OMTN, Volume 29

Supplemental information

A tRNA-derived fragment of ginseng protects

heart against ischemia/reperfusion injury via

targeting the IncRNA MIAT/VEGFA pathway

Kua Hu, Tong-Meng Yan, Kai-Yue Cao, Fang Li, Xiao-Rong Ma, Qiong Lai, Jin-Cheng Liu, Yu Pan, Jun-Ping Kou, and Zhi-Hong Jiang

Gene Symbol	Туре	Context+	Structure score	Energy	^a Associated disease
Pclo	Non-Coding	-0.303	314	-38.66	Pontocerebellar hypoplasia
Pi16	Non-Coding	-0.396	290	-34.75	Corneal dystrophy Prostate cancer
Atp2b4	Coding	-0.341	286	-31.67	Long Qt Syndrome
P2rx2	Coding	-0.535	286	-28.29	Deafness
Actr5	Coding	-0.264	179	-30.52	Intellectual disability
Ovol1	Coding	-0.122	172	-32.05	Colon Small Cell Carcinoma Fetal Encasement Syndrome.
Spryd3	Coding	-0.229	171	-34.77	Lissencephaly
Ccdc28a	Coding	-0.203	171	-26.33	Bardet-Biedl Syndrome
MIAT	Non-Coding	-0.038	170	-30.1	Myocardial infarction Nervous system disease.
Pdzd3	Coding	-0.28	169	-27.6	Diarrhea

Table S1. Top 10 candidate targets prioritized by bioinformatics prediction.

^aReferred to GeneCard (https://www.genecards.org/)

Table S2. Sequence of the biotinylated DNA probes for purification of ginseng tRNAs.

tRNA	Probe sequence (5'-Biotin)	Length (mer)	Mass (Da)	Tm (°C)
tRNA ^{His(GUG)}	5'-CATGGTGGATTCACAATCCACTGCCTTGAT-3'	30	9564.0	68
tRNA ^{Gly(GCC)}	5'-TCCTTGGCAAAGAGAAATTTTACCATTCGA-3'	30	9596.1	64
tRNA ^{Met(CAU)}	5'-TGACCTCAAGGTTATGAGCCTTGCGAGCTA-3'	30	9629.1	70
tRNA ^{Leu(UAA)}	5'-ACGCTCTTTAGCACGAGATTTTGAGTCTCG-3'	30	9595.50	68

Source	Code	Antisense derived from ginseng's tRNA (5' to 3')	Sense (5' to 3')	Length (mer)	Group
His(GUG)	HC70	GCGGAUGUAGCCAAGUGGAUCA	UGAUCCACUUGGCUACAUCCGC	22	5'-tRF
tRNA	HC71	UCAAUUCCCGUCGUUCGCCCCA	UGGGGCGAACGACGGGAAUUGA	22	3'-tRF
tRNA ^{Asp(GUC)}	HC72	GGGAUUGUAGUUCAAUCGGUCA	UGACCGAUUGAACUACAAUCCC	22	5'-tRF
	HC73	UCGAGCCCCGUCAGUCCCGCCA	UGGCGGGACUGACGGGGCUCGA	22	3'-tRF
tRNA ^{Gly(GCC)}	HC74	GCGGAUAUAGUCGAAUGGUAAA	UUUACCAUUCGACUAUAUCCGC	22	5'-tRF
	HC75	UCGAUUCCCGCUAUCCGCCCCA	UGGGGCGGAUAGCGGGAAUCGA	22	3'-tRF
tRNA -	HC76	GCCUUGGUGGUGAAAUGGUAGA	UCUACCAUUUCACCACCAAGGC	22	5'-tRF
	HC77	UCGAGUCCUCUUCAAGGCACCA	UGGUGCCUUGAAGAGGACUCGA	22	3'-tRF
tRNA ^{Met(CAU)} -	HC78	CGCGGAGUAGAGCAGUUUGGUA	UACCAAACUGCUCUACUCCGCG	22	5'-tRF
	HC79	UCAAAUCCUGUCUCCGCAACCA	UGGUUGCGGAGACAGGAUUUGA	22	3'-tRF
tRNA -	HC80	GGAGAGAUGGCUGAGUGGACUA	UAGUCCACUCAGCCAUCUCUCC	22	5'-tRF
	HC81	GGAGAGAUGGCUGAGUGGACUA	UGGCGGAAAGAGAGGGAUUCGA	22	3'-tRF
tRNA Gln(UUG)	HC82	UGGGGCGUGGCCAAGUGGUAAG	CUUACCACUUGGCCACGCCCCA	22	5'-tRF
	HC83	UCGAAUCCUUCCGUCCCAGCCA	UGGCUGGGACGGAAGGAUUCGA	22	3'-tRF
tRNA Glu(UUC)	HC84	GCCCCCAUCGUCUAGUGGUUCA	UGAACCACUAGACGAUGGGGGC	22	5'-tRF
	HC85	UCGACUUCCCCUGGGGGUACCA	UGGUACCCCCAGGGGAAGUCGA	22	3'-tRF
tRNA ^{Asn(GUU)} -	HC86	UCCUCAGUAGCUCAGUGGUAGA	UCUACCACUGAGCUACUGAGGA	22	5'-tRF
	HC87	UCGAAUCCUACCUGGGGAGCCA	UGGCUCCCCAGGUAGGAUUCGA	22	3'-tRF
tRNA ^{Pro(UGG)} -	HC88	AGGGAUGUAGCGCAGCUUGGUA	UACCAAGCUGCGCUACAUCCCU	22	5'-tRF
	HC89	GGUUCAAAUCCUGUCAUCCCUA	UAGGGAUGACAGGAUUUGAACC	22	3'-tRF

