Supplementary Information

X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation

Jaeyong Lee^{1,2*}, Calem Kenward^{1*}, Liam J. Worrall^{1*}, Marija Vuckovic¹, Francesco Gentile³, Anh-Tien Ton³, Myles Ng¹, Artem Cherkasov³, Natalie C.J. Strynadka^{1†} and Mark Paetzel^{2†}

¹Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; ²Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; ³Vancouver Prostate Centre, The University of British Columbia, Vancouver, British Columbia, Canada

*These authors contributed equally.

† Correspondence to ncjs@mail.ubc.ca and mpaetzel@sfu.ca

This file includes:

Supplementary Figures 1-6 and Supplementary Tables 1-7

Supplementary Fig. 1. Representative electron density maps for bound cleavage sites. 2mFo-DFc electron density (contoured at 1.0σ) of each substrate sequence (C4-C14) shows presence of the bound C-terminal product within catalytic site of wildtype (C12-WT and C13-WT) and C145A (C4-C14) M^{pro} mutants.

Supplementary Fig. 2. The angles of approach that the C-terminus of donor protomers make towards the substrate specificity binding groove of its neighboring acceptor molecule. Donor protomers are colored and neighboring acceptor molecules are grey with a common orientation. Four different general approach clusters were observed for the presentation of the specificity residues (colored green, blue, yellow, and red) to the neighboring active site (colored grey) and as superposed collectively in the space filling surface diagram, top left, with corresponding superposition of donor line drawings right. The four approach clusters are further depicted individually. The $C\alpha$ of residue 306 in each grouping is shown as a sphere to highlight its position within the active site of the statically placed acceptor. The corresponding crystal lattice packing is also illustrated adjacent for each grouping. The calculated angle of approach is defined in the inset table (COM: Center of Mass).

Supplementary Fig. 3. Approach variant binding analysis. A-D Contact surface illustration and analysis of the M^{pro} donor/acceptor approach variants as shown and colored in Supplementary Fig. 2 highlighting their varied positioning on either side of the acceptor binding groove cleft (labelled subsites). The acceptor and donor residues involved (P6-P1 excluded), the buried surface as well as number of productive hydrogen bonds are listed in each case. E. A zoomed in view of the conserved aliphatic ridge at the entrance of the M^{pro} acceptor binding groove we hypothesize may ensure an open form for facilitated binding of multiple viral and human substrates. C4 donor is shown in red ribbon with C-terminal P6-P1 C α atoms denoted as red spheres, localized in the acceptor active site groove (grey molecular surface superposed with grey C α ribbon, highlighted side chains in CPK with green carbons and labelled).

B c5 A,B: RMSD = 0.962 (34 to 34 atoms)

С

C5-AE A,B: RMSD = 1.337 (38 to 38 atoms)

D c6-P22,2, - 1 Ct

Е с6-Р2,

A,B: RMSD = 0.079 (37 to 37 atoms)

C8 A,B: RMSD = 0.231 (35 to 35 atoms)

Supplementary Fig. 4. Structural superposition of residues P6 (301) through P1 (306) for all protomers within the asymmetric unit of each cleavage site variant crystal. Listed above the line structure of the superimposed chains are the root mean square deviation values for each chain and the number of common atoms applied to the alignment onto chain A. Each chain has a different color for the carbons which is defined by the legend below each alignment. Each residue is labeled. All resulting RMSD values are listed in Å units.

Oxt

C13: NVATLQ WT form 2

Supplementary Fig. 5. A summary of hydrogen bonding interactions between the P6 (301) through P1 (306) residue atoms of the 10 cleavage site variants and the atoms within the substrate binding site of M^{pro}. Standard deviations for the hydrogen bond lengths are listed for those interactions that occur more than once. Grey text signifies the atoms involving sidechain hydrogen bond interactions. Top left is a summary of all observed hydrogen bonds, side chain (light grey lines/values) or main chain (black lines/values). Black text signifies atoms involved in mainchain hydrogen bond interactions.

