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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

This manuscript presents a statistical thermodynamic model that predicts gene expression levels 

from constitutive promoter sequences based on the binding of sigma70-RNA polymerase complex, 

and then shows how such a model can be utilized to guide the design of synthetic promoters. The 

paper has some interesting novel insights, in particular: it uses machine learning to develop a 

model that links to the known and understood mechanisms of promoter function, rather than 

utilizing a ‘black-box’ approach; it characterizes the independent contribution of each component 

of a promoter to overall expression in a systematic manner; and it demonstrates the utility of such 

models for optimization of synthetic promoters. However, I have two major concerns about the 

manuscript that relate to its generalizability to novel data sets and the overall novelty of this work. 

The major question of novelty and generalizability of this work stems from the fact that several 

models based on statistical thermodynamics, which are capable of generating accurate predictions 

of gene expression levels from sequences, already exist. 

While the approaches are different in their formulation of the underlying mechanisms of regulation, 

fundamentally they all focus on the energy contribution of specific positions within the promoter on 

the overall binding energy of RNA polymerase to DNA (See Kinney et al. 2010 and Lagator et al. 

2022 for some examples). Furthermore, just like the other models of this type, this model also 

focuses on the sigma70 constitutive promoters, as opposed to any other sigma factors or 

regulated promoters. This manuscript does an excellent job of creating a large number of promoter 

variants and has expanded our understanding of how mutations impact specific promoter 

components (like the UP elements and ITR) beyond previous works. However, it is limited by those 

variants being constrained to a specific section of the promoter. For example, all -10 hexamer 

variants are introduced into a fixed genetic context, with a consensus -35 hexamer and a fixed, 

17bp sequence. The problem with this approach is that, while exhaustive in a local sense, it limits 

the model to a specific mutational neighbourhood and hence limits its generalizability. Einav & 

Phillips 2019 PNAS showed that the interactions between -10 and -35 hexamers can have a large 

effect on expression levels. The design presented in this manuscript cannot account for these 

effects, meaning that at least one known major contributor to gene expression levels is not 

accounted for. Especially in the context of other existing models (Einav & Phillips, Lagator et al.), it 

is not clear to me that the focus on individual components of an already pretty well described 

system, as opposed to the interactions between different components of the promoter which are 

poorly understood, is standing out as novel. 

Furthermore, the focus on what goes on within each component while the context is fixed means 

that it is not clear from the presented manuscript that this model significantly outperforms the 

existing models. For example, the authors present a comparison to a recent paper by Lagator et 

al., and discuss that their model performs better on two independent datasets. However, their 

model performs very poorly on the datasets generated by that paper, and especially on the fully 

random mutant library (36N) where their model has an R2 of 0.15. This poses a serious question 

about the generalizability of the model, which is not helped by the fact that the authors do not 

discuss the libraries in which their model performs poorly but rather focus only on those examples 

where it performs better. 

I suspect that the two issues – of novelty and of generalizability – are linked, because the 

outstanding and important advances in the prediction of promoter function I believe stem from 

understanding how different components of a model interact with each other. Together, these 

concerns potentially make the audience of this paper more specialized, as the novelty is contained 

to synthetic biology applications (Fig.5 and 6) and the evaluation of less important contributors to 

expression levels (like the ITR and the UP element) (Fig.1D and 2C). 

Detailed comments: 

It would be very useful to provide a breakdown of MSE of the presented model based on the 

general expression level being predicted. What I mean is, what is the MSE for promoters that have 



high expression level, vs those with intermediate, vs those with low. This would help understand if 

the model performs equally well across the entire expression range, or if it underperforms at some 

expression level ranges. If the later is the case, it would be important to explore why that might 

be, especially in the light of various mechanisms of promoter function not included in this model, 

such as those explored by Einav and Phillips or Lagator et al. 

It would be really important to understand why the presented model performs poorly on the fully 

random promoter library from Lagator et al. (the 36N library). The low performance on random 

sequences strongly suggests that complex interactions based on genetic context of the promoter 

play a large role, at least while a promoter is defined as leading to a single TSS. Fig.5 addresses 

some of these questions, but in a very limited way using only 16 mutants. Providing deeper 

insights into what happens when a promoter moves from a given mutational neighbourhood to 

which their model is optimized and into random sequence space would be critical to increase the 

novelty of this work. 

Another good test in Fig.5 would be to design more promoters predicted to have same expression 

levels but very divergent sequences, to evaluate how repeatable the predictions are. 

Legends to some of the figures and tables could be expanded to give more details. For example, 

Tables S4,5,6 – what do the colours indicate? 

I think one of the biggest contributions of this paper is how they used ML to derive model 

parameters that were comprehensible mechanistically. Expanding a bit in the main text on how 

this was done would be useful. 

In the -10 binding motif, the authors examine the role of mutations by looking at every possible 3-

mer. Energy Matrix-based models look at each individual position. I am not sure what the 

difference is between these two ways of modelling binding. For example, does the ‘individual’ 

position approach linearly add up to the observed effects of 3-mers? If not, when does it step 

away and why? Doing such an analysis can result in key insights into the interactions between 

mutations within each promoter component. 

What is the distribution of spacer lengths in the experimental dataset, are they evenly distributed 

across all 5 relevant lengths? 

How long are the UP and ITR sequences used in the ‘Promoter Context Effects’ section? Its 

possible that their relatively low effect on model accuracy is due to their short length, meaning 

that what ‘context’ is might be longer than the varied UP and ITR elements. Therefore, it would be 

good to note their exact length. 

The introduction mentions the word ‘interactions’ quite a bit, but as discussed above, it is unclear 

which interactions are actually studied. In particular, given that the experimental design has a 

very limited exploration of the interactions between promoter components (what I think is the 

most important area where we lack knowledge), I would avoid using this word. 

Authors claim ‘a key novelty of our model is its complete set of interaction energies, covering all 

possible promoter sequences…’ – It would be important to clarify what the word ‘interaction’ 

means here, because it applies to only a small number of potential interactions between promoter 

components. 

The ‘model generality’ section would be easier to follow if the authors referred to the external 

datasets by the author names, as opposed to just the reference, as it is difficult to go back and 

forth to the reference section to recall that 16 is Urtecho et al. and 12 is Hossain et al. etc. 

Reviewer #2: 

Remarks to the Author: 

Summary: 



In the manuscript by LaFleur et al. (“Automated Model-Predictive Design of Synthetic Promoters to 

Control Transcriptional Profiles in Bacteria”), the authors create a biophysical model of 

transcription initiation of sigma -70 promoters in E. coli and train their model using high 

throughput assays and machine learning. Starting with 472 biophysical parameters, they train and 

test their model on 5193 synthetic promoter variants and use the resulting data to prune their 

model to 346 parameters. With this model, they characterize the impacts of individual promoter 

motifs on transcription initiation. The authors test their model against a previously published 

model using their own in vitro dataset, as well as the Urtecho and Hossain datasets. The authors 

show that the new model yields significant improvements in predicting transcription rates for 

synthetic promoters (R2 = .79, .60, and .45 respectively for the new model; vs. R2 = .60, .45, 

and .39 for previously published model). They also demonstrate the applicability of their model for 

gene circuit debugging and the generation of de novo promoters with desired transcription rates. 

