectiveness analysis. J Neurointerv Surg. 2020;12(12):1161-5.				
	479					
	480					
33 34 35	481	Figure Legends				
 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 	482	Figure 1. mRS outcomes at 90 days Base case and Alternative Scenario.				
	483	Acronyms: FPE (First Pass Effect); mRS (modified Rankin Score);				
	484	Figure 2. Tornado diagram of deterministic sensitivity analysis				
	485	Acronyms: FPE (First Pass Effect); mRS (modified Rankin Score); RR (Relative Risk)				
	486	Jigure 3. Probabilistic sensitivity analysis				
	487	Acronyms: QALYs (Quality-Adjusted Life Years).				
50 51 52 53 54 55 56 57 58 59 60	488					
00		22				

1	
2	
3	
4	
5	
6	
7	
8	
9	2
10	
11	■Lower limit □ Upper limit
12	Starting Age (low: 55, high: 81)
13	Health state utilities (low: 0.50, high: 1.50)
14	Long-term costs (low: 0.40, high: 2.00)
15	
16	Discount rate - benenits (low, 2.00%, night, 6.00%)
17	RR of death (low: 1.00, high: 2.00)
18	FPE treatment cost (low: €7,000, high: €11,000)
19	Non-FPE treatment cost (low:€8,000, high:€12,000)
20	Discount rate - costs (low: 2.00%, high: 6.00%)
21	Recurrent stroke at 1 year (low: 0.50%, high: 3.50%)
22	Recurrent stroke at 90 days (low: 0.00%, high: 10.00%)
23	€ 0 € 20.000 € 40.000 € 60.000 € 80.000
24	Net monetary benefit
25	
26	
27	
28	
29	
30	
31	

Figure 2 - Tornado diagram of deterministic sensitivity analysis. Acronyms: FPE (First Pass Effect); mRS (modified Rankin Score); RR (Relative Risk)

190x275mm (96 x 96 DPI)

Table A1. Relative risk of death by mRS [1]

mRS score	RR
mRS 0	1.00
mRS 1	1.00
mRS 2	1.12
mRS 3	1.66
mRS 4	1.92
mRS 5	2.57

Table A2. Lifetable Spain by age and gender [2]

	Other-cause m	ortality
Age	Male	Female
0	0.276%	0.245%
1	0.023%	0.018%
2	0.013%	0.008%
3	0.012%	0.009%
4	0.014%	0.007%
5	0.010%	0.009%
6	0.007%	0.006%
7	0.007%	0.005%
8	0.009%	0.007%
9	0.007%	0.004%
10	0.007%	0.006%
11	0.008%	0.007%
12	0.007%	0.007%
13	0.010%	0.005%
14	0.008%	0.013%
15	0.013%	0.011%
16	0.021%	0.011%
17	0.016%	0.015%
18	0.030%	0.014%
19	0.026%	0.010%
20	0.029%	0.014%
21	0.034%	0.015%
22	0.030%	0.014%
23	0.037%	0.014%
24	0.039%	0.019%
25	0.032%	0.019%
26	0.048%	0.015%

2
3
4
5
6
0
7
8
9
10
11
11
12
13
14
15
16
17
10
IŎ
19
20
21
22
23
23
24
25
26
27
28
29
20
20
31
32
33
34
35
36
20
3/
38
39
40
41
42
43
11
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
57
ЪΩ

1

	27	0.036%	0.014%	
ļ	28	0.049%	0.018%	
	29	0.055%	0.018%	
	30	0.046%	0.028%	
	31	0.054%	0.022%	
	32	0.048%	0.022%	
Ì	33	0.052%	0.025%	
ĺ	34	0.062%	0.031%	
	35	0.062%	0.034%	
ĺ	36	0.066%	0.033%	
	37	0.065%	0.036%	
	38	0.071%	0.042%	
ļ	39	0.082%	0.044%	
ļ	40	0.091%	0.052%	
ļ	41	0.098%	0.059%	
ļ	42	0.107%	0.059%	
ļ	43	0.123%	0.073%	
ļ	44	0.120%	0.069%	
	45	0.143%	0.087%	
	46	0.169%	0.095%	
	47	0.191%	0.112%	
	48	0.228%	0.110%	
	49	0.244%	0.143%	
	50	0.289%	0.149%	
	51	0.325%	0.162%	
	52	0.349%	0.173%	
	53	0.388%	0.211%	
	54	0.473%	0.220%	
	55	0.517%	0.233%	
	56	0.557%	0.259%	
	57	0.601%	0.286%	
	58	0.675%	0.312%	
	59	0.720%	0.339%	
	60	0.803%	0.364%	
	61	0.895%	0.384%	
	62	0.977%	0.420%	
	63	1.055%	0.451%	
	64	1.116%	0.496%	
	65	1.219%	0.504%	
	66	1.318%	0.574%	
	67	1.436%	0.616%	
	68	1.514%	0.620%	