Supplementary Fig. 6. 2D chemical drawings of drug candidates nirmatrelvir and PF-00835231. Oxygen and nitrogen atoms involved in interactions in PDB 7RFS (A) or 6XHM (B) are numbered

	10	
Mara plaamid	10-	MGSSHHHHHH GSGLUPEGSA SMSDSEVNOE AKPEVKPEVK PETHINIKUS DGSSEIFFKI KKTTPLERIM
Nipro plasmio		-40 -30 -20 -10 -1 1 10 20
expresses His-		EAFAKROGKE MDSLRFLYDG IRIOADOTPE DLDMEDNDII EAHREOIGG- SGFRKMAFPS GKVEGCMVQV
SUMO-Mpro fus	ion	30 40 50 60 70 80 90
protein		TCGTTTLNGL WLDDVVYCPR $\frac{\mathbf{H}}{\mathbf{U}}$ VICTSEDML NPNYEDLLIR KSNHNFLVQA GNVQLRVIGH SMQNCVLKLK
		100 110 120 130 140 150 160
		VDTANPKTPK YKFVRIQPGQ TFSVLACYNG SPSGVYQCAM RPNFTIKGSF LNGS <u>C</u> GSVGF NIDYDCVSFC
		YMHHMELPTG VHAGTDLEGN FYGPFVDRQT AQAAGTDTTI TVNVLAWLYA AVINGDRWFL NRFTTTLNDF
		240 250 260 270 280 270 280 270 300 300
		NEVAMATINIE FLIQUNVDIL GELSAQIGIA VEDMCASEAE EEQNGMINGAT IEGSAELEEDE FIFFDVVAQC SGVIFQ
Codon optimized	ł	5'- CATCACCACCATCATCACGGCTCTGGATTGGTCCCCCGCGGCAGTGCTTCGATGAGCGACTCTGAA
Mpro gene segue	nce	GTTAATCAGGAGGCCAAACCTGAGGTAAAACCGGAAGTGAAGCCAGAGACTCATATTAACTTGAAGGTATCCGATGGCTCCTC
including N-term	inal	CGAGATTTTTTTCAAAATTAAAAAAACGACACCTCTGCGCCGTCTTATGGAGGCTTTCGCTAAACGTCAAGGAAAGGAAATGG
	inai	${\tt ACTCTCTGCGCTTTTTATATGATGGTATTCGTATTCAGGCCGATCAGACACCGGAAGACCTTGACATGGAAGATAACGACATC}$
11156-30100-lay		ATTGAGGCCCACCGTGAACAGATCGGTGGGTCTGGCTTTCGTAAGATGGCCTTCCCATCAGGTAAAGTTGAGGGATGCATGGT
		GCAGGTTACATGCGGCACTACGACGCTTAACGGCCTGTGGCTCGACGATGTGGTTTATTGCCCACGTCATGTGATTTGCACTT
		CTGAAGACATGCTGAACCCAAATTATGAAGATTTACTGATTCGCAAAAGTAATCATAATTTTCTGGTACAGGCGGGGAACGTT
		CAACTGCGCGTCATCGGGCACTCTATGCAGAATTGCGTCCTGAAAGCTGAAAGTTGATACTGCGAACCCCAAAAAACACCCAAAATA
		TAAGTTTGTGCGCATTCAACCGGGCCAAACTTTCAGTGTTTTGGCTTGTTATAACGGCAGTCCGTCGGGTGTATATCAGTGCG
		CAATGCGTCCTAATTTCACGATTAAGGGGTCTTTTCTCAATGGGTCCTGTGGTTCCGTTGGTTTTAATATTGACTATGATTGC
		GTGTCATTCTGCTATGCACCATATGGAGTTACCGACCGGACGGCACGGACCGGACCGGACCGGACCGGACCGGACCGGACCGGACCGGACCGGACCGGACGGCAATTTTATGGCCC