This model, accessible as an online software tool, is well-suited for synthetic biologists looking to 

reliably predict and control transcription rates of their genetic constructs. This work advances the 

field of genetic circuit design by combining a biophysical model for transcription initiation with 

machine learning informed by massively parallel in vitro assays. This is a growing area of research 

and this is nice work that advances the state-of-the-art. The writing and figures are well composed 

and easy to understand. One the following comments are addressed, it should be suitable for 

publication in Nature Communications. 

Major Comments: 

1. The authors seem to sweep under the rug the fact that of their initial 14206 promoters, only 

5193 are used due to the recurring presence of a cryptic TSS. It would be helpful for the authors 

to explain the impact of the cryptic promoter within the ORF more explicitly. According to Fig 1C, 

this cryptic TSS looks to be consistently around position 105. Would the inclusion of promoters 

with cryptic start sites in the model training help inform parameters and motifs that more likely 

lead to a cryptic TSS? Could this improve biological relevance for predicting transcription rates of 

endogenous promoters and promoter design? 

2. Additionally, what is the composition of the 5193 promoters used? Is the set skewed to 

variations within one of the promoter regions? It seems like this could skew the retained features 

and decrease the generalizability of the model. For instance, Table S1 shows all -10 and -35 3-

mers were retained, but no ITR features were retained. What is the explanation for this, and how 

are the Gibbs free energy contributions calculated when no features are retained? 

3. Regarding the model, the connection between the 346 features to the different Gibbs free 

energy contributions is not clear, especially the categorical properties such as spacer length. This 

information seems crucial for a biophysical model and should be included to strengthen the 

manuscript. Additionally, it is not obvious how to interpret and compare the different interaction 

energies in Figure 2E, have they been normalized? For instance, is a strong -35 interaction equal 

to a strong -10 interaction? 

4. The authors tried a linear combination of different features to estimate interaction energies, and 

a linear combination of these interactions energies to estimate transcription rates. The manuscript 

would be enhanced by rationale for why this approach was chosen and a more in-depth discussion 

of the limitations when compared to other approaches such as non-linear regression or neural 

networks. 

5. The authors do a good job by benchmarking different models and datasets, but it is hard to 

interpret the comparisons without stronger statistical tests, especially given the different number 

of parameters across models. The use of F-test or information criterion (AIC or BIC) to compare 

the models would help strengthen the author's claims. 

6. Page 9, “However, most promoters do not contain canonical motif sequences; their TX rates are 

controlled by a mixture of weaker interactions. A key novelty of our model is its complete set of 

interaction energies, covering all possible promoter sequences, which provides the ability to 

predict the TX rate of any s70 promoter.” The claim that their model covers “all possible promoter 

sequences” is misleading, especially given that only ⅓ of designed promoters were used in the 

training of the model. Additionally, other models (Urtecho et al.) can also predict transcription rate 



of any s70 promoter. 

7. While the exclusion of alternative sigma-factors in the in vitro assay helps illuminate the “true” 

transcription rate due to sigma70-RNAP interactions, it does come at the expense of biological 

relevance and potentially limits the generalizability of this model for the prediction of transcription 

rates and promoter design. This is shown by the model’s low accuracy on in vivo datasets. This 

limitation should be discussed more explicitly. 

Minor Comments: 

1. Discussion about challenges to generalizing this work to other organisms and other sigma-

factors would be valuable. 

2. In Fig 1D, the range transcription rates of each motif library is shown. The “all” bar may be 

misleading, as this represents the greatest difference between a single variant in one motif and a 

single variant in another motif. A total range of 133 does not cover the wide range of transcription 

rates in the genome. The model may behave poorly at the extremes (very low transcription or 

very high transcription), and there is no data or much discussion to address this point. 

3. “We next evaluated whether these genetic context effects are potentially widespread by 

carrying out Monte Carlo simulations to predict the range of TX rates expected when varying the 

UP and ITR regions of several commonly used promoters (Figure 4B). Promoters with lower 

average TX rates exhibited higher sensitivity to changing the UP and ITR regions with an overall 

average coefficient of variation of 0.40.” Cannot tell this statement is true based on Figure 4B, 

there is no statistical significance test. Moreover, there is no methods section for Monte Carlo 

simulations. 

4. Page 5, "Here, we arbitrarily set DGtotal,ref to zero so that stronger (weaker) interaction free 

energies have more negative (positive) values in comparison." This sentence is hard to follow. 

5. Readability of Fig 6 is difficult. Axes for 6a can be standardized. Putative start sites should be 

labeled. Additionally, it is unclear where the cut off for a TSS comes from in 6a. 

6. How does a 55% prediction accuracy for identifying cryptic promoters compare to other 

methods? 

7. Why is the train-test split 90-10 when figure 2A shows minimum error at ~25% training set 

size? 
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We would like to express our deep appreciation for the reviewers’ constructive comments, 
which pointed out several areas where the manuscript could be improved. Below, in our point-
by-point response, we answer the reviewers’ questions and describe additional experimental 
datasets and manuscript modifications to further support our conclusions. The reviewers’ 
questions are listed below, followed by our responses (blue text) and quoted manuscript 
revisions (green text). 
 
Reviewer #1: 
  
This manuscript presents a statistical thermodynamic model that predicts gene expression levels 
from constitutive promoter sequences based on the binding of sigma70-RNA polymerase complex, 
and then shows how such a model can be utilized to guide the design of synthetic promoters. The 
paper has some interesting novel insights, in particular: it uses machine learning to develop a model 
that links to the known and understood mechanisms of promoter function, rather than utilizing a 
‘black-box’ approach; it characterizes the independent contribution of each component of a 
promoter to overall expression in a systematic manner; and it demonstrates the utility of such 
models for optimization of synthetic promoters. However, I have two major concerns about the 
manuscript that relate to its generalizability to novel data sets and the overall novelty of this work.  
 
Our work contains highly novel results that push forward the state-of-the-art in three distinct areas. 
We list them below before we dive deeper into the reviewers’ comments. 
 
Key novelty #1:  Our work is the first to carry out massively parallel and fully in vitro 
transcription assays and transcriptional start site mapping on thousands of designed promoters with 
the overall objective of precisely measuring RNAP/s70-DNA interaction strengths. A good model 
depends on collecting a good dataset; our dataset has several characteristics that represent a 
transformative improvement in the state-of-the-art. The first key advantage of our dataset is 
that the in vitro transcription assays eliminate the presence of several confounding variables. 
For example, because there are no RNases in our in vitro transcription assays, changing the ITR 
sequence (part of the mRNA) will have no effect on mRNA stability or mRNA decay in our dataset. 
Prior work has shown that the first 3 nucleotides of the mRNA transcript can affect mRNA levels 
by over 10-fold by changing the transcript’s decay rate [Cetnar & Salis. ACS Syn Bio. (2021)]. 
There are also no ribosomes in our in vitro assay so we do not worry about unintended changes in 
translation rate or coupling between transcription & translation rates (unlike in vivo measurements). 
Because we only add RNAP/s70 to our in vitro assay, we also know with certainty that the 
alternative s-factors do not contribute to the promoters’ transcription rates. And because there are 
no cells, we have eliminated all growth-coupled bias in our measurements, for example, when very 
strong promoters produce so much RNA or protein that they inhibit cell growth, which greatly 
affects DNA-Seq and RNA-Seq read counts. Finally, because we carried out transcription start site 



mapping, we can conclusively identify the actual motifs that form contacts with RNAP/s70. 
Without transcriptional start site mapping, promoters with multiple RNAP/s70 binding sites could 
skew the training of the biophysical model. 
 