69	1.700%	0.720%	
70	1.911%	0.787%	
71	1.990%	0.849%	
72	2.215%	0.937%	
73	2.370%	1.051%	
74	2.627%	1.233%	
75	2.872%	1.403%	
76	3.074%	1.570%	
77	3.492%	1.763%	
78	4.139%	2.142%	
79	4.500%	2.474%	
80	5.153%	2.928%	
81	5.708%	3.368%	
82	6.436%	3.838%	
83	7.209%	4.440%	
84	8.410%	5.257%	
85	9.184%	6.197%	
86	10.539%	7.184%	0
87	11.846%	8.422%	
88	13.304%	9.728%	
89	15.057%	11.340%	
90	16.914%	13.272%	
91	19.683%	14.947%	6
92	20.636%	16.507%	
93	23.300%	18.967%	
94	25.526%	21.541%	4
95	27.536%	23.666%	
96	29.487%	26.675%	
97	31.265%	28.241%	
98	32.711%	29.794%	
99	26.429%	30.496%	
100	48.238%	46.382%	

Table A3. Recurrent Stroke Rates [3]

Year	Recurrent Stroke Rate
Year 1	4.91%
Year 2 onwards	2.01%

2
2
2
4
5
6
7
8
0
9
10
11
12
13
14
15
16
10
1/
18
19
20
21
22
 23
20
24
25
26
27
28
29
30
50 51
31
32
33
34
35
36
20 27
57
38
39
40
41
42
43
11
44
45
46
47
48
49
50
50
51
52
53
54
55
55
20
57
58
59

1

Table A4. Health States Utilities [4]

mRS	Utility
mRS 0	0.936
mRS 1	0.817
mRS 2	0.681
mRS 3	0.558
mRS 4	0.265
mRS 5	-0.054
mRS 6	0

Table A5. Unit costs, consumption and total management costs for each group of patients [5] [6]

Item	Unit cost (€)	Units	Total cost (€)
Neurologist	36.19	1.0	36.19
Neuroradiologist	36.19	0.5	18.09
Resident Doctor	12.56	1.0	12.56
Nurse 1	22.01	0.5	11.01
Nurse 2	22.01	0.5	11.01
Technician	17.54	0.5	8.77
Cranial CT scan	84.83	1.0	84.83
Blood test	46.10	1.0	46.10
Electrocardiogram	40.26	1.0	40.26
Chest Radiograph	26.58	0.5	13.29
Computerized tomography angiography	279.25	1.0	279.25
Perfusion computerized tomography	252.17	0.5	126.08
Nursing Assistant 1	13.07	0.5	4.71
Orderly	13.07	0.5	6.53
Alteplase (0,9 mg/kg; average patient weight 75	9.85	67.5	199.67
kg), (30% of the patients)			4
MRI (0.5% of the patients)	204.48	0.05	3.07
Costs group "FIRST PASS"			
Stent retriever	3.388	1.0	3.388
Intracranial catheter	2.178	1.0	2.178
Ballon guide catheter/ Long Sheath	786.5	1.0	786,5
Guide/Microguide (0.35/0.12/0.14)	484	1.0	484
Microcatheter	605	1.0	605
Introducer	15.73	1.0	15.73
Procedure pack + gloves	32.05	1.0	32.05
Vascular closure device	187.67	1.0	187.67
Diagnosis catheter + contrast	50.05	1.0	50.05

