Supplementary File for Review Only

Apigeninidin-enrich *Sorghum bicolor* (L. Moench) extracts alleviate Aflatoxin B₁-induced dysregulation of male rat's hypothalamic-reproductive axis.

Solomon E. Owumi^{1, *}, Moses T. Otunla¹, Uche O. Arunsi², Adegboyega K. Oyelere³

¹Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria, 200005.

²Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, UK, NG7 2RD.

³School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA 30332-0400

Running Title: Aflatoxin B₁ toxicity and apigeninidin in exposed rats Collection, identification, extraction and characterization of Apigeninidin from Sorghum bicolor

by Liquid Chromatography-Mass Spectrophotometry LC-MS.

Dried Sorghum bicolor sheets (5 Kg) was purchased from Bodija Market, Ibadan, Nigeria and

were pulverized into very fine powder. Geographically, Bodija market lies between longitude 3

54'36''E and 3 55' 12''E and latitude 7 25' 52''N and 7 26' 22''N. The plant samples were

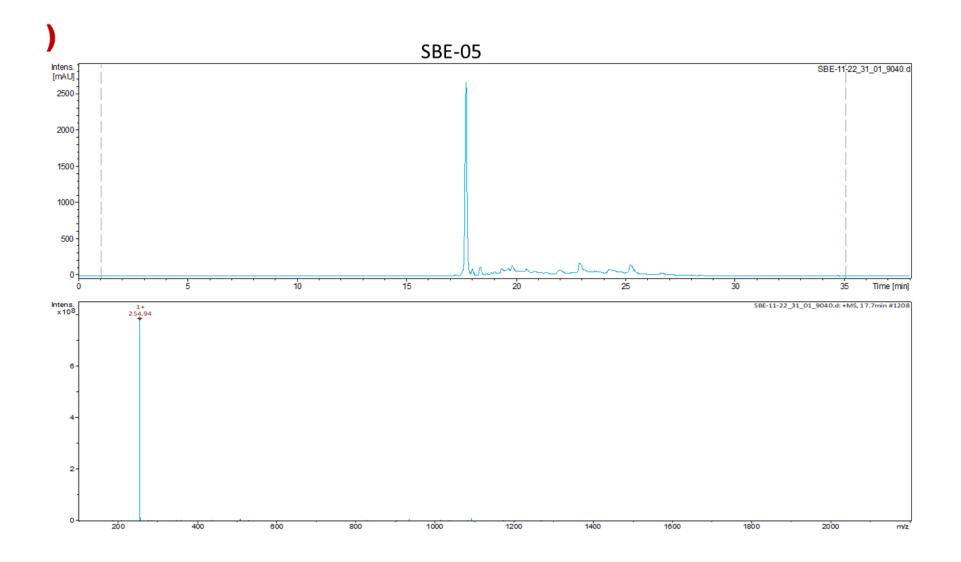
transported in a polythene bag to the Herbarium of the Department of Botany, University of

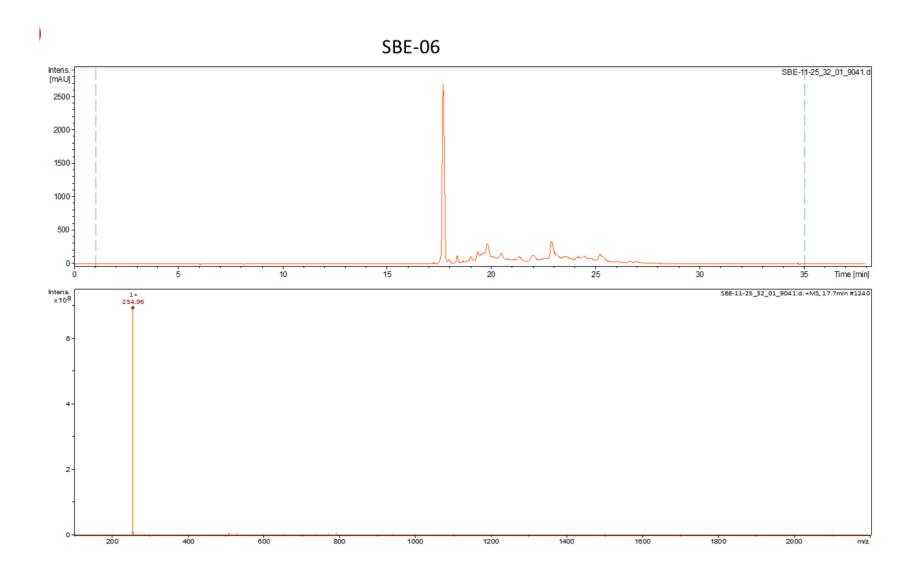
Ibadan, Ibadan, Nigeria for identification by a veteran taxonomist Mr. Donatus Esimekhuai. The