The second key advantage of our dataset is that we designed the promoter sequences to 
systematically perturb and vary the known interactions that affect s70-dependent 
transcription rate; notably, our dataset is the first to measure RNAP/s70 interactions using all 
possible -10, -10 extended, and -35 motif sequences and it is the first to systematically vary the 
biophysical characteristics of the UPS and ITR elements. Our promoter designs encompass several 
strategies. Yes, we characterized several sequence sets that use a “change only one motif at a time” 
strategy to precisely measure their effect on transcription rate. But we also characterized many 
sequence designs where we varied 2 or more motifs in combination to determine the synergistic 
effect (e.g. we combined several designed UP elements with canonical vs. anti-canonical 
hexamers). These designs focused on known synergism between different binding regions (UP, 
hexamers, -10 extended). This distinction is in sharp contrast to prior datasets where promoter 
sequences were randomly generated (either fully random or randomized starting from a strong 
promoter as in Lagator et al.) or where sets of only 8 motifs were combined to generate promoters 
(as in Urtecho et al.).  
 
The third key advantage of our dataset is that our experimental workflow achieved high 
precision with a high standard of excellence, due to our usage of designed (not UMI randomized) 
barcode sequences to distinguish promoter designs, our next-generation sequencing with very high 
read depth as compared to prior efforts, and carrying out the experiments in triplicate to quantify 
and assess our precision. Many prior datasets (particularly using Flow-Seq assays) do not carry 
out any replicates and therefore can not be assessed for reproducibility and precision.  
 
To clarify, when other datasets use UMI randomized barcodes, it is incorrectly assumed that 
distinct barcode sequences correspond to distinct promoter designs; but, due to NGS base calling 
error and PCR bias, the observed reality is that reads mapped to a UMI barcode often point to 
multiple different promoter designs, while several distinct promoter designs may become 
associated with the same mapped UMI barcode. These “barcode collisions” can greatly distort the 
observed transcription rates. For example, a strong promoter’s UMI barcode can “bleed into” a 
weak promoter’s UMI barcode whenever those UMIs have similar (not the same) sequences. 
Further, with completely randomized barcodes (20N), a minimum read depth greater than 420 is 
required to see every barcode once. This phenomenon disproportionally effects weak promoters, 
causing a lack of resolution at the low-TX range. These types of confounding interactions are not 
discussed much in the literature. We avoid these barcode biases altogether by designing defined 
barcode sequences for each promoter sequence (1 to 1) while maximizing pairwise Hamming 
distance between barcodes so they remain distinguishable even when subjected to NGS base 
calling error and PCR bias error.  
 
Key novelty #2:  Our work is the first to apply a biophysical model of transcriptional initiation to 
forward-design completely non-natural & dissimilar full-length promoter sequences with 
desired transcription rates. This capability is highly demanded by Synthetic Biologists who 
would like to control and optimize their transcription rates for biotech applications. To stringently 
test our design algorithm, we ensured that our designed promoters had highly dissimilar sequences 



so that all motif sequences were being varied at the same time. This type of test is a good way of 
investigating whether synergistic interactions between motifs are important to controlling 
transcription rates. In response to the reviewers’ comments, we designed and characterized even 
more non-natural promoters to further strengthen this conclusion (Figure 5 and described in 
detail below). We also designed and tested DNA sequences with minimized transcription 
initiation rates to demonstrate how the model can be used to remove internal promoters within 
other genetic parts (Figure 6C). Further, our algorithm is the first to ensure that designed 
promoter sequences only contained a single, predominant transcriptional start site to provide 
even more tunable control over transcription rate. To be clear, the model developed in Lagator et 
al. was never used to design a promoter sequence, which is a significant shortcoming. The model 
developed in Urtecho et al. does not have the ability to design synthetic promoters outside the 
limited set of motifs used in their dataset (their model can not predict the transcription rate of 
arbitrary input DNA sequences). Prior efforts have also developed classification models (not 
regression models) to label a promoter’s strength across 12 possible outcomes [Van Brempt et al. 
Nat Comm 2020]. This model was used to vary the spacer sequence composition with a fixed 
spacer length within a background sequence with constant hexamer motifs, resulting in promoter 
sequences that varied transcription rate by about 20-fold. Explicitly, their sequence constraint is: 
[GGTCTATGAGTGGTTGCTGGATAAC][TTTACG][NNNNNNNNNNNNNNNNN][TATAAT][ATATTC][AGGGAGAGCACAACGGTTTCCCTCTACAAATAATTTTGTTTAACTTT] 

where Ns denote the spacer positions that were designed by their algorithm. To compare, our 
model & design algorithm can design the entire promoter sequence with varied spacer lengths, 
which resulted in dissimilar promoter sequences that varied transcription rate by 1525-fold.  
 
Key novelty #3: As we show in our benchmarking, our biophysical model of transcriptional 
initiation is more accurate than all prior sequence-complete models and takes into account 
more RNAP/s70 interactions than all prior sequence-complete models. The definition of a 
sequence-complete model is one that can carry out a prediction on arbitrary inputted DNA 
sequences. The model described in Lagator et al. is sequence-complete, but the ones described in 
Urtecho et al. and Van Brempt et al. are not. Our biophysical model takes into account the effects 
of the UP, discriminator and ITR elements whereas the model developed in Lagator et al. does not. 
In our work, we showed that changing only the UP and ITR elements can affect transcription rates 
by a significant amount (Figure 1, up to 21-fold), which makes their inclusion into a model a high 
priority, particularly when using the model to design non-natural promoter sequences. Lagator et 
al. is a recent publication and our work was carried out independently. We use very distinct 
approaches in developing and testing our models. 
 
We would like to note that, when carrying an examination of the Lagator et al. model source code 
and using it to run our benchmarking study (in the original manuscript), there were inconsistencies 
between what is described in their article vs. the calculations that are actually performed in their 
source code. For example, for each dataset, the reported R2 values in Lagator et al. were determined 
through an iterative process whereby multiple external parameters were varied until the highest R2 
value is achieved. These external parameters include a “detection threshold” (a filter that fixes the 
minimum predicted transcription rate to a constant value, defined by what maximizes R2), a 
“chemical potential” (an arbitrary number that shifts the prediction scale up or down regardless of 
the growth media), and an arbitrary slope and intercept that relates their predicted log10(PON) to the 
measured log10(transcription rates). In principle, it could be valid to utilize a detection threshold 
based on experimental parameters, but their actual detection threshold values are varied greatly 



between datasets (well above a realistic threshold) to give the effect of excluding many outlier 
predictions.  In principle, a “chemical potential” number reflecting changes in RNAP/s 
concentration could be valid, but in practice, they arbitrarily chose (to maximize R2) different 
chemical potential numbers even though some datasets used the same strains and were grown in 
identical conditions. Because “seeing is believing”, we show the predictions of the Lagator et al. 
model without the use of a “detection threshold” and setting the “chemical potential” to zero while 
utilizing their Extended Model. These plots are also included in our Supplementary Information. 
The Pearson R2 values for each plot are shown in the legend. Significant data clustering can 
inadvertently increase Pearson R2 values regardless of the linearity of the comparisons. A better 
accuracy metric is the mean absolute error (MAE) or the mean squared error (MSE), which we 
include in our benchmarking. 