2				
3	PTA balloon catheter	250.23	0.3	75.07
4 5	Carotid stent	1,376.25	0.15	206.44
6 7 8	Anesthetist	36.19	3.0	108.56
	Neurologist	36.19	0.2	7.24
	Neuroradiologist	36.19	3.0	108.56
9 10	Orderly	13.07	0.5	6.53
10	Nurse	22.01	6.0	132.07
12	Cranial computerized tomography scan	84.83	1.0	84.83
13	Costs group "Non-FIRST PASS"			
14 15	Stent retriever	3,388	1.20	4,065.60
16	Intracranial catheter	2,178	1.20	2,613.60
17	Balloon guide catheter/ Long Sheath	786.5	1.00	786.50
18 10	Guide/Microguide (0.35/0.12/0.14)	484	1.20	580.80
20	Microcatheter	605	1.10	665.50
21	Introducer	15.73	1.00	15.73
22	Procedure pack + gloves	32.05	1.00	32.05
23 24	Vascular closure device	187.67	1.00	187.67
25	Diagnosis catheter + contrast	50.05	1.00	48,40
26	PTA balloon catheter	250.23	0.30	75.07
27 28	Carotid stent	1,376.25	0.15	206.44
28 29	Anesthetist	36.19	4.00	144.75
30	Neurologist	36.19	0.20	7.24
31	Neuroradiologist	36.19	4.00	144.75
32 33	Orderly	13.07	0.5	6.53
34	Nurse	22.01	8.00	176.09
35	Cranial computerized tomography scan	84.83	1.00	84.83
36				•
Characteristic	FPE (N=304)	Non FPE (N=350)	P value (FPE vs. non FPE) 0.7771	
---	---	------------------------------------	--	--
Age (years)	69.9±14.93(304) 72.0(61-80)	66.7±14.70(350) 68.0(58-79)		
Sex (Male)	162/304(53.3%)	189/350(54.0%)	0.8558	
Pre-stroke mRS			0.0152	
0	220/304(72.4%)	280/350(80.0%)		
1	72/304(23.7%)	63/350(18.0%)		
2*	12/304(3.9%)	7/350(2.0%)		
Initial Qualifying NIHSS Score (Baseline NIHSS)	17.0±5.41(304) 17.0(13-21)	17.3±5.54(350) 18.0(12-21)	0.6769	
Fotal ASPECTS Score	8.3±1.53(266) 9.0(8-9)	8.1±1.59(303) 8.0(8-9)	0.4737	
IV tPA administered	181/304(59.5%)	237/350(67.7%)	0.0299	
IA-tPA used	29/303(9.6%)	63/348(18.1%)	0.0018	
General Anesthesia Used (Site-Reported)	78/303(25.7%) 109/348(31.3%) sed d)		0.1166	
Stroke onset to puncture (min)	226.6±99.90(301) 215.0(150-295)	217.4±99.33(349) 194.0(143-278)	0.9172	

Table A6 – Subject Demographics and Baseline Characteristics (Base-case Population) [7]

Summary statistics: Mean±SD(n), Median (IQR) for continuous and n/N (%) for categorical variables.

*Patients with Pre-mRS of 2 are enrolled under Rev B protocol.

Each P-value was based on T test (2-sided) for the mean difference and Z test (2-sided) for the proportion difference between FPE and non FPE;mRS scores between FPE and Non-FPE are compared using using Mantel-Haenszel Chi-square test.

Characteristic	FPE (N=317)	Non FPE (N=431)	P value (FPE vs. non FPE)	
Age (years)	69.7±14.85(317) 72.0(61-80)	67.1±14.61(431) 68.0(58-79)	0.7459	
Sex (Male)	170/317(53.6%)	225/431(52.2%)	0.6999	
Pre-stroke mRS			0.0380	
0	230/317(72.6%)	340/431(78.9%)		
1	75/317(23.7%)	81/431(18.8%)		
2*	12/317(3.8%)	10/431(2.3%)		
Initial Qualifying NIHSS Score (Baseline NIHSS)	17.1±5.41(317) 17.0(13-21)	17.3±5.54(431) 18.0(12-21)	0.6550	
Total ASPECTS Score	8.3±1.51(275) 9.0(8-9)	8.1±1.65(378) 8.0(7-9)	0.1184	
IV tPA administered	193/317(60.9%)	285/431(66.1%)	0.1402	
IA-tPA used	31/316(9.8%)	79/428(18.5%)	0.0010	
General Anesthesia Used (Site-Reported)	80/316(25.3%)	138/428(32.2%)	0.0402	
Stroke onset to puncture (min)	227.2±100.86(314) 213.5(150-295)	222.9±101.11(428) 199.5(146-290)	0.9660	