Table S3. Sequence information of tRFs derived from ginseng.

Table S4. Sequence of primers used for quantitative real-time PCR analysis.

Targeted RNA name	Primers (5'>3')		Amplification efficiency
MIAT	Forward	5'-TGCAAGTCCCCTCGTCTCTA-3'	104.20
	Reverse	5'-AGACCAAAGGTAGCCACTGC-3'	104.2%
VEGFA	Forward	5'-CAGCTATTGCCGTCCAATTGA-3'	05.2%
	Reverse	5'-CCAGGGCTTCATCATTGCA-3'	93.5%
β -action	Forward	5'-AAGATCAAGATCATTGCTCCTCC-3'	01.8%
	Reverse	5'-TAACAGTCCGCCTAGAAGCA-3'	91.8%

Figure S1. Cell viability assay and confocal visualization of HC83_mimc transfected with Lipofectamine RNAiMAX Reagent in normal and H/R-injured H9c2 cells. Cell viability assay of HC83_mimic at 3-900 nM transfected with Lipofectamine RNAiMAX Reagent for 24 hr (**A**) and 48 hr (**B**) in normal H9c2 cells by using CCK-8 kit. (**C**) Cell viability assay of HC83_mimic at 30-300 nM transfected with Lipofectamine RNAiMAX Reagent in H/R-injured H9c2 cells by using CCK-8 kit. (**D**) Fluorescence imaging of normal H9c2 cells which were treated with FAM-labeled HC83_mimic (green) at a concentration of 300 nM. Images were acquired by using a confocal laser microscope. Nuclei were stained with Hoechst 33342 (blue). (**E**) Fluorescence imaging of H/R-injured H9c2 cells which were treated with FAM-labeled HC83_mimic (green) at a concentration of 300 nM transfected with Lipofectamine RNAiMAX Reagent. Images were acquired by using a confocal laser microscope. Nuclei were stained with Hoechst 33342 (blue). Data are shown as the mean±SD. ####*P* <0.0001 *vs*. H/R, ****P* <0.001 *vs*. H/R, ****P* <0.001 *vs*. H/R, ***P* <0.01 *vs*. H/R, **P* <0.05 *vs*. H/R. *P* values were calculated using One-way ANOVA.

Figure S2. Effects of HC83_mimic on H9c2 cells treated with siMIAT were abolished. (A) The RNA expression level of MIAT on normal or H9c2 cells treated with siMIAT (siH9c2). H9c2 cells were treated with 300 nM siMIAT, then total RNA was extracted, and qRT-PCR was performed to evaluate the RNA expression level of MIAT. The results showed that the RNA expression level of MIAT of siH9c2 cells (18.93%) was significantly down-regulated compared to normal H9c2 cells (100%). (B) Cell viability assay of HC83_mimic on siH9c2 cells. The results showed that the effects of HC83_mimic on cell proliferation were almost abolished on siH9c2 cells. Data are shown as the mean \pm SD, n = 6. ####P < 0.0001 vs. Control. P values were calculated using One-way ANOVA.

Figure S3. Analysis of HC83 in small RNA of ginseng root by using the UHPLC-Q/TOF-MS method. (A-B) The EIC and deconvolution MS spectra of synthetic HC83 (upper) and its complementary sequence (below). (C) The TIC of small RNA of ginseng root and EIC of HC83 from ginseng. HC83 from ginseng was lower than 0.5 ng in small RNA of ginseng root. It is too low to be detected.

Figure S4. Amplification efficiency detection of the primers used for qRT-PCR experiments. For each PCR run, a standard curve of 5 independent dilutions was subjected. The calibration curves were constructed by plotting the Ct value against Log concentration, and the PCR amplification efficiency was calculated using the formula: $PCR \ efficiency = 10^{-1/slope} - 1$.