		TTTTGTAGATCGTCAGACCGCCCAAGCCGCTGGTACGGATACCACCACTATCACCGTGATGTTTTAGCGTGGCTGTACGCAGCGG
		TGATCAACGGGGGACCGTTGGTTTTTGAATCGCTTTACTACAGGTTAAACGATTTCAACCTCGTTGCCATGAGAACAATAAT
		ACTOMADARCIGITIGCAAMACGGGATGARCAGCCGIACTACIGGGIGGGAGGAIGAGIIIACGCCGIICG
C4 – TSAVLQ		
	fwd	5'- CGTTCGACGTGGTCCGGCAATGTAGTGGCGTGACCTTCCAATAACTCGAGCACCACCACC -3'
	rev	5'- GGTGGTGGTGCTCGAGTTATTGGAAGGTCACGCCACTACATTGCCGGACCACGTCGAACG -3'
C5 – SGVTFQ		
	fwd	5' = GGTCCGGCAATGTACCTCAGCTGTTTTGCAATAACTCGAGCACCACCACCACCACCACCACCACCACCACCACCAC
	rov	
	Iev	
CO-KVAIVQ	6 I	
	twa	5'- CGTTCGACGTCCGGCAATGTAAGGTAGCTACTGTGCAATAACTCGAGCACCACCACC -3'
	rev	5'- GGTGGTGGTGCTCGAGTTATTGCACAGTAGCTACCTTACATTGCCGGACCACGTCGAACG -3'
C7 – NRATLQ		
	fwd	5'- CGTTCGACGTGGTCCGGCAATGTAACCGAGCTACTTTGCAATAACTCGAGCACCACCACC -3'
	rev	5'- GGTGGTGGTGCTCGAGTTATTGCAAAGTAGCTCGGTTACATTGCCGGACCACGTCGAACG -3'
C8 – SAVKLQ		
	fwd	5'- CGTTCGACGTGGTCCGGCAATGTTCCGCAGTTAAGTTGCAATAACTCGAGCACCACCACC _3'
	rov	
	100	
C9 - ATVILLO	المناط	
	twa	5'- CGTTCGACGTCGGCCCGCCACTGTGCCACCACTCGTTTGCAATAACTCGAGCACCACCACC
	rev	5'- GGTGGTGGTGCTCGAGTTATTGCAAACGAACTGTGGCACATTGCCGGACCACGTCGAACG -3'
C10 – REPMLQ		
	fwd	5'- CGTTCGACGTGGTCCGGCAATGTCGCGAACCTATGTTGCAATAACTCGAGCACCACCACC -3'
	rev	5'- GGTGGTGGTGCTCGAGTTATTGCAACATAGGTTCGCGGACATTGCCGGACCACGTCGAACG -3'
C12 – PHTVLQ		
		$5'$ - CGTTCGACGTGGTCCGGCAATGTCCCCCATACTGTTTTGCAATAACTCGAGCACCACCACC $_3'$
	fwd	
	rev	5 - GEIGEIGEIGEIGEIGEIGEIGEIGEIGEIAEIAIIGEAAAACAGIATGGGGACATTGCCGGACCACGTCGAACG -3'
UI3 – NVATLQ		
	fwd	5'- CGTTCGACGTGGTCCGGCAATGTAACGTAGCTACTTTGCAATAACTCGAGCACCACCACC -3'
	iwa	
	rev	5'- GGTGGTGGTGCTCGAGTTATTGCAAAGTAGCTACGTTACATTGCCGGACCACGTCGAACG -3'
C14 – TFTRLQ		
	fwd	5'- CGTTCGACGTGGTCCGGCAATGTACCTTCACTCGTTTGCAATAACTCGAGCACCACCACC3'
	rev	
C145A Qubatitut	ion	
UT45A SUDSILIUI	1011 £	
	twd	5'- CGATTAAGGGGTCTTTTCTCAATGGGTCCGCTGGTTCCGTTGGTTTTAATATTGACTATG -3'
	rev	5'- CATAGTCAATATTAAAACCAACGGAACCAGCGGACCCATTGAGAAAAGACCCCTTAATCG -3'