Table A7 – Subject Demographics and Baseline Characteristics (Alternative scenarioPopulation) [7]

Summary statistics: Mean±SD(n), Median (IQR) for continuous and n/N (%) for categorical variables.

*Patients with Pre-mRS of 2 are enrolled under Rev B protocol.

Each P-value was based on T test (2-sided) for the mean difference and Z test (2-sided) for the proportion difference between FPE and non FPE;mRS scores between FPE and Non-FPE are compared using using Mantel-Haenszel Chi-square test.

	FPE (N=304)	Non FPE (N=350)	P value (FPE vs. non FPE)
Atrial flutter/Atrial fibrillation	128/304(42.1%)	120/350(34.3%)	0.0398
Systemic Hypertension	217/304(71.4%)	262/350(74.9%)	0.3166
Diabetes mellitus	91/304(29.9%)	93/350(26.6%)	0.3401
Myocardial disease/Coronary artery disease	95/304(31.3%)	85/350(24.3%)	0.0467
Hyperlipidemia	129/304(42.4%)	155/350(44.3%)	0.6337
Peripheral artery disease	13/304(4.3%)	13/350(3.7%)	0.7137
Carotid artery disease	33/304(10.9%)	17/350(4.9%)	0.0040
Current or former tobacco use	137/304(45.1%)	162/350(46.3%)	0.7548
Neurological history			
Previous ischemic stroke	43/304(14.1%)	34/350(9.7%)	0.0795
Previous hemorrhagic stroke	3/304(1.0%)	3/350(0.9%)	0.8622
Previous TIA	20/304(6.6%)	17/350(4.9%)	0.3418
Brain aneurysm	3/304(1.0%)	1/350(0.3%)	0.2514

Table A8 – Medical and Neurological History (Base-case Population) [7]

Summary Statistics for categorical: n/N (%)

Each P-value was based on Z test (2-sided) for the proportion difference between FPE and non-FPE

	FPE (N=317)	Non FPE (N=431)	P value (FPE vs. non FPE)
Atrial flutter/Atrial fibrillation	134/317(42.3%)	152/431(35.3%)	0.0514
Systemic Hypertension	223/317(70.3%)	327/431(75.9%)	0.0907
Diabetes mellitus	91/317(28.7%)	111/431(25.8%)	0.3688
Myocardial disease/Coronary artery disease	96/317(30.3%)	112/431(26.0%)	0.1948
Hyperlipidemia	132/317(41.6%)	192/431(44.5%)	0.4278
Peripheral artery disease	13/317(4.1%)	16/431(3.7%)	0.7856
Carotid artery disease	35/317(11.0%)	27/431(6.3%)	0.0192
Current or former tobacco use	143/317(45.1%)	202/431(46.9%)	0.6338
Neurological history			
Previous ischemic stroke	46/317(14.5%)	43/431(10.0%)	0.0584
Previous hemorrhagic stroke	3/317(0.9%)	4/431(0.9%)	0.9795
Previous TIA	20/317(6.3%)	22/431(5.1%)	0.4794
Brain aneurysm	4/317(1.3%)	3/431(0.7%)	0.4271

Summary Statistics for categorical: n/N (%)

Each P-value was based on Z test (2-sided) for the proportion difference between FPE and non-FPE

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1 2

Table A10. Adverse events Base-Case and alternative scenario

Patient group	symptomatic intracranial	malignant cerebral edema
Base case	hemorrhage*	
FPE	0.7%	1%
Non-FPE	2.3%	1.4%
P-values are obtained from	0.1154	0.7303
Fisher's exact test		
Patient group	symptomatic intracranial	malignant cerebral edema
Alternative Scenario	hemorrhage	
FPE	0.6%	0.9%
Non-FPE	2.1%	1.4%
P-values are obtained from	0.1297	0.7403
Fisher's exact test.		
*sICH is defined as any PH1, PI	12, RIH, IVH or SAH per imaging	g core lab and associated with \geq
4 points worsening on the NIHS	S scale within 24 hours.	