 
Figure S11: Lagator Extended Model Predictions on Lagator Datasets (A) Lagator extended model 
predictions for 2903 Pl mutant promoters are compared to reported in vivo Sort-Seq means. R2 is equal to 
0.73. (B) Lagator extended model predictions for 12194 Pr mutant promoters are compared to reported in 
vivo Sort-Seq means. R2 is equal to 0.67. (C) Lagator extended model predictions for 11523 random 36N 
sequences are compared to reported in vivo Sort-Seq means. R2 is equal to 0.44. All data is available in 
Supplementary Data 3. 

Figure S12: Lagator Extended Model Validation (A) Lagator extended model predictions for 5391 

designed promoters (this study) are compared to in vitro transcription rate measurements. R2 is equal to 

0.60. (B) Lagator extended model predictions for 10898 genome-integrated promoters are compared to in 

vivo transcription rate measurements. R2 is equal to 0.45 (C) Lagator extended model predictions on 4350 



non-repetitive plasmid-encoded promoters are compared to in vivo transcription rate measurements. R2 is 

equal to 0.39. All data is available in Supplementary Data 3 
 
In the original submission, we carried out a comprehensive model comparison across several 
datasets (Supplementary Table S4), calculating the Pearson R2, the mean absolute error (MAE), 
and the mean squared error (MSE) for all comparisons. In all calculations, we do not apply a 
variable “detection threshold” and we do not add an arbitrary number (a “chemical potential”) to 
model predictions. We rely only on a key assumption made by both us and Lagator et al.; that 
predicted values are directly proportional to log-transformed expression levels. Therefore, for all 
models (including from Lagator et al.), we use the best-fit slope to calculate the MAE and MSE. 
This is the best approach for an apples-to-apples model comparison. We copy Supplementary 
Table S4 below for your convenience.  
 
The benchmarking revealed that our linear model (trained on our novel in vitro dataset using 
machine learning) was more accurate (higher R2, lower MAE, lower MSE) when applied to 
the Urtecho, Hossain, and LaFleur datasets than the Lagator model (in either its standard or 
extended versions). Even when our linear model is applied to the datasets collected in Lagator et 
al. (the Pl, Pr, 36N promoter datasets), our model achieves a lower MAE and a lower MSE than 
the models developed in Lagator et al. This is important as, even though their model achieves a 
higher R2 on their own datasets, it does so from high clustering at the extremes of the range.  
 
Table S4: Model Benchmarking – Slope Only 

 LaFleur 
(linear) 

LaFleur 
(quadratic) 

Lagator 
(standard) 

Lagator 
(extended) 

N samples 

R2 Urtechoa 0.60 0.69 0.47 0.45 
10,898 MAE Urtechoa 0.93 0.56 1.32 1.33 

MSE Urtechoa 1.28 0.59 3.93 3.99 
R2 Hossaina 0.45 0.46 0.42 0.39 

4,350 MAE Hossaina 1.08 1.96 4.83 4.85 
MSE Hossaina 1.88 5.66 31.5 31.0 
R2 LaFleur 0.79  0.76  0.58 0.60 

5,391 MAE LaFleur 0.32 0.79 1.43 1.56 
MSE LaFleur 0.17 0.88 3.98 4.27 
R2 Lagator Pl  0.47 0.49 0.67 0.73 

2,903 MAE Lagator Pl 0.91 0.98 3.53 3.74 
MSE Lagator Pl 1.34 1.70 14.5 16.1 
R2 Lagator Pr 0.35 0.37 0.55 0.67 

12,194 MAE Lagator Pr 0.51 1.06 3.14 3.40 
MSE Lagator Pr 0.62 1.79 13.1 14.7 
R2 Lagator 36N  0.19 0.15 0.33 0.44 

11,523 MAE Lagator 36N 0.59 1.71 1.16 1.34 
MSE Lagator 36N 0.57 4.50 2.31 3.00 

aUnseen datasets to both models during training. See Discussion for details. 

  



In the updated manuscript, we extended the model comparison in the Supplementary Information 
by providing residual distributions for the benchmarking of our linear model and the extended 
model developed by Lagator et al. (Figure S13). Despite the Lagator model being trained on the 
Pr (11% of training data), Pl (46% of training data) and 36N (43% of training data) datasets, we 
see that their model’s raw predictions are highly biased to the 36N dataset. Under the proposed 
assumption of proportionality made by both models, this makes the utility of our model greater, as 
raw model outputs are closer to the reality of experimentally observed expression levels.   

 
Figure S13: Slope-only Model Benchmarking, Residual Distributions (A) Model residual distributions 
for Urtecho et al. (left), Hossain et al. (middle) and LaFleur et al. (right).  (B) Model residual distributions 
for the Pl dataset from Lagator et al. (left), Pr dataset from Lagator et al. (middle) and 36N dataset from 
Lagator et al. (right). Blue distributions are from the LaFleur et al. linear model, red distributions are from 
the Lagator et al. extended model. Model residuals are the absolute difference between the model prediction 
[DGtotal for LaFleur and log(Pon) for Lagator] and the natural log of the measured transcription rates, using 
a best-fit slope relationship for each model and dataset. 
 
  



 
While the approaches are different in their formulation of the underlying mechanisms of regulation, 
fundamentally they all focus on the energy contribution of specific positions within the promoter 
on the overall binding energy of RNA polymerase to DNA (See Kinney et al. 2010 and Lagator et 
al. 2022 for some examples). Furthermore, just like the other models of this type, this model also 
focuses on the sigma70 constitutive promoters, as opposed to any other sigma factors or regulated 
promoters. This manuscript does an excellent job of creating a large number of promoter variants 
and has expanded our understanding of how mutations impact specific promoter components (like 
the UP elements and ITR) beyond previous works. However, it is limited by those variants being 
constrained to a specific section of the promoter. For example, all -10 hexamer variants are 
introduced into a fixed genetic context, with a consensus -35 hexamer and a fixed, 17bp sequence. 
The problem with this approach is that, while exhaustive in a local sense, it limits the model to a 
specific mutational neighbourhood and hence limits its generalizability. Einav & Phillips 2019 
PNAS showed that the interactions between -10 and -35 hexamers can have a large effect on 
expression levels. The design presented in this manuscript cannot account for these effects, 
meaning that at least one known major contributor to gene expression levels is not accounted for. 
Especially in the context of other existing models (Einav & Phillips, Lagator et al.), it is not clear 
to me that the focus on individual components of an already pretty well described system, as 
opposed to the interactions between different components of the promoter which are poorly 
understood, is standing out as novel.  
 