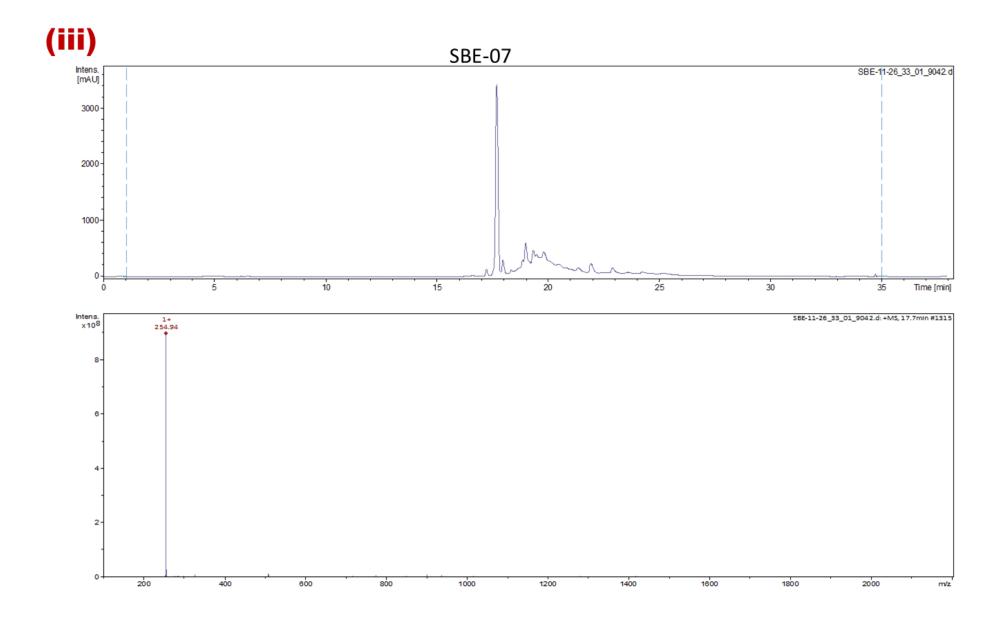
sample of S. bicolor were identified and deposited in the Department of Botany and a voucher

specimen -Accession number: UIH-23118- assigned for future reference.

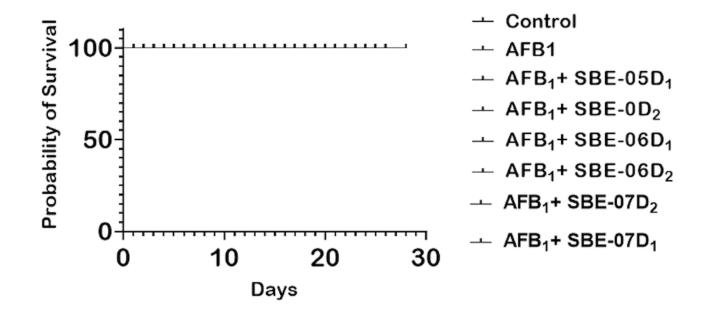
color Dogces 195

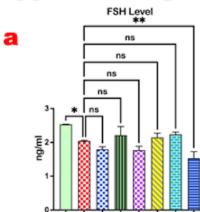

Experimentation with - *S. bicolor*- complied with all relevant institutional, national, and international guidelines and legislation. The plant was sorted to remove dirt and other extraneous materials and pulverized into fine powder.