Supplementary Tab	le 2. Crystalliz	ation Condition	ns									
Construct	C4 TSAVLQ C145A	C6 KVATVQ C145A (form 1)	C6 KVATVQ C145A (form 2)	C7 NRATLQ C145A	C8 SAVKLQ C145A	C9 ATVRLQ C145A	C10 REPMLQ C145A	C12 PHTVLQ C145A	C13 NVATLQ C145A	C14 TFTRLQ C145A	C12 PHTVLQ WT	C13 NVATLQ WT
Concentration (mg/mL)	9.4	14.8	14.8	11.6	9.0	25.8	20.3	15.9	12.4	16.0	25.2	13.5
Screen	PACT-D7‡	PACT-C8	JCSG-A9	JCSG-C4	PACT-H4‡	JCSG-D3	Class-B12	JCSG-A7	PACT-B3‡	PACT-B3	JCSG-G8	JCSG-F7
	0.1M Tris (pH 8.0)	0.1M HEPES (pH 7.0)	(pH 6.3)	0.1M HEPES (pH 7.0)	0.1M Tris (pH 8.5)	0.1M Na/K phosphate (pH 6.2)	0.1M tri-Na Citrate (pH 5.6)	0.9M CHES (pH 9.5)	0.1M Na citrate (pH 5.6)	0.1M MIB buffer (pH 6.0)	0.15M DL-Malic acid (pH 7.0)	0.8M Succinic Acid (pH 7.0)
Crystal Condition	20% PEG 6K	20% PEG 6K	20% PEG 3350	10% PEG 6K	20% PEG 3350	50% PEG200		20% PEG 8K	16% PEG 2K	25% PEG 1500	20% PEG 3350	
	0.3M NaCl	0.2M NH4CI	0.2M NH4CI			0.2M NaCl	35% t-Butanol					
Beamline	APS 23IDD	ALS bl502	APS 23IDB	CLS CMCF BM	APS 23IDB	APS 23IDB	CLS CMCF BM	APS 23IDB	ALS bl501	APS 23IDB	CLS CMCF BM	ALS bl502
Wavelength (Å)	1.033	0.979	1.033	1.521	1.033	1.033	1.180	1.033	0.977	1.033	1.180	0.979
Resolution	2.00 Å	1.80 Å	1.50 Å	2.31 Å	2.40 Å	2.67 Å	1.50 Å	2.49 Å	1.98 Å	2.20 Å	2.26 Å	1.60 Å
Space Group	P22 ₁ 2 ₁	P22 ₁ 2 ₁	P2 ₁	C2	P212121	C2	P2 ₁	P2 ₁	C2	P21	P21	P2 ₁
Unit Cell Dimensions <i>a, b, c</i> (Å)	67.3, 107.4, 138.1	67.1, 108.5, 137.8	47.9, 105.1, 52.3	166.1, 174.9, 96.3	85.8, 117.2, 121.4	275.6, 217.2, 104.6	49.7, 107.4, 53.4	67.3, 107.9, 277.2	105.9, 216.8, 121.3	49.1, 105.5, 53.3	67.3, 107.9, 277.2	49.0, 107.4, 54.4
α, β, γ (°)	90.0, 90.0, 90.0	90.0, 90.0, 90.0	90.0, 104.5, 90.0	90.0, 106.3, 90.0	90.0, 90.0, 90.0	90.0, 111.0, 90.0	90.0, 103.8, 90.0	90.0, 90.7, 90.0	90.0, 94.0, 90.0	90.0, 104.0, 90.0	90.0, 90.7, 90.0	90.0, 103.5, 90.0
Chains in ASU	3 Chains	3 chains	2 chains	7 chains	4 chains	14 chains	2 chains	12 chains	7 chains	2 chains	12 chains	2 chains
Solvent content	49.1%	49.4%	33.5%	55.9%	44.5%	59.5%	38.8%	49.6%	57.4%	36.9%	52.5%	39.2%
Matthew's coefficient	2.41	2.43	1.85	2.79	2.22	3.03	2.01	2.44	2.88	1.95	2.59	2.02