We agree that many of our promoter designs use a “change one motif at a time” strategy with 
the explicit goal of precisely measuring the interactions at that motif. However, we do have 
several (over 1000 in the training data) of designs where we combine multiple motifs together 
in different combinations (e.g. varying the biophysical parameters of the UP element and using 
either canonical or anti-canonical -10 and -35 hexamers) to observe the effects. We agree with 
the reviewer that our in vitro dataset (on its own) does not have sufficient breadth to fully test 
all possible combinations of interactions. This is the key reason why we (in our first submission) 
carried out a model benchmarking analysis using many datasets with distinct sequence 
compositions and experimental testing characteristics. For example, the Urtecho promoter 
dataset only utilizes a small number of different motifs (see Table below) and their 
combinations, which is not exhaustive; however, their experimental test system does a good job 
of measuring transcription rates (compared to prior studies) as they utilize a ribozyme to 
insulate transcription from translation and they integrate their test system into the genome to 
greatly reduce copy number variation. We also utilize our prior in vivo dataset (from Hossain 
et al.) containing 4350 highly non-repetitive promoter sequences, which are expressed from a 
multi-copy plasmid and do not use a ribozyme. We observe much higher variation in 
transcription rates from the Hossain dataset, which is not surprising given the copy number 
variation and confounding effects from differences in mRNA decay & translation. The Lagator 
et al. datasets (Pr and Pl) are constructed from randomized oligonucleotides, starting from a 
baseline sequence. As you can see from the Table below, when using that mutagenesis approach, 
the number of unique sequences per motif is directly proportional to the motif length. In contrast 
to our rational design approach, the datasets in Lagator et al. do not broadly sample the -10 
and -35 hexamer space. Altogether, there is no such thing as a “perfect dataset” and it is 
essential to test model predictions on many datasets to critically test the model’s generalizability, 
which is what we have done in our manuscript.  



 
Number of 

Unique Motifs 
Tested by 
Urtecho 

Tested by Lagator 
(Pl dataset) * 

Tested by Lagator 
(Pr dataset) * 

Tested by 
LaFleur 

UP 2 1738 6463 605 
-35 hexamer 8 202 278 4096 (all 

possible) 
-10 hexamer 8 224 262 4096 (all 

possible) 
Discriminator 8 271 313 735 

Spacer 8 1501 3597 229 
-10 extended 8 110 109 256 (all 

possible) 
ITR 8 578 562 582 

* From Lagator et al.  The random PR mutant library was created by cloning custom-made oligonucleotides 
(IDT Technologies), which had a 12% mutation rate for each of the 67 positions in the PR promoter (4% 
mutation chance for each possible mutation away from the wildtype). The PL mutant library was created in the 
same way except using mutation rates that were 9% per nucleotide (with 3% mutation chance for every 
possible non-wildtype mutation). 

 
As part of our model development, and with the results of Einav & Phillips 2019 in mind, in 
our original submission, we developed and tested a non-linear free energy model that includes 
all possible forms of cooperativity or anti-cooperativity that could take place between pairs of 
motifs. We apologize for not doing a great job of explaining this non-linear model in the original 
manuscript text and highlighting its comparison to the linear model. In the revised manuscript, 
we have added a section to the Results that more fully describes the development of the 
non-linear model (which we call the quadratic model), its training using the Urtecho 
dataset to identify the quadratic term coefficients, its accuracy metrics when applied on 
all datasets, and a thorough accuracy comparison with respect to the linear model. We 
found that the quadratic model is more accurate on the Urtecho dataset (its training dataset), but 
it had the same/similar or lesser accuracy on all other datasets (when using Pearson R2 as the 
metric) and it has lesser accuracy on all other datasets (when using the MAE or MSE as the 
metric). In the original submission, we offered an alternate explanation for the transcription 
inhibition trend observed in the Urtecho et al. data (Figure S7). In the revised manuscript, we 
expand the Discussion to provide more insight regarding this trend and highlight the lack of 
conservation across the other 31,000 in vivo promoters tested. Overall, there is not convincing 
data-driven evidence that avidity or cooperativity exists between the -10 and -35 hexamers. It 
is possible that the sigmoidal shape of the Urtecho dataset, which is caused by its genome-
integration, low “floor” in measured transcription rates and barcoding strategy, is artificially 
supporting the usage of a non-linear model.  
 
Furthermore, the focus on what goes on within each component while the context is fixed means 
that it is not clear from the presented manuscript that this model significantly outperforms the 
existing models. For example, the authors present a comparison to a recent paper by Lagator et al., 
and discuss that their model performs better on two independent datasets. However, their model 
performs very poorly on the datasets generated by that paper, and especially on the fully random 
mutant library (36N) where their model has an R2 of 0.15. This poses a serious question about the 
generalizability of the model, which is not helped by the fact that the authors do not discuss the 
libraries in which their model performs poorly but rather focus only on those examples where it 
performs better.  



 
When the MAE or MSE metric is used, it becomes clear that our model predictions have the same 
or higher accuracy on all datasets, including the Pl, Pr, and 36N datasets collected in Lagator et al 
(Table S4). The Pearson R2 metric is notoriously sensitive to clustering at the extremes of the 
range, which is observed in the Pl and Pr datasets. Moreover, it is expected that the Lagator model 
performs well on its own training data, but as highlighted above, their model training is highly 
biased to the 36N dataset. The high R2 on the Pr and Pl datasets come from clustering of predictions 
at the extreme end (Figure S11, Figure S13). When looking at completely unseen test data 
(Urtecho et al. and Hossain et al.), their extended model underperforms when compared to the 
standard model. This brings into question the motivation for their proposed extended model, and 
supports a linear additive model being the superior choice.  
 
I suspect that the two issues – of novelty and of generalizability – are linked, because the 
outstanding and important advances in the prediction of promoter function I believe stem from 
understanding how different components of a model interact with each other. Together, these 
concerns potentially make the audience of this paper more specialized, as the novelty is 
contained to synthetic biology applications (Fig.5 and 6) and the evaluation of less important 
contributors to expression levels (like the ITR and the UP element) (Fig.1D and 2C).  
 
We hope that we have clarified the novelties of our work and the generalizability of our model’s 
predictions. Our dataset is highly novel & avoids many of the confounding interactions & 
sources of variation found in other datasets. Our model is more accurate than prior models. And 
we apply our model to design synthetic promoters with targeted transcriptions and to remove 
internal promoters from other genetic parts. We show that the UP and ITR motifs play an 
important role in controlling transcription rate and are necessary interactions to include as we do 
include in our model (unlike other models). We show that most core promoters used in Synthetic 
Biology are affected by genetic context effects (avoidable using our model predictions & 
design). We show an example where internal promoters are found in an engineered genetic 
system, which can be removed by leveraging our model predictions & design algorithm. 
 
Detailed comments:  
It would be very useful to provide a breakdown of MSE of the presented model based on the 
general expression level being predicted. What I mean is, what is the MSE for promoters that have 
high expression level, vs those with intermediate, vs those with low. This would help understand 
if the model performs equally well across the entire expression range, or if it underperforms at 
some expression level ranges. If the later is the case, it would be important to explore why that 
might be, especially in the light of various mechanisms of promoter function not included in this 
model, such as those explored by Einav and Phillips or Lagator et al. 
 
We fully agree that the MSE (or MAE) is a better metric for accuracy and that it is important to 
test accuracy across the range of predicted transcription rates. To answer the reviewer’s question, 
we calculated the MAE and MSE for datapoints within binned predicted transcription rates 
for each dataset. We show this analysis in Figure S4 and we discuss this analysis in the 
Discussion section. The results show prediction accuracy was highest when there are a larger 
number of datapoints within each bin, suggesting that all datasets did not uniformly sample the 
transcription space.  



 
Figure S4: Model Residuals Across Transcription Space. (A) LaFleur linear model residual distributions 

across 20 evenly spaced binned binding free energies for Urtecho et al. (left), Hossain et al. (middle) and 

LaFleur et al. (right).  (B) LaFleur linear model residual distributions across 20 evenly spaced binned 

binding free energies for the Pl dataset from Lagator et al. (left), Pr dataset from Lagator et al. (middle) and 

36N dataset from Lagator et al. (right). Blue lines are MAE values which correspond to the left y-axis, red 

lines are the number of variants in each bin which correspond to the right y-axis. 