 H or SAH per imagina 24 hours.

References:

- 1. Slot KB, Berge E, Sandercock P, et al. Causes of death by level of dependency at 6 months after ischaemic stroke in 3 large cohorts. Stroke 2009; 40: 1585–1589.
- 2. Instituto Nacional de Estadística. 2018 Mortality tables of Spanish population. National results. In: INEbase. [Internet]. 2018 [cited 2020 Oct 10]. Available from: www.ine.es
- 3. Mohan KM, Wolfe CDA, Rudd AG, Heuschmann PU, Kolominsky-Rabas PL, Grieve AP. Risk and cumulative risk of stroke recurrence: A systematic review and meta-analysis. Stroke. 2011;42(5):1489–94. E
- 4. Rivero-Arias O, Ouellet M, Gray A, Wolstenholme J, Rothwell PM, Luengo-Fernandez R. Mapping the modified rankin scale (mRS) measurement into the generic EuroQol (EQ-5D) health outcome. Med Decis Mak. 2010;30(3):341–54.
- 5. de Andrés-Nogales F, Álvarez M, de Miquel MÁ, Segura T, Gil A, Cardona P, et al. Costeffectiveness of mechanical thrombectomy using stent retriever after intravenous tissue plasminogen activator compared with intravenous tissue plasminogen activator alone in the treatment of acute ischaemic stroke due to large vessel occlusion in Spa. Eur Stroke J. 2017;2(3):272–84.
- 6. Expert opinion
- Mueller-Kronast NH, Zaidat OO, Froehler MT, Jahan R, et al. Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke: Primary Results of the STRATIS Registry. Stroke. 2017;48(10):2760–8.

CHEERS Checklist Items to include when reporting economic evaluations of health interventions

The **ISPOR CHEERS Task Force Report**, *Consolidated Health Economic Evaluation Reporting Standards (CHEERS)—Explanation and Elaboration: A Report of the ISPOR Health Economic Evaluations Publication Guidelines Good Reporting Practices Task Force*, provides examples and further discussion of the 24-item CHEERS Checklist and the CHEERS Statement. It may be accessed via the *Value in Health* or via the ISPOR Health Economic Evaluation Publication Guidelines – CHEERS: Good Reporting Practices webpage: http://www.ispor.org/TaskForces/EconomicPubGuidelines.asp

Section/item	Item No	Recommendation	Reported on page No/ line No
Title and abstract			
Title	1	Identify the study as an economic evaluation or use more specific terms such as "cost-effectiveness analysis", and describe the interventions compared.	Lines 1-2
Abstract	2	Provide a structured summary of objectives, perspective, setting, methods (including study design and inputs), results (including base case and uncertainty analyses), and conclusions.	Lines 44-71
Introduction			
Background and objectives	3	Provide an explicit statement of the broader context for the study. Present the study question and its relevance for health policy or	Lines 95-115
		practice decisions.	Lines 117-119
Methods			
Target population and subgroups	4	Describe characteristics of the base case population and subgroups analysed, including why they were chosen.	Lines 147-153
Setting and location	5	State relevant aspects of the system(s) in which the decision(s) need(s) to be made.	Line 128
Study perspective	6	Describe the perspective of the study and relate this to the costs being evaluated.	Line 128 Lines 180-182
Comparators	7	Describe the interventions or strategies being compared and state why they were chosen.	Lines 126-130
Time horizon	8	State the time horizon(s) over which costs and consequences are being evaluated and say why appropriate.	Line 130
Discount rate	9	Report the choice of discount rate(s) used for costs and outcomes and say why appropriate.	Lines 191-193
Choice of health outcomes	10	Describe what outcomes were used as the measure(s) of benefit in the evaluation and their relevance for the type of analysis performed.	Lines 199-202
Measurement of effectiveness	11a	<i>Single study-based estimates:</i> Describe fully the design features of the single effectiveness study and why the single study was a sufficient source of clinical effectiveness data.	NA