‡ Crystal screen condition optimized.

Supplementary Ta	ble 3. X-ray C	rystallograph	ic Data Statis	tics									
Construct	C4 TSAVLQ C145A	C5‡ SGVTFQ C145A	C6 KVATVQ C145A (form1)	C6 KVATVQ C145A (form 2)	C7‡ NRATLQ C145A	C8 SAVKLQ C145A	C9‡ ATVRLQ C145A	C10 REPMLQ C145A	C12‡ PHTVLQ C145A	C13 NVATLQ C145A	C14 TFTRLQ C145A	C12‡ PHTVLQ WT	C13 NVATLQ WT
PDB Accession code Data collection													
Space group Cell dimensions	P22121	P21	P22 ₁ 2 ₁	P21	C2	P212121	C2	P21	P21	C2	P21	P21	P21
a, b, c (Å)	67.3, 107.4, 138.1	123.7, 80.3, 63.3	67.1, 108.5, 137.8	47.9, 105.1, 52.3	166.1, 174.9, 96.3	85.8, 117.2, 121.4	275.6, 217.2, 104.6	49.7, 107.4, 53.4	67.3, 107.9, 277.2	105.9, 216.8, 121.3	49.1, 105.5, 53.3	67.3, 107.9, 277.2	49.0, 107.4, 54.4
α, β, γ (°)	90.0, 90.0, 90.0	90.0, 90.2, 90.0	90.0, 90.0, 90.0	90.0, 104.5, 90.0	90.0, 106.3, 90.0	90.0, 90.0, 90.0	90.0, 111.0, 90.0	90.0, 103.8, 90.0	90.0, 90.7, 90.0	90.0, 94.0, 90.0	90.0, 104.0, 90.0	90.0, 90.7, 90.0	90.0, 103.5, 90.0
Resolution (Å)	37.98 - 2.00 (2.07 - 2.00)	26.16 - 2.00 (2.07- 2.00)	60.32 - 1.80 (1.86 - 1.80)	45.61 - 1.50 (1.55 - 1.50)	46.22 - 2.31 (2.53 - 2.31)	58.6 - 2.40 (2.49 - 2.40)	166.0 - 2.67 (3.02 - 2.67)	44.00 - 1.50 (1.55 - 1.50)	60.87 - 2.49 (2.58 - 2.49)	47.50 - 1.98 (2.05 - 1.98)	28.30 - 2.20 (2.28 - 2.20)	98.66 - 2.26 (2.50 - 2.26)	43.55 - 1.60 (1.65 - 1.60)
CC1/2	1.000 (0.514)	0.980 (0.619)	0.999 (0.624)	0.995 (0.954)	0.998 (0.566)	0.998 (0.751)	0.994 (0.690)	0.997 (0.628)	0.997 (0.628)	0.853 (0.405)	0.997 (0.483)	0.999 (0.591)	0.999 (0.854)
R _{sym} or R _{merge}	0.024 (0.700)	0.141 (0.885)	0.104 (1.705)	0.052 (0.251)	0.073 (0.734)	0.155 (1.139)	0.164 (1.027)	0.134 (1.212)	0.134 (1.212)	0.238 (1.823)	0.161 (2.005)	0.115 (1.157)	0.076 (0.777)
R _{pim}	0.024 (0.700)	0.085 (0.777)	0.043 (0.735)	0.026 (0.122)	0.046 (0.471)	0.045 (0.313)	0.068 (0.426)	0.054 (0.49))	0.054 (0.490)	0.099 (0.805)	0.065 (0.797)	0.048 (0.479)	0.030 (0.314)
// σ/	13.29 (1.10)	7.71 (0.54)	14.10 (1.50)	21.52 (5.93)	11.20 (1.70)	14.29 (2.06)	8.50 (2.00)	18.68 (1.66)	9.10 (1.50)	11.65 (0.97)	9.64 (1.07)	10.7 (1.60)	17.12 (2.65)
Completeness (%)	99.92 (99.87)	96.03 (93.88)	99.95 (99.98)	94.74 (82.66)	93.10 (62.40)	99.83 (99.98)	92.20 (69.10)	94.96 (92.32)	72.6 (62.00)	99.90 (99.81)	99.82 (99.62)	93.3 0 (61.90)	96.94 (95.10)
Redundancy	2.0 (2.0)	2.8 (1.8)	12.0 (11.2)	5.1 (4.9)	3.4 (3.4)	12.6 (13.0)	6.8 (6.8)	6.9 (7.2)	7.0 (7.1)	6.2 (6.0)	7.0 (7.2)	6.4 (6.2)	7.1 (7.0)
Refinement Resolution	2.00 Å	2.00 Å	1.80 Å	1.50 Å	2.31 Å	2.40 Å	2.67 Å	1.50 Å	2.49 Å	1.98 Å	2.20 Å	2.26 Å	1.60 Å
No. reflections	68332 (6750)	40278 (3896)	93822 (9299)	75618 (6542)	80942 (4047)	48483 (4760)	120829 (15104)	82390 (7992)	100601 (5918)	188635 (18774)	26743 (2654)	115794 (5791)	69758 (6807)
Rwork / Rfree	0.206 / 0.235	0.227 / 0.261	0.179 / 0.217	0.154 / 0.182	0.190 / 0.237	0.177 / 0.239	0.202 / 0.237	0.162 / 0.191	0.194 / 0.264	0.176 / 0.223	0.192 / 0.245	0.197 / 0.248	0.154 / 0.186
No. atoms Protein Ligand/ion Water	7087 2 240	4997 0 268	7635 0 526	5381 0 603	16871 168 205	9660 10 247	33657 613 210	5441 1 598	28308 14 159	18084 191 1394	4793 17 115	28279 40 286	5327 67 469
<i>B</i> -factors (Å ²) Protein Ligand/ion Water	67.6 62.0 55.3	34.3 0.00 36.5	49.6 44.4 17.0	21.9 32.3 10.0	64.0 71.0 47.8	53.8 55.5 48.3	68.3 72.3 55.1	27.7 30.5 37.6	59.5 50.8 43.7	45.9 63.3 45.3	54.6 61.9 44.4	54.0 54.3 38.0	25.3 34.1 37.6
R.M.S. deviations Bond lengths (Å) Bond angles (°)	0.005 0.78	0.011 1.59	0.016 1.39	0.007 0.95	0.009 1.24	0.008 0.99	0.003 0.57	0.009 1.18	0.009 1.10	0.013 1.27	0.008 1.01	0.002 0.52	0.017 1.55
Ramachandran favored (%) allowed (%) outliers (%)	97.51 2.49 0.00	97.04 2.63 0.33	97.46 2.54 0.00	98.52 1.48 0.00	95.58 4.32 0.09	97.77 2.23 0.00	97.29 2.64 0.07	97.85 2.15 0.00	94.56 5.39 0.06	97.54 2.46 0.00	96.22 3.45 0.33	97.95 2.05 0.00	97.67 2.16 0.17

