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Figure S1. Bicarbonate levels control de novo nucleotide synthesis. Related to Figure 1.



(A) Schematic of *Cg-glucose and *N-(amide)-glutamine labeling into purine and pyrimidine
nucleotides.

(B) Uptake of glucose and glutamine monitored in response to bicarbonate starvation. HelLa cells
were cultured in dialyzed serum and were subjected to different concentration of NaHCO3 for 1h
and labeled with 3H-2-deoxyglucose or *Cs-glutamine over the last 5 min. The CPM values were
normalized to the protein concentration and uptake duration. Relative levels are shown. The data
are presented as the means + SDs of two independent experiments.

(C) Fractional abundance of 3C-labeled metabolite intermediates, as measured by targeted LC-
MS/MS, in HelLa cells grown in dialyzed serum and depleted of NaHCO3 for 1 h and labeled with
13Cs-glucose for 1 h. These data support the stable-isotope tracing experiments presented in
Figure 1D.

(D) Fractional abundance of **N-labeled metabolite intermediates, as measured as in C, in HeLa
cells grown in dialyzed serum and depleted of NaHCOs; for 1 h and labeled with **N-(amide)-
glutamine for 1 h. These data support the stable-isotope tracing experiments presented in Figure
1E.

(E) Peak areas of 1®N-labeled metabolite intermediates, as measured as in C, in HeLa cells grown
in dialyzed serum and depleted of NaHCOs; for 8 h and labeled with *N-(amide)-glutamine for the
final hour.

(F) Uptake of glycine, serine, formate and aspartate in response to different concentrations of
bicarbonate. HelLa cells were subjected to different concentrations of NaHCOs for 1 h and labeled
with *4C-glycine, **C-serine, *C-formate or *C-aspartate for the last 5 min. The CPM values were
normalized to the protein concentration and uptake duration. Relative levels are shown. The data
are presented as the means + SDs of two independent experiments.

(G) llustration of the fate of the 3-position carbon of serine into one-carbon metabolism, purine,
and deoxythymidylate synthesis.

(H) Cell cycle analysis of HelLa cells cultured in buffered DMEM medium (20 mM HEPES) in the
presence or absence of sodium bicarbonate (NaHCO3) over the indicated times.

() Immunoblots of HelLa cells treated as in H. Treatment with Bleomycin (10 pM, 8 h) was used
as positive control to induce y-H2AX phosphorylation.

(B)-(I) The data are graphed as the means + SDs of biological triplicates and are representative
of at least two independent experiments. *p < 0.05 was calculated by two-tailed Student’s t-test
for pairwise comparisons (C-E).
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Figure S2. The sodium bicarbonate SLC4A7 shows gene coessentiality with de novo
nucleotide metabolism. Related to Figure 2.



(A) The SLC4A7 coessentiality network reveals enrichment for the de novo nucleotide synthesis
pathways.

(B) Co-essentiality network of de novo purine and pyrimidine enzymes demonstrates the positive
correlation fitness with the SLC4A7 gene.

(C) Top 5 Co-dependencies from genome wide CRISPR knockout screens (DepMap 22Q1
Public+Score, Chronos) for the bicarbonate transporters.

(D) Immunoblots of HEK293E cells transfected with either empty vector or FLAG-SLC4A7 for 48
h. The HEK293E-transfected cells were incubated with Na+, **C-HCO3s" for 5 min to measure
bicarbonate uptake.

(E) Immunoblots of wild-type HelLa cells grown in 10 % serum and transfected with siRNA
targeting SLC4A7 or nontargeting controls for 48 h.

(F) Cell cycle analysis of HeLa cells transfected with siRNA targeting SLC4A7 or nontargeting
controls for 48 h and subjected to GO/G1 synchronization via a 24 h DMSO 1.5 % treatment. Cells
were released in the cycle, and the percentage of cells in the cell cycle phases was measured by
flow cytometry.

(G) Relative incorporation of **C from Na+, 2*C-HCO3;" into RNA. Labeling was performed for 6 h
in HeLa cells transfected with siRNA targeting SLC4A7 or nontargeting controls to measure de
novo purine and pyrimidine synthesis.

(H) Uptake of glutamine, glycine and aspartate measured in HelLa cells cultured in 10% serum
and transfected with siRNA targeting SLC4A7 or nontargeting controls for 48 h. Cells were labeled
with *C-glutamine, *C-glycine, or 1*C-aspartate over 5 min. The CPM values were normalized to
the protein concentration and uptake duration. Relative levels are presented. The data are
presented as the means + SDs of two independent experiments.

() Schematic illustrating the fate of hypoxanthine and uridine into the nucleotide salvage
pathways.

(J) Relative incorporation of *H from hypoxanthine or uridine into RNA. Labeling was performed
for the last 6 h in HeLa cells transfected with siRNA targeting SLC4A7 or nontargeting controls
for 48h.

p < 0.05, by two-tailed Student’s t-test for pairwise comparisons (D, G).
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Figure S3. SLC4A7 protein abundance is stimulated by growth factors to promote

nucleotide synthesis. Related to Figure 3.



