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Supplementary Note 1: Angular coefficients The angular coefficients in the general
form Cml,l+1 are derived by calculating the angular transition matrix element between an
initial state with angular momentum ` and a final state with angular momentum `+ 1:

Cm`,`+1 = (−1)`+m−1(`+ 1)1/2
(
`+ 1 1 `
−m 0 m

)
. (S1)

Supplementary Note 2: Continuum-continuum transition Applying and extending
the results of previous work [1,2,3], we use the universal behavior of the cc-transitions to
determine some of the terms in Eq. (3), thus reducing the number of unknown quantities.

Supplementary Figure 1 (a,d) presents the ratios between the two-photon transition
radial amplitudes, calculated as described in the methods section and defined as

α±
λ` =

a±(λ−1)λ`

a±(λ+1)λ`

, (S2)

for increasing or decreasing angular momentum from the same intermediate state as the
function of the kinetic energy of the electron. The different curves correspond to different
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Supplementary Figure 1: Continuum-continuum transitions. Calculated amplitude ratios
α±
λ` (a,d) and continuum-continuum phases φ±

Lλ (b-c and e-f) for the absorption (a-c) and emission
(d-f) processes. For the amplitude ratios, the curves correspond to different intermediate states
(λ=1,2,3 in blue, red, green, respectively) and different atoms/initial states (square, He, ` = 0);
(cross, Kr, ` = 2); (triangle, Ne, ` = 1); (circle, Ar, ` = 1). (b,e) refer to transitions with increasing
angular momentum, L = λ+ 1, while in (c,f), L = λ− 1 .
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intermediate states (λ=1,2,3 in blue, red and green) and different atoms and initial states.
The ratios show an universal behavior [3], independent of the atom. Only the orbital angular
momentum of the intermediate state, λ, is of importance.

We present φ±Lλ in Supplementary Figure 1 for increasing (b,e) and decreasing (c,f)
angular momenta, in the absorption (b,c) and emission cases (e,f). The colors and sym-
bols, corresponding to different intermediate angular momenta and atoms/initial states are
indicated in the figure caption. These results show that the variation of the continuum-
continuum phase is universal, depending mainly on whether the IR photon is absorbed or
emitted. For the absorption process, the cc-phase decreases as a function of kinetic energy
and is positive, while for the emission, it increases and is negative. Note that the phases
are not mirror image of each other, i.e. φ+Lλ 6= −φ

−
Lλ. The cc-phases depend on whether the

angular momentum increases or decreases, especially at low kinetic energy, as observed by
comparing (b) and (c), or (e) and (f). Finally, the cc-phases depend only slightly on the
intermediate angular momentum (compare blue and red curves) and not at all on the atomic
system (e.g. compare circle and triangle) in the range of energies studied here.

Supplementary Note 3: Phase retrieval Our channel-resolved amplitude and phase
retrieval is based on the knowledge of the cc-transitions. The unknown and known quantities
in Eq. (3), after having expressed the transition matrix elements as in Eq. (4), and used the
available information in Supplementary Figure 1, are indicated in Table 1 for an initial ` = 1
state. We note that only the phase difference ∆Φ2q = Φ2q+1−Φ2q−1, and not the individual
high-order harmonic phases, plays a role in Eq. (3). The number of unknown quantities is
therefore nine. While here the case of ` = 1 is shown, this is also true for higher initial
angular momenta.