† Previously reported‡ Anisotropic cut-off applied to merged intensity data. See Table 4a and 4b.

Supplementary Table 4a.

"The anisotropic delta-B indicates the directional dependence of the intensity falloff with resolution and is defined as the difference between the two principal components with the most extreme values. An anisotropic ΔB of 10 A² indicates mild anisotropy.

An anisotropic ΔB over 25 A² indicates strong anisotropy.

An anisotropic ΔB over 50 A² indicates severe anisotropy.

The stronger the anisotropy, the more beneficial it is to employ the ellipsoidal truncation and anisotropic scaling."

-UCLA-Doe Institute: Diffraction anisotropy server. UCLADOE Institute from https://srv.mbi.ucla.edu/Anisoscale/discussion

Structure	Uncorrected high resolution limit	Mean I / σ(I) in highest	Completeness In highest resolution shell (%)	Estimates of I latti	resolution limit ce directions, ean Ι / σ(Ι) >1	s in reciprocal from (Å)	Anisotropic ∆B (Ų)	Resolution limit after STARANISO	Mean I / σ(I) In highest resolution shell	Completeness (ellipsoidal) in highest	
	cut-off (A)	resolution shell		h	k	I		correction	after correction	resolution shell (%)	
<u>C145A</u>											
C4 – TSAVLQ	2.00	1.6	100.0	1.99	2.28	1.89	13.0				
C5 – SGVTFQ*	2.00	0.6	93.6	2.00	2.01	2.00	7.1				
C6 – KVATVQ											
form 2	1.50	5.7	74.9	1.49	1.43	1.40	1.23				
form 1	1.80	1.5	100.0	1.66	1.98	1.66	11.4				
C7 – NRATLQ	2.60	1.3	99.5	2.48	2.23	2.87	19.0	2.31	1.7	62.4	
C8 – SAVKLQ	2.40	1.0	99.6	2.14	2.25	2.31	7.80				
C9 – ATVRLQ	2.80	0.8	99.8	3.22	2.81	2.67	39.9	2.67	2.0	69.1	
C10 – REPMLQ	1.50	1.5	92.0	1.55	1.50	1.50	0.74				
C12 – PHTVLQ	2.60	0.7	99.7	2.51	3.08	2.71	25.4	2.49	1.5	62.0	
C13 – NVATLQ	1.90	1.0	99.9	2.21	1.92	1.95	5.01				
C14 – TFTRLQ	2.20	1.4	95.3	2.15	2.21	2.62	11.07				
WT											
C12 – PHTVLQ	2.0	1.0	99.7	2.23	2.96	2.21	26.0	2.26	1.6	61.9	
C13 – NVATLQ	1.60	2.2	99.9	1.40	1.59	1.62	5.41				

*PDB ID: 7JOY was corrected with anisotropy server prior to deposition.