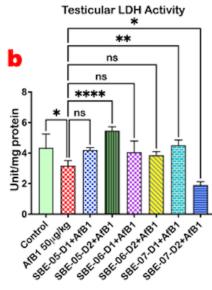

Extraction and phytochemical characterization of S. bicolor

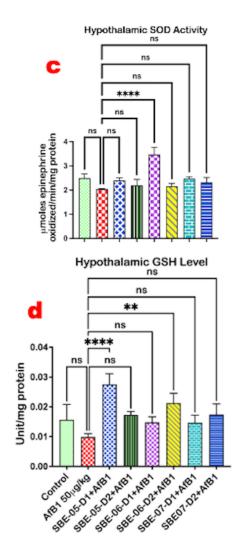

Sample of pulverized S. bicolor (120 g) is degreased with CH2Cl2 and subsequently extracted with CH2Cl2: MeOH 10:1 (twice) at 60oC and 0.1% HCl in EtOH at room temperature. Each filtrate was evaporated off to give SBE-05 (2.6 g), SBE-06 (1.44 g) and SBE-07 (4.85g) as brownish-red solid.

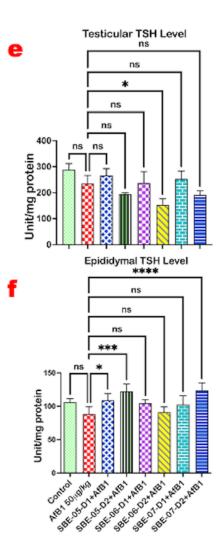
LC-MS analysis


The isolated solid from each fraction – SBE-05, SBE-06 and SBE-07 – was analyzed were analyzed by LC-MS, monitoring at 420 nm, on a Bruker amaZon SL ion trap mass spectrometer coupled to an Agilent 1260 HPLC. Chromatography was performed on Phenomenex C18 reversed phase HPLC column (250×4.6 mm; S/NO: H17-238591) at a flow rate of 0.5 mL/min; using 0.1% v/v formic acid in H2O (solvent A) and 0.1% v/v formic acid in MeCN (solvent B). The solvent gradient for chromatography elution is as follows: 0–5 min at 5% solvent B; 5-25 min from 5% to 100% solvent B; 25-28 min at 100% solvent B; 28-29 min from 100% to 5% solvent B; and 29-32 min at 5% solvent B. Mass spectrometry data were collected in the positive and negative ionization modes in the mass range m/z 100–1000 Da.

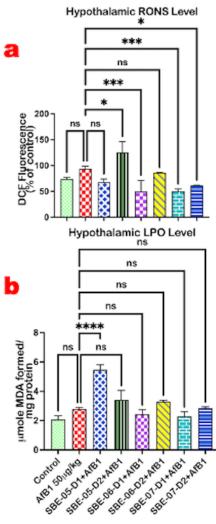


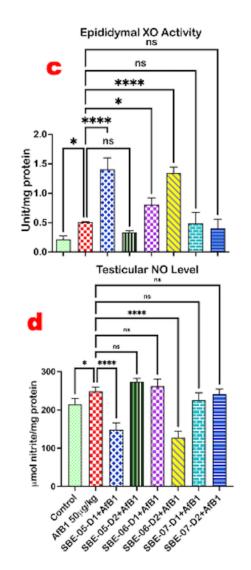

Supplementary S1

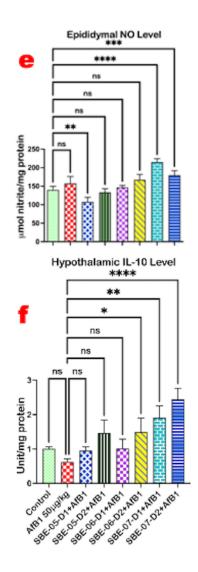



Supplementary Figure 1: Effect of API and AFB₁ treatment on experimental rats -Kaplan-Meyers Survival Indicator. AFB₁, 50µg/kg; AFB₁+SBE-05-D1, (0.05+5) mg/kg; AFB₁+SBE-5-D2, (0.05+10) mg/kg; AFB₁+SBE-06-D1, (0.05+5) mg/kg; AFB₁+SBE-06-D2, (0.05+10) mg/kg; AFB₁+SBE-07-D1, (0.05+5) mg/kg; AFB₁+SBE-07-D2, (0.05+10) mg/kg.