(A) Acute Insulin stimulation increases SLC4A7 protein abundance. HelLa cells were stimulated
with insulin over time and immunoblots were performed to assess SLC4A7 protein levels, AKT
and mTORCL1 signaling.

(B) Bicarbonate transporters mRNA levels, as measured by gRT-PCR, in serum-starved HelLa
cells (15 h) and stimulated or not with insulin (100 nM) for the indicated times.

(C) Immunoblots from HelLa or HEK293E cells serum starved for 15 h and stimulated or not with
EGF (50 ng/mL), insulin (Ins, 100 nM), or IGF1 (50 ng/mL).

(D) Relative incorporation of *C from glycine or aspartate into RNA. Wild-type or ASLC4A7 HelLa
cells were serum starved for 15 h and stimulated or not with IGF1 (50 ng/mL) for 3 h in the
presence of the radiotracers.

*p < 0.05 by one-way ANOVA with Tukey’s post hoc test for multiple pairwise comparisons (D).
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Figure S4. SLC4A7 is a downstream target of mMTORC1 and is required to support de novo
nucleotide synthesis but not the salvage pathway. Related to Figure 4.



(A) Immunoblots of wild-type and ATSC2 Hela cells transfected with siRNA targeting SLC4A7 or
nontargeting controls for 48 h and serum starved for 15 h prior to protein extraction and SDS
PAGE.

(B) Fractional abundance of 1°N-labeled metabolite intermediates, as measured as by LC-MS/MS,
in wild-type and ATSC2 Hela cells transfected with siRNA targeting SLC4A7 or nontargeting
controls for 48 h and serum starved for 15 h and labeled with **N-(amide)-glutamine for 1 h. These
data support the stable-isotope tracing experiments presented in Figures 4G-I.

(C) Relative incorporation of *H from hypoxanthine or uridine into RNA. Labeling was performed
for the last 6 h in wild-type and ATSC2 Hela cells transfected with SiRNA targeting SLC4A7 or
nontargeting controls for 48 h.

*p < 0.05 by a one-way ANOVA with Tukey’s post hoc test for multiple pairwise comparisons (B).
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Figure S5. SLC4A7 is regulated by mTORC1 through mRNA translation-dependent
mechanisms. Related to Figure 5.

(A) Immunoblot analysis of human angiomyolipoma (AML) 621-101 (TSC2™) cells treated with
vehicle (DMSO) or S6K1 inhibitor (PF-470871, 10 uM) at the indicated times.

(B) gPCR analysis of SLC4A7 expression in wild-type and ATSC2 Hela cells treated or not with
vehicle (DMSO) or rapamycin (20 nM) for 3 h.

(C) Immunoblots of ATSC2 HelLa cells serum starved for 15 h and treated with cycloheximide
(CHX, 10 uM) at the indicated times.

(D) Immunoblots of wild-type and ATSC2 Hela cells serum starved for 15 h and treated with
either vehicle (DMSQO), S6K1 inhibitor (PF-470871, 10 pM), or rapamycin (20 nM) for 3 h.

(E) Sucrose-gradient analysis of polysomes from ATSC2 HelLa cells treated with either vehicle or
rapamycin (20 nM).

(F) Sucrose-gradient analysis of polysomes from ATSC2 Hela cells transfected with siRNAs
targeting elF4A/B or nontargeting controls.

(G) gPCR analysis of sucrose-gradient polysome fractions of ATSC2 Hela cells treated as in E.
(H) gPCR analysis of sucrose-gradient polysome fractions of ATSC2 HelLa cells treated as in F.

(B, G, H) The data are graphed as the means + SDs of biological triplicates and are representative
of at least two independent experiments (B, E, F, G, H).
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Figure S6. High expression of SLC4A7 is associated with poor survival rate in cancer
patients. Related to Figure 6.



(A) Immunobilots of the indicated wild-type or ASLC4A7 cell lines transfected with an empty vector
construct or a cDNA expressing FLAG-SLC4A7.

(B) Wild-type or ASLC4A7 HelLa cells were grown with 10% dialyzed serum for 96 h, in the
presence of absence of inosine (200 uM) and uridine (200 uM) and cell number was measured
via crystal violet staining every 24 h.

(C) Overall survival curves were generated using the database from the Human Protein Atlas
based on data stratified on the best performing threshold for SLC4A7 mRNA expression. Survival
curves are plotted for all breast cancer patients (n =1149), hepatocellular carcinoma (n = 370),
kidney chromophobe (n = 64), and stomach adenocarcinoma (n = 371).

(D) Fractional enrichment of *°*N-glutamine in the plasma from mice bearing CAL-51-derived
tumors injected intraperitoneally with *>N-amide-glutamine.

(E) Normalized peak areas of 1*°*N-glutamine, measured via LC-MS/MS, from the CAL-51-derived
tumors. These data support the in vivo stable-isotope tracing experiments presented in Figures
6H, I.

(F, G) Normalized peak areas of the steady-state levels of purine (F) and pyrimidine intermediates
(G) from the CAL-51-derived tumors presented in Figures 6H, I.

*p < 0.05 by a one-way ANOVA with Tukey’s post hoc test for multiple pairwise comparisons (B,
F, G) or by a two-tailed Student’s t-test for pairwise comparisons (C).