 
It would be really important to understand why the presented model performs poorly on the fully 
random promoter library from Lagator et al. (the 36N library). The low performance on random 
sequences strongly suggests that complex interactions based on genetic context of the promoter 
play a large role, at least while a promoter is defined as leading to a single TSS. Fig.5 addresses 
some of these questions, but in a very limited way using only 16 mutants. Providing deeper insights 
into what happens when a promoter moves from a given mutational neighbourhood to which their 
model is optimized and into random sequence space would be critical to increase the novelty of 
this work.  
 
We agree with the reviewer that the 36N promoter library remains challenging to predict its 
transcription rates. Most of the dataset contains weak promoters and our model calculations show 
that there are many predicted transcriptional start sites with low transcription rates. Further, Figure 
S4 (copied above) highlights that the 36N dataset lacks sufficient coverage of strong promoters, 
which could artificially reduce R2 since the full range of transcription space is not sampled. As 
mentioned previously, our model still achieves lower MSE and MAE (higher accuracy) on this 
dataset as compared to the Lagator et al. model. But from a practical point of view, we would never 
design a promoter sequence with so many transcriptional start sites as it becomes an unnecessary 
confounding variable to controlling transcription rate.  
 
Another good test in Fig.5 would be to design more promoters predicted to have same expression 
levels but very divergent sequences, to evaluate how repeatable the predictions are.  
 
We agree with the reviewer and have carried out additional experiments to answer this question. 
We designed and characterized an additional 19 non-natural promoters with highly 



dissimilar sequences with single TSSs and targeted transcription rates that span the 
accessible range, increasing the total count to 35 promoters, and increasing the dynamic 
range to 1525-fold. Designs include promoters of shorter length, which rely on the model’s ability 
to accurately quantify the effect of the context DNA in forming the full-length promoter. This data 
is now included in Figure 5. 
  
 
Legends to some of the figures and tables could be expanded to give more details. For example, 
Tables S4,5,6 – what do the colours indicate?  
 
We have expanded the legends of all Supplementary Figures and Tables S4, S5, and S6 to provide 
more detail. Green backgrounds in Tables S4, S5, and S6 indicate datasets which are unseen in 
training for both the LaFleur et al. and Lagator et al. models. The grey and white background colors 
in Tables S4, S5, and S6 have no meaning except to group together the statistics for the same 
datasets.  
 
I think one of the biggest contributions of this paper is how they used ML to derive model 
parameters that were comprehensible mechanistically. Expanding a bit in the main text on how 
this was done would be useful.  
 
Yes, we agree that the model’s physically meaningful coefficients are an important contribution. 
In the original manuscript, we provided an extensive explanation of the methodology behind this 
in the Methods. To further highlight the novelty of the approach, we added a paragraph to the 
Discussion section. 
 
In the -10 binding motif, the authors examine the role of mutations by looking at every possible 3-
mer. Energy Matrix-based models look at each individual position. I am not sure what the 
difference is between these two ways of modelling binding. For example, does the ‘individual’ 
position approach linearly add up to the observed effects of 3-mers? If not, when does it step away 
and why? Doing such an analysis can result in key insights into the interactions between mutations 
within each promoter component.  
 
In our model building process, we trialed several different approaches to describing the hexamer 
interactions, including models that depended on each 1-nt position (mono-nt models), each pair of 
2-positions (di-nt models), three adjacent 2mers (3 x 2mers), and two adjacent 3mers (2 x 3mers). 
We found that the two adjacent 3mer model yielded the highest accuracy and recapitulated known 
canonical motifs. The 2x3mer model fully encompasses the mono-nt model, but also includes 
synergistic interactions within each 3mer. We have included analyses in the revised Discussion 
section that compare the mono-nt vs. tri-nt models on the Hossain et al. and Urtecho et al. datasets, 
as well as a comparison on when the mono-nt and tri-nt models diverge (Figure S8 and 
Supplementary Data 4). 
 
What is the distribution of spacer lengths in the experimental dataset, are they evenly distributed 
across all 5 relevant lengths?  
 



There are 229 characterized promoter sequences with systematically varied spacer lengths and 
spacer nucleotide compositions. When applying our statistical thermodynamic model using the 
free energy coefficients, we enumerate all possible RNAP/s70 binding sites across a range of 
spacer lengths. We found that promoters with highly non-optimal spacer lengths (more than 20 
nt, less than 15 nt) have much higher binding free energies (less favorable) as compared to 
another potential binding site in the promoter (even when that alternative site is using non-
canonical -35 and -10 hexamers).  
 
How long are the UP and ITR sequences used in the ‘Promoter Context Effects’ section? It’s 
possible that their relatively low effect on model accuracy is due to their short length, meaning 
that what ‘context’ is might be longer than the varied UP and ITR elements. Therefore, it would 
be good to note their exact length.  
 
The UP and ITR sequences are 30 bp long. We have edited the manuscript to include this.  
 
The introduction mentions the word ‘interactions’ quite a bit, but as discussed above, it is unclear 
which interactions are actually studied. In particular, given that the experimental design has a very 
limited exploration of the interactions between promoter components (what I think is the most 
important area where we lack knowledge), I would avoid using this word. 
  
We use the word ‘interactions’ to describe the physical contacts between the amino acid residues 
in RNAP/s70 and the DNA nucleotides in the promoter. When RNAP/s70 has bound to a site, there 
are also entropic changes (e.g. stretching or compression of RNAP/s70 and kinking of the double-
stranded DNA). Altogether, these interactions control the quantity of Gibbs free energy released 
when RNAP/s70 binds to a site.  
 
Authors claim ‘a key novelty of our model is its complete set of interaction energies, covering all 
possible promoter sequences…’ – It would be important to clarify what the word ‘interaction’ 
means here, because it applies to only a small number of potential interactions between promoter 
components. 
 
We’ve clarified this sentence to be specific to the interactions between RNAP/s70 and double-
stranded DNA.  
 
The ‘model generality’ section would be easier to follow if the authors referred to the external 
datasets by the author names, as opposed to just the reference, as it is difficult to go back and forth 
to the reference section to recall that 16 is Urtecho et al. and 12 is Hossain et al. etc. 
 
We have revised the manuscript to refer to these datasets by their first authors.  
 
Reviewer #2 (Remarks to the Author): 
  
In the manuscript by LaFleur et al. (“Automated Model-Predictive Design of Synthetic Promoters 
to Control Transcriptional Profiles in Bacteria”), the authors create a biophysical model of 
transcription initiation of sigma -70 promoters in E. coli and train their model using high 
throughput assays and machine learning. Starting with 472 biophysical parameters, they train and 



test their model on 5193 synthetic promoter variants and use the resulting data to prune their model 
to 346 parameters. With this model, they characterize the impacts of individual promoter motifs 
on transcription initiation. The authors test their model against a previously published model using 
their own in vitro dataset, as well as the Urtecho and Hossain datasets. The authors show that the 
new model yields significant improvements in predicting transcription rates for synthetic 
promoters (R2 = .79, .60, and .45 respectively for the new model; vs. R2 = .60, .45, and .39 for 
previously published model). They also demonstrate the applicability of their model for gene 
circuit debugging and the generation of de novo promoters with desired transcription rates. This 
model, accessible as an online software tool, is well-suited for synthetic biologists looking to 
reliably predict and control transcription rates of their genetic constructs. This work advances the 
field of genetic circuit design by combining a biophysical model for transcription initiation with 
machine learning informed by massively parallel in vitro assays. This is a growing area of research 
and this is nice work that advances the state-of-the-art. The writing and figures are well composed 
and easy to understand. One the following comments are addressed, it should be suitable for 
publication in Nature Communications. 
  