For peer review only - http://bmppenpnj.com/site/about/guidelines.xhtml

Measurement and	11b 12	<i>Synthesis-based estimates:</i> Describe fully the methods used for identification of included studies and synthesis of clinical effectiveness data. If applicable, describe the population and methods used to	NA
valuation of preference based outcomes		elicit preferences for outcomes.	NA
Estimating resources and costs	13a	<i>Single study-based economic evaluation:</i> Describe approaches used to estimate resource use associated with the alternative interventions. Describe primary or secondary research methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to opportunity	
	13b	costs. <i>Model-based economic evaluation:</i> Describe approaches and data sources used to estimate resource use associated with model health states. Describe primary or secondary research methods for valuing each resource item in terms of its unit	<u>NA</u>
		cost. Describe any adjustments made to approximate to	Lines 182-193
Currency, price date, and conversion	14	Report the dates of the estimated resource quantities and unit costs. Describe methods for adjusting estimated unit costs to the year of reported costs if necessary. Describe methods for converting costs into a common currency base and the	Lines 191-192
Choice of model	15	Describe and give reasons for the specific type of decision- analytical model used. Providing a figure to show model structure is strongly recommended.	Lines 134-144
Assumptions	16	Describe all structural or other assumptions underpinning the decision-analytical model.	Lines 134-144
Analytical methods	17	Describe all analytical methods supporting the evaluation. This could include methods for dealing with skewed, missing, or censored data; extrapolation methods; methods for pooling data; approaches to validate or make adjustments (such as half cycle corrections) to a model; and methods for handling population heterogeneity and uncertainty.	Lines 144-145 Lines 161-164 Lines 204-211
Results			
Study parameters	18	Report the values, ranges, references, and, if used, probability distributions for all parameters. Report reasons or sources for distributions used to represent uncertainty where appropriate. Providing a table to show the input values is strongly recommended.	Table 1 Tables A1 - A9
Incremental costs and outcomes	19	For each intervention, report mean values for the main categories of estimated costs and outcomes of interest, as well as mean differences between the comparator groups. If applicable, report incremental cost-effectiveness ratios	Table 2
Characterising uncertainty	20a	Single study-based economic evaluation: Describe the effects of sampling uncertainty for the estimated incremental cost and incremental effectiveness parameters, together with the impact	NA
		. 900Th-	

		of methodological assumptions (such as discount rate, study perspective).	NA
	20b	<i>Model-based economic evaluation:</i> Describe the effects on the results of uncertainty for all input parameters, and uncertainty related to the structure of the model and assumptions.	Lines 263-270
Characterising heterogeneity	21	If applicable, report differences in costs, outcomes, or cost- effectiveness that can be explained by variations between subgroups of patients with different baseline characteristics or other observed variability in effects that are not reducible by more information.	Table 2
Discussion			
Study findings, limitations, generalisability, and current knowledge	22	Summarise key study findings and describe how they support the conclusions reached. Discuss limitations and the generalisability of the findings and how the findings fit with current knowledge.	Lines 282-316 Lines 343-361
Other			
Source of funding	23	Describe how the study was funded and the role of the funder in the identification, design, conduct, and reporting of the analysis. Describe other non-monetary sources of support.	Lines 375-376
Conflicts of interest	24	Describe any potential for conflict of interest of study contributors in accordance with journal policy. In the absence of a journal policy, we recommend authors comply with International Committee of Medical Journal Editors recommendations.	Lines 378-383

For consistency, the CHEERS Statement checklist format is based on the format of the CONSORT statement checklist

The **ISPOR CHEERS Task Force Report** provides examples and further discussion of the 24-item CHEERS Checklist and the CHEERS Statement. It may be accessed via the *Value in Health* link or via the ISPOR Health Economic Evaluation Publication Guidelines – CHEERS: Good Reporting Practices webpage: <u>http://www.ispor.org/TaskForces/EconomicPubGuidelines.asp</u>

The citation for the CHEERS Task Force Report is:

Husereau D, Drummond M, Petrou S, et al. Consolidated health economic evaluation reporting standards (CHEERS)—Explanation and elaboration: A report of the ISPOR health economic evaluations publication guidelines good reporting practices task force. Value Health 2013;16:231-50.