Table 1: Unknown and known quantities involved in Eq. (1)

Unknown Known
quantities quantities

Atomic
phases

ϕ01,2q∓1, ϕ21,2q∓1 φ±
10, φ±

12, φ±
32, from Supp. Fig. 1(b,c,e,f)

2-photon
amplitudes

a±101, a±321 a±121 = α±
21a

±
321

α±
21 from Supp. Fig. 1(a,d)

Harmonic
phases

∆Φ2q = Φ2q−1 − Φ2q+1

We determine these nine unknown quantities using a global fit to our experimental
measurements. In general, multiphoton electron angular distributions can be written as an
expansion in Legendre polynomials [2,4,5,6]. For a two-photon transition, without parity
mixing, the expansion needs only three polynomials, P0(x) = 1, P2(x) = (3x2 − 1)/2, and
P4(x) = (35x4 − 30x2 + 3)/8, reading as

ISB(θ, τ) = h0(τ) + h2(τ)P2(cos θ) + h4(τ)P4(cos θ). (S3)

The theoretical expressions for the coefficients hi(τ), i = 0, 2, 4, can be obtained by expand-
ing Eq. (3) and replacing the products of spherical harmonics by Legendre polynomials,
leading to the following equations:
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The coefficients hi(τ) are extracted from the data by a fit of equation S3 to the back-
ground subtracted and normalized photoelectron angular distributions (PADs) for each de-
lay. Supplementary Figure 2 shows the variation of hi(τ) extracted from the experimental
data for each delay (black points). As is clear from Eqs. (S4-S6) and from Supplementary
Figure 2, each hi(τ) oscillates with the delay τ at the frequency 2ω and is therefore fully
determined by three quantities: mean value, amplitude and phase. Thus, a total of nine
parameters describe the angle and delay dependence of the sideband signal ISB(θ, τ). This
implies that the nine unknown quantities in table 1 can be determined through a global fit
of the three analytical expressions of hi(τ), to the experimentally measured coefficients in
Supplementary Figure 2. This simultaneous fit to the derived system of equations is based
on a Levenberg-Marquardt algorithm using a least square regression and extensively tested
for its convergence using theoretical data. The result of such a global fit is shown by the red
lines in Supplementary Figure 2.

The nine unknown quantities in table 1 are not completely independent, since the one-
photon ionization phases only appear as differences in Eqs. (S4-S6). We therefore lock ϕ01,15

for the first harmonic order (15) and determine the other three phases involved in this mea-
surement (ϕ21,15, ϕ01,17, ϕ21,17). The global fit is repeated for the next sideband (18), which
involves a contribution from the same harmonic order (17) as sideband 16. Using the pre-
viously determined phases for harmonic 17, we then retrieve the one-photon phases for
harmonic 19. This process is iteratively repeated over the entire energy range allowing us
to map out the energy dependence of the one-photon phases.
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Supplementary Figure 2: Global fit to experimental data. Delay dependence of the coeffi-
cients hi(τ), i = 0, 2, 4 for sideband 18. The black dots are obtained from the angular distributions
(Eq. S3) for each delay and the error bars correspond to one standard deviation. The red curves
are the result of a simultaneous fit of the delay dependent hi functions using Eqs. (S2-S4) in the
SM. The error bars indicate the standard deviation extracted from the fit.
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The fit allows the retrieval of the one-photon phases, the two-photon amplitudes and the
harmonic phase difference. However, since only the one-photon ionization is studied in this
work, only the one-photon phase is considered.

Supplementary Note 4: Error estimation The error bars of the extracted phases are
calculated in two steps: First, the standard deviation returned from the fit of equation (S3)
to the PADs is extracted. Second, the global fit of S4-S6 is performed 500 times, using values
for each hi(τ) normally distributed around the result of the fit and with a width equal to
the standard deviation determined in the first step. The standard deviation of the resulting
values for ϕ01, ϕ21 is then used for the error bars in figure 4.

Supplementary Note 5: Amplitude retrieval IH(θ) can be written as an expansion of
Legendre polynomials P0 and P2, where the two expansion coefficients can be written as:

h0 =
1

12π

[
a201 + a221

]
, (S7)

h2 =
1

3π

[1

2
a221 + a01a21 cos(ϕ01 − ϕ21)

]
. (S8)

The coefficients of the expansion h0 and h2 are extracted from the experimental data. Using
the one-photon phases obtained previously, we determine the relative radial amplitudes of
the λ = 0 and λ = 2 channels.
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