Tickle, I.J., Flensburg, C., Keller, P., Paciorek, W., Sharff, A., Vonrhein, C., Bricogne, G. (2018). STARANISO (http://staraniso.globalphasing.org/cgi-bin/staraniso.cgi). Cambridge, United Kingdom: Global Phasing Ltd.

Supplementary Table 4b.

	Diffraction limi	ts (Å) and	correspo	nding princ	cipal axes of the ellipsoid fitted to	Eigenvalues of overall anisotropy tensor on IFIs (Å ²) and corresponding						
	the diffraction	cut-off sur	face as d	irection cos	sines in the orthogonal basis,	eigenvectors of the overall anisotropy tensor as direction cosines in the						
	and in terms of reciprocal unit-cell vectors:						orthogonal basis, and in terms of reciprocal unit-cell vectors:					
C7 – NRATLQ C145A	2.461 2.311 2.882	0.8468 0.0000 0.5319	0.0000 1.0000 0.0000	-0.5319 0.0000 0.8468	0.890 a* - 0.456 c* b* 0.810 a* + 0.586 c*	51.93 44.22 79.33	0.8362, 0.0000, 0.5484,	0.0000, 1.0000, 0.0000,	-0.5484) 0.0000) 0.8362)	0.884 a* - 0.467 c* b* 0.825 a* + 0.565 c*		
C9 – ATVRLQ C145A	2.674 2.718 3.268	0.9945 0.0000 -0.1045	0.0000 1.0000 0.0000	0.1045 0.0000 0.9945	0.995 a* - 0.098 c* b* -0.274 a* + 0.962 c*	62.97 66.10 113.43	0.9928 0.0000 -0.1201	0.0000 1.0000 0.0000	0.1201 0.0000 0.9928	0.996 a* - 0.093 c* b* -0.310 a* + 0.951 c*		
C12 – PHTVLQ C145A	2.490 3.039 2.664	0.7106 0.0000 -0.7035	0.0000 1.0000 0.0000	0.7035 0.0000 0.7106	0.241 a* + 0.970 c* b* -0.231 a* + 0.973 c*	53.58 88.68 70.50	0.7131 0.0000 -0.7010	0.0000 1.0000 0.0000	0.7010 0.0000 0.7131	0.243 a* + 0.970 c* b* -0.229 a* + 0.973 c*		
C12 – PHTVLQ WT	2.490 3.039 2.664	0.7106 0.0000 -0.7035	0.0000 1.0000 0.0000	0.7035 0.0000 0.7106	0.241 a* + 0.970 c* b* -0.231 a* + 0.973 c*	53.58 88.68 70.50	0.7131 0.0000 -0.7010	0.0000 1.0000 0.0000	0.7010 0.0000 0.7131	0.243 a* + 0.970 c* b* -0.229 a* + 0.973 c*		