Major Comments: 
1. The authors seem to sweep under the rug the fact that of their initial 14206 promoters, only 5193 
are used due to the recurring presence of a cryptic TSS. It would be helpful for the authors to 
explain the impact of the cryptic promoter within the ORF more explicitly. According to Fig 1C, 
this cryptic TSS looks to be consistently around position 105. Would the inclusion of promoters 
with cryptic start sites in the model training help inform parameters and motifs that more likely 
lead to a cryptic TSS? Could this improve biological relevance for predicting transcription rates of 
endogenous promoters and promoter design?  
 
We apologize for presenting a potentially misleading impression. The 5193 promoter sequences 
were selected because they have a single predominant transcriptional start site where the 
promoter’s motifs could be conclusively identified. This is important during model training to 
avoid incorrectly assigning a transcription rate measurement to an incorrect labeling of motifs. 
Otherwise, without the transcriptional start site mapping and filtering, the model would be trained 
on incorrectly labeled data. It is notable that our work is the first to apply transcriptional start site 
mapping to training predictive models of transcription rate. Prior models simply assumed that the 
transcriptional start site never shifted, which is incorrect. Our usage of TSS mapping and data 
filtering during model training does improve model accuracy, which is seen in the benchmarking 
metrics & statistics across all datasets. 
 
2. Additionally, what is the composition of the 5193 promoters used? Is the set skewed to variations 
within one of the promoter regions? It seems like this could skew the retained features and decrease 
the generalizability of the model. For instance, Table S1 shows all -10 and -35 3-mers were 
retained, but no ITR features were retained. What is the explanation for this, and how are the Gibbs 
free energy contributions calculated when no features are retained?  
 
The 5193 promoter sequences contained sequences encompassing all of the 472 features 
(interactions) originally proposed to be included in the model. The filtered data did indeed have 
sufficient information to distinguish the effects of these interactions. However, during model 
training & feature reduction, we found that the presence of 126 features (including several 



hypothesized interactions affecting ITR function) did not improve the model’s accuracy on the test 
dataset, were correlated with other more important features, or had the effect of slightly skewing 
3mer coefficients away from known canonical interactions (ie, our “positive controls”). By 
removing these 126 features, we arrived at a model with high accuracy on both the training and 
test datasets and that recapitulated the known canonical interactions. In the methods section in the 
original manuscript, we defined each of the retained features, which included the R-loop strength 
calculated from the ITR sequence. All promoter regions retained at least one feature.  
 
3. Regarding the model, the connection between the 346 features to the different Gibbs free energy 
contributions is not clear, especially the categorical properties such as spacer length. This 
information seems crucial for a biophysical model and should be included to strengthen the 
manuscript. Additionally, it is not obvious how to interpret and compare the different interaction 
energies in Figure 2E, have they been normalized? For instance, is a strong -35 interaction equal 
to a strong -10 interaction?  
 
Our Methods section describes how the machine learning was carried out to identify the interaction 
energy coefficients corresponding to each feature/interaction. We expanded our Methods to 
include details how we processed numerical and categorical features during training. Importantly, 
all of the coefficients have values on the same energy scale (in units of RT). In our free energy 
model, if the terms DG-35 and DG-10 both have the same energetic contribution (e.g. -1.0 RT), then 
they both contribute equally to determining the transcription initiation rate of the promoter. 
 
4. The authors tried a linear combination of different features to estimate interaction energies, and 
a linear combination of these interactions energies to estimate transcription rates. The manuscript 
would be enhanced by rationale for why this approach was chosen and a more in-depth discussion 
of the limitations when compared to other approaches such as non-linear regression or neural 
networks.  
 
As a comparison, we developed a non-linear model that includes cooperative/anti-cooperative 
coefficients for each pair of motif interactions. We briefly mentioned this model in the original 
manuscript submission, but it was not described well. In the revised manuscript, we have added a 
new section in the Results to explain how the non-linear model (with quadratic terms) was 
formulated and trained using the Urtecho dataset. We also included a discussion on the benefits of 
our method when compared to non-interpretable machine learning approaches. As a significant 
result, we found that the non-linear quadratic model does achieve higher accuracy on the Urtecho 
dataset, but its accuracy (MAE and MSE, Table S4) on all other data is either the same as the 
linear model or less. It is possible that the sigmoidal appearance of the Urtecho dataset, caused by 
the barcoding strategy and the “floor” in the observed transcription rate measurements, has the 
effect of incorrectly supporting the presence of cooperative interactions between the -10 and -35 
hexamer contacts. Recall that the Urtecho dataset uses genome-integrated expression cassettes.  
 
5. The authors do a good job by benchmarking different models and datasets, but it is hard to 
interpret the comparisons without stronger statistical tests, especially given the different number 
of parameters across models. The use of F-test or information criterion (AIC or BIC) to compare 
the models would help strengthen the author’s claims.  
 



In the revised manuscript, we carried out F-tests for each model comparison and included F-
statistics and p-values in the Supplementary Data. The F-test tests whether our model achieves a 
statistically significant reduction in the variance of the model error distribution. We found that our 
linear model achieves lower model error variances (fewer outliers) as compared to Lagator et al.’s 
Extended model.  We show the model error distributions in the Supplementary Information 
(Figure S13) and include the F-statistics in Supplementary Data 4.  
 
6. Page 9, “However, most promoters do not contain canonical motif sequences; their TX rates are 
controlled by a mixture of weaker interactions. A key novelty of our model is its complete set of 
interaction energies, covering all possible promoter sequences, which provides the ability to 
predict the TX rate of any s70 promoter.” The claim that their model covers “all possible promoter 
sequences” is misleading, especially given that only ⅓ of designed promoters were used in the 
training of the model. Additionally, other models (Urtecho et al.) can also predict transcription rate 
of any s70 promoter. 
 
Given any DNA sequence, our model calculates the strengths of the interactions controlling how 
well RNAP/s70 binds to the DNA to initiate transcription. For each potential start site in the 
sequence, our model enumerates all potential binding sites, and calculates the transcription 
initiation rate of the most stable binding complex. It is within this context that we conclude that 
our model can predict the transcription initiation rate of any DNA sequence. The size, breadth, and 
composition of our training dataset was sufficient to encompass all of the interactions in the model.  
 
Importantly, the Urtecho dataset includes only a very small number of motif sequences (e.g. only 
8 different -10 hexamers and only 8 different -35 hexamers) used in combinations to create a set 
of promoters. The model described in Urtecho et al. is not a sequence-complete model. It can not 
accept an input of arbitrary DNA sequence and perform a prediction. Instead, the model expects 
the input to be restricted to the alphabet used in the training data (e.g. 1 out of 8 -10 hexamers, 1 
out of 8 -35 hexamers). 
 