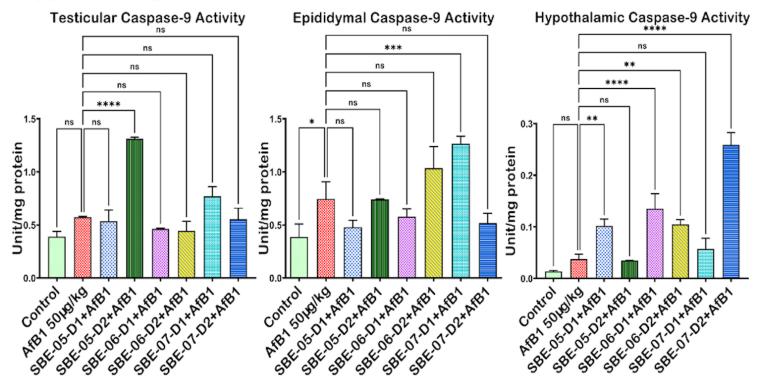
Supplementary S2







Supplementary Figure 2: Effect of API on testicular activities of FSH, LDH, and the levels of testicular, epididymal and hypothalamic SOD, GSH and TSH in AFB₁-treated rats. AFB₁, 50μ g/kg; AFB₁+SBE-05-D1, (0.05+5) mg/kg; AFB₁+SBE-5-D2, (0.05+10) mg/kg; AFB₁+SBE-06-D1, (0.05+5) mg/kg; AFB₁+SBE-06-D2, (0.05+10) mg/kg; AFB₁+SBE-07-D1, (0.05+5) mg/kg; AFB₁+SBE-07-D2, (0.05+10) mg/kg. Values are expressed as mean (SD) for 6 rats per group. *: Values differ significantly from control (p < 0.05). **: Values differ significantly from AFB₁ alone (p < 0.05). ns: not significant. FSH: follicle stimulating hormone; LDH: lactate dehydrogenase; SOD: superoxide dismutase; GSH: glutathione and TSH: total thiol.



Supplementary Figure 3: Effect of API on the levels of testicular, epididymal and hypothalamic RONS, LPO, XO, NO, IL-and 10 in AFB₁-treated rats. AFB₁, 50μ g/kg; AFB₁+SBE-05-D1, (0.05+5) mg/kg; AFB₁+SBE-5-D2, (0.05+10) mg/kg; AFB₁+SBE-06-D1, (0.05+5) mg/kg; AFB₁+SBE-06-D2, (0.05+10) mg/kg; AFB₁+SBE-07-D1, (0.05+5) mg/kg; AFB₁+SBE-07-D2, (0.05+10) mg/kg. Values are expressed as mean (SD) for 6 rats per group. *: Values differ significantly from control (p < 0.05). **: Values differ significantly from AFB₁ alone (p < 0.05). ns: not significant. RONS: reactive oxygen and nitrogen species; LPO: lipid peroxidation; XO: xanthine oxidase; NO: nitric oxide; IL-10: Interleukine-10.

Supplementary S4

Supplementary Figure 4: Effect of API on the activity of Caspase-9 in the testes, epididymis and hypothalamus of AFB₁-exposed rats. AFB₁, 50µg/kg; AFB₁+SBE-05-D1, (0.05+5) mg/kg; AFB₁+SBE-5-D2, (0.05+10) mg/kg; AFB₁+SBE-06-D1, (0.05+5) mg/kg; AFB₁+SBE-06-D2, (0.05+10) mg/kg; AFB₁+SBE-07-D1, (0.05+5) mg/kg; AFB₁+SBE-07-D2, (0.05+10) mg/kg. Values are expressed as mean (SD) for 6 rats per group. *: Values differ significantly from control (p < 0.05). **: Values differ significantly from AFB₁ alone (p < 0.05). ns: not significant.