Supplementary	Supplementary Table 5. Chain Interactions											
Construct	C4 TSAVLQ C145A	C6 KVATVQ C145A (form 1)	C6 KVATVQ C145A (form 2)	C7 NRATLQ C145A	C8 SAVKLQ C145A	C9 ATVRLQ C145A	C10 REPMLQ C145A	C12 PHTVLQ C145A	C13 NVATLQ C145A	C14 TFTRLQ C145A	C12 PHTVLQ WT	C13 NVATLQ WT
Resolution Space Group Chains in ASU	2.00 Å P22121 3 Chains	1.80 Å P22121 3 chains	1.50 Å P21 2 chains	2.31 Å C2 7 chains	2.40 Å P212121 4 chains	2.67 Å C2 14 chains	1.50 Å P21 2 chains	2.49 Å P21 12 chains	1.98 Å C2 7 chains	2.20 Å P21 2 chains	2.26Å P21 12 chains	1.60 Å P21 3 chains
Representative Chains used for analysis	Chain C in active site of Chain B	Chain C in active site of Chain B	Chain A in active site of Chain A	Chain B in active site of Chain D	Chain B in active site of Chain A	Chain B in active site of Chain F	Chain A in active site of Chain A	Chain J in active site of Chain K	Chain B in active site of Chain F	Chain A in active site of Chain A	(Acyl) C in active site of B (Product) D in active site of F	Chain A in active site of Chain A
Chain Interactions	A: truncated to 302 B: truncated to 302 C: in active site of B	A: truncated to 302 B: truncated to 302 C: in active site of B	A: in active site of symm. Op. A B: in active site of symm. Op. B	A: in active site of symm. Op. G B: in active site of D C: in active site of B D: in active site of A E: in active site of F F: in active site of Symm. Op. C G: in active site of E	A: in active site of symm. Op. B B: in active site of A C: truncated to 302 D: truncated to 303	A: in active site of G B: in active site of F C: in active site of M D: in active site of A E: in active site of A F: in active site of A G: in active site of M J: in active site of N J: in active site of I L: in active site of I L: in active site of J N: in active site of J N: in active site of D	A: in active site of symm. Op. A B: in active site of symm. Op. B	A: truncated to 303 B: truncated to 303 C: in active site of B D: in active site of E E: truncated to 303 F: truncated to 302 I: in active site of H J: in active site of K K: truncated to 302	A: in active site of symm. Op. B B: in active site of F C: in active site of G D: in active site of E E: in active site of symm. Op. C F: in active site of D G: in active site of A	A: in active site of symm. Op. A B: in active site of symm. Op. B	A: truncated to 302 B: truncated to 302 C: in active site of B D: in active site of B E: truncated to 302 F: truncated to 302 H: truncated to 302 H: truncated to 302 L: in active site of H J: in active site of K K: truncated to 302 L: truncated to 302	A: in active site of symm. Op. A B: in active site of symm. Op. B

	Buried Surface Area by Mpro Catalytic Site Position (Å2)								
Construct	P6	P5	P4	P3	P2	P1	Total		
C4 – TSAVLQ	43	53	102	45	168	213	624		
C5 – SGVTFQ	53	30	66	30	128	146	452		
C6 – KVATVQ	39	68	101	44	134	215	601		
C6 – KVATVQ (form 2)	34	12	16	93	114	212	481		
C7 – NRATLQ	32	73	100	50	165	212	632		
C8 – SAVKLQ	49	40	133	70	144	207	643		
C9 – AVTRLQ	0	73	130	77	163	219	662		
C10 – REPMLQ (form 2)	71	14	54	165	159	218	681		
C12 – PHTVLQ	41	56	127	51	158	204	637		
C13 – NVATLQ	40	63	94	51	163	215	625		
C14 – TFTRLQ (form 2)	15	68	25	109	122	209	548		

Supplementary Table 6: P6-P1 buried surface area

M ^{pro} Catalytic Site Position	Hydrogen Bond	Occurrence	Mean Distance	Max Distance	Min Distance	Mean Bond Angle
P4	303[N] - T190[O]	6	2.9 ± 0.1 Å	3.1 Å	2.7 Å	167° ± 6°
P3	304[N] - E166[O]	8	2.9 ± 0.1 Å	3.2 Å	2.8 Å	162° ± 7°
10	304[O] - E166[N]	11	2.9 ± 0.1 Å	3.0 Å	2.8 Å	161° ± 3°
P2	305[N] - Q189[OE1]	7	2.9 ± 0.1 Å	3.0 Å	2.7 Å	155° ± 6°
	306[N] - H164[O]	11	3.1 ± 0.2 Å	3.5 Å	2.9 Å	167° ± 7°
	306[O] - A145[N]	10	3.0 ± 0.1 Å	3.3 Å	2.8 Å	170° ± 6°
	306[O] - G143[N]	11	2.8 ± 0.1 Å	2.9 Å	2.7 Å	139° ± 4°
P1	306[OXT] - H41[NE2]	10	2.8 ± 0.1 Å	3.0 Å	2.7 Å	168° ± 7°
	306[NE2] - E166[OE1]	10	3.3 ± 0.1 Å	3.4 Å	3.1 Å	130° ± 4°
	306[NE2] - F140[O]	11	3.1 ± 0.1 Å	3.3 Å	3.0 Å	141° ± 10°
	306[OE1] - H163[NE2]	11	2.7 ± 0.1 Å	2.9 Å	2.6 Å	166° ± 12°

Supplementary Table 7. Summary of commonly observed P6-P1 hydrogen bond interactions