7. While the exclusion of alternative sigma-factors in the in vitro assay helps illuminate the “true” 
transcription rate due to sigma70-RNAP interactions, it does come at the expense of biological 
relevance and potentially limits the generalizability of this model for the prediction of transcription 
rates and promoter design. This is shown by the model’s low accuracy on in vivo datasets. This 
limitation should be discussed more explicitly.  
 
We agree that our model is currently limited to predicting sigma70-dependent promoter 
transcription rates. However, we do validate our model predictions on in vivo datasets (grown 
in the exponential phase of growth where sigma70 is predominant) and we do find that our 
model is more accurate than other models (Lagator) that were trained using only in vivo 
measurements. We conclude that our in vitro dataset provides more precise measurements that 
avoid several of the confounding factors present in in vivo datasets, leading to higher overall 
accuracy & generalizability.  
 
Further, all models developed to date have only ever been tested on cells growing in the 
exponential phase of growth. If we would like our models to predict transcription rates when 
cells are grown in other phases (e.g. stationary or heat shock), then we can not create a single 



model that mixes together the effects of multiple sigma factors. Instead, we need to develop 
multiple sigma-specific models and then combine together their predictions coincident with the 
sigma factor levels in each growth condition. Our current work shows that developing a sigma-
specific model of transcription initiation rate is not only possible, but advantageous over prior 
approaches. In ongoing work to be submitted in the future, we will describe additional sigma-
specific models that encompass multiple growth conditions.  
 
Minor Comments: 
  
1. Discussion about challenges to generalizing this work to other organisms and other sigma-
factors would be valuable.  
 
We have revised our Discussion section to highlight how our approach could be extended to 
additional sigma-factors and organisms. In particular, our in vitro approach makes it possible to 
develop predictive models of transcriptional initiation even when the organism remains genetically 
recalcitrant (e.g. low transformation efficiencies).  
 
2. In Fig 1D, the range transcription rates of each motif library is shown. The “all” bar may be 
misleading, as this represents the greatest difference between a single variant in one motif and a 
single variant in another motif. A total range of 133 does not cover the wide range of transcription 
rates in the genome. The model may behave poorly at the extremes (very low transcription or very 
high transcription), and there is no data or much discussion to address this point.  
 
The reviewer has brought up an interesting point. The range of transcription rates shown in 
Figure 1D are specific to constitutive promoters without any other factors present. Natural 
endogenous promoters will also be regulated by repressor and activator transcription factors 
that will decrease/increase their transcription rates by even greater amounts. There are also 
chromatin-like proteins (e.g. Fis, IHF, H-NS) that non-specifically regulate promoter 
transcription rates. In particular, we anticipate the weakest constitutive promoter can be greatly 
repressed by factors, resulting in a much lower transcription rate (reducing the minimum in the 
range down towards zero). We have revised the Discussion section to explicitly clarify this 
point. 
 
To address model accuracy across the range of transcription rates, we have calculated the MAE 
across promoters within binned transcription rates spanning the range (see plot below). This 
analysis is shown in Figure S4 and reported in the Discussion section. 



 
Figure S4: Model Residuals Across Transcription Space. (A) LaFleur linear model residual distributions 

across 20 evenly spaced binned binding free energies for Urtecho et al. (left), Hossain et al. (middle) and 

LaFleur et al. (right).  (B) LaFleur linear model residual distributions across 20 evenly spaced binned 

binding free energies for the Pl dataset from Lagator et al. (left), Pr dataset from Lagator et al. (middle) and 

36N dataset from Lagator et al. (right). Blue lines are MAE values which correspond to the left y-axis, red 

lines are the number of variants in each bin which correspond to the right y-axis. 

 
3. “We next evaluated whether these genetic context effects are potentially widespread by carrying 
out Monte Carlo simulations to predict the range of TX rates expected when varying the UP and 
ITR regions of several commonly used promoters (Figure 4B). Promoters with lower average TX 
rates exhibited higher sensitivity to changing the UP and ITR regions with an overall average 
coefficient of variation of 0.40.” Cannot tell this statement is true based on Figure 4B, there is no 
statistical significance test. Moreover, there is no methods section for Monte Carlo simulations.  
 
We carried out T-tests to find that promoters exhibited similar sensitivity to changing the 30 bp 
UP and ITR regions regardless of whether those promoters had high or low transcription rates (p 
= 0.06). However, when the context length is increased to 50bp, the sensitivity does become 
statistically significant (p = 1.8e-16). We have updated this section of the manuscript text to reflect 
these findings. We have also expanded the Methods section to include the Monte Carlo simulations. 
 
4. Page 5, "Here, we arbitrarily set DGtotal,ref to zero so that stronger (weaker) interaction free 
energies have more negative (positive) values in comparison." This sentence is hard to follow.  
 
We revised the manuscript to clarify this sentence. The free energy scale is defined so that our 
reference promoter has a DGtotal,ref of zero. The choice is arbitrary and does not affect any of the 
accuracy metrics. But selecting a zero reference energy means that a weaker than average 
interaction is associated with a positive free energy value and a stronger than average interaction 
is associated with a negative free energy value.  
 
5. Readability of Fig 6 is difficult. Axes for 6a can be standardized. Putative start sites should be 
labeled. Additionally, it is unclear where the cut off for a TSS comes from in 6a.  



 
The y-axes in Figure 6A show predicted transcription rates and measured flux ratios.  The scales 
are different because transcription rates are predicted on one scale and flux ratios are measured 
on another scale. Rather than normalizing and obscuring the origins of the numbers, we 
purposefully plotted the raw predictions and the raw measurements even though they use two 
different scales. The horizontal dashed lines show the cutoff values for the definition of a TSS. 
We have clarified this in the figure legend. Experimental TSS cutoffs are described Borujeni et 
al., and predicted TSS cutoffs in the Methods section.  
 
6. How does a 55% prediction accuracy for identifying cryptic promoters compare to other 
methods?  
 
This is somewhat an apples-to-oranges comparison as commonly used promoter finders will 
only report the presence/absence of a promoter with some score threshold. We ran BPROM 
(http://www.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb) 
on the circuit DNA sequence for an analogous comparison. The BPROM algorithm found only 
16 promoters (on both strands), which is much fewer than the 51 cryptic promoters (both strands) 
that our algorithm identified. The 16 promoters identified by BPROM contained canonical-like 
hexamer motifs whereas our model was able to identify cryptic promoters that utilized non-
canonical motif sequences.  
 
7. Why is the train-test split 90-10 when figure 2A shows minimum error at ~25% training set size?  
 
Figure 2A shows that model’s mean absolute error converge to the same number when utilizing 
either the train dataset or the test dataset. This point of convergence occurs when only about 
1250 datapoints are utilized, which is much less the total size of the dataset. This is called a 
learning curve in the machine learning field. It shows that model training did not over-fit the 
data and that we had sufficient data to develop a generalized model. If the mean error on the 
training dataset was always less than the mean error on the test dataset, that would indicate 
over-fitting. And if the mean errors across the training & testing datasets never converged, that 
would mean that we did not have sufficient data to fully train the model. 
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introductions to the manuscript that the authors did to emphasize the novelty of their manuscript 
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We reviewed the revised manuscript by LaFleur et al. (“Automated Model-Predictive Design of 

Synthetic Promoters to Control Transcriptional Profiles in Bacteria”). The revised manuscript is 

notably improved compared to the initial submission. Most substantively, additional comparisons, 

statistical tests and discussion related to the models are now included. Overall, this reviewer’s 

concerns have been addressed.
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