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SUPPLEMENTARY FIGURES

Supplementary Fig. 1

Supplementary Fig. 1. Correlation of genetically regulated gene expression (GReX)
across all tissues considering all COVID-19 phenotypes. Correlation was calculated for
imputed expression changes with the Pearson method. Dendrogram on the right edge is shown
from Ward hierarchical clustering.
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Supplementary Fig. 2

Supplementary Fig. 2. Comparison of COVID-19 GWAS phenotypes. Panel a. Correlation of GReX across COVID phenotypes
taking into account all tissue models. Correlation was calculated for imputed expression changes with the Pearson method.
Dendrogram on the right edge shows Ward hierarchical clustering. Panel b. PCA of GReX of COVID phenotypes showing clustering
of phenotypes (e.g. A1&B1). The sums of the squared cosines of the first two principal components (PCs: Dim1 and Dim2) for each
phenotype are color-coded as shown in the legend on the right and represent the importance of these PCs for each phenotype. A1:
Very severe respiratory confirmed COVID vs. not hospitalized COVID ; A2: Very severe respiratory confirmed COVID vs. population;
B1: Hospitalized COVID vs. not hospitalized COVID; B2: Hospitalized COVID vs. population; C1: COVID vs. lab/self-reported
negative; C2: COVID vs. population; D1: predicted COVID from self-reported symptoms vs. predicted or self-reported non-COVID.
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Supplementary Fig. 3

Supplementary Fig. 3. TWAS gene-trait-tissue association counts per gene and COVID-19
phenotype (considering all tissue models). Only FDR-significant associations are shown. A1:
Very severe respiratory confirmed COVID vs. not hospitalized COVID; A2: Very severe
respiratory confirdifferentmed COVID vs. population; B1: Hospitalized COVID vs. not
hospitalized COVID; B2: Hospitalized COVID vs. population; C1: COVID vs. lab/self-reported
negative; C2: COVID vs. population; D1: predicted COVID from self-reported symptoms vs.
predicted or self-reported non-COVID.

5



Supplementary Fig. 4

Supplementary Fig. 4. TWAS gene-trait-tissue association counts per tissue and
COVID-19 phenotype. Only FDR-significant associations are shown. To estimate FDR-adjusted
p values (significant if FDR-adjusted p ≤ 0.05) we consider all phenotypes and tissues. A1: Very
severe respiratory confirmed COVID vs. not hospitalized COVID ; A2: Very severe respiratory
confirmed COVID vs. population; B1: Hospitalized COVID vs. not hospitalized COVID; B2:
Hospitalized COVID vs. population; C1: COVID vs. lab/self-reported negative; C2: COVID vs.
population; D1: predicted COVID from self-reported symptoms vs. predicted or self-reported
non-COVID.
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Supplementary Fig. 5

Supplementary Fig. 5. Gene target prioritization approach. Panel A. Each signature from
the perturbagen signature library (e.g. IL10RB shRNA treatment for 96 hours in MCF7 cells)
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was assessed for its ability to reverse the trait-associated imputed transcriptomes. Panel B.
Signatures were grouped by peturbagen (shRNA) and we first tested whether the signatures for
a specific perturbagen are more likely to be ranked higher or lower (Mann-Whitney U test); then

we obtained a GReX antagonism pseudo z-score as follows: −
𝐻𝑜𝑑𝑔𝑒𝑠−𝐿𝑒ℎ𝑚𝑎𝑛𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟

𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑔𝑒𝑛

𝑆𝐷 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑛𝑘𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑔𝑒𝑛𝑠

(terms compound and peturbagen are used interchangeably). Panel C. Identification of
candidate gene targets by integrating TWAS gene-trait associations and predicted effects of
shRNAs in reversing COVID-19-associated transcriptomes. On the left (scatter plot), the x-axis
corresponds to the average TWAS z-score ( ) across all EpiXcan tissues that had at least𝑧

𝑇𝑊𝐴𝑆

one FDR significant gene-trait association and the y-axis corresponds to the GReX antagonism
pseudo z-score ( ) which is defined as the negative Hodges-Lehmann𝑝𝑠𝑒𝑢𝑑𝑜 𝑧

𝐺𝑅𝑒𝑋 𝑎𝑛𝑡𝑎𝑔𝑜𝑛𝑖𝑠𝑚

estimator (of the median difference between that specific shRNA vs. all other shRNAs) divided

by the standard deviation of the ranks of the compounds ( ). A−
𝐻𝑜𝑑𝑔𝑒𝑠−𝐿𝑒ℎ𝑚𝑎𝑛𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟

𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑔𝑒𝑛

𝑆𝐷 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑛𝑘𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑔𝑒𝑛𝑠

positive pseudo z-score was interpreted as a potentially therapeutic shRNA whereas a negative
pseudo z-score would suggest that the shRNA was not antagonizing the imputed transcriptome
and is thus likely to exacerbate the phenotype. It is worth noting that we only generated shRNA
gene expression signatures for 4,302 genes which is a subset of the genes that were reliably
imputed from the TWAS. At the center, we see the histogram of the combined z scores (

). On the right (QQ plot same as in Figure 2C), we𝑧
𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑

= 𝑧
𝑇𝑊𝐴𝑆

 +  𝑝𝑠𝑒𝑢𝑑𝑜 𝑧
𝐺𝑅𝑒𝑋 𝑎𝑛𝑡𝑎𝑔𝑜𝑛𝑖𝑠𝑚

show the p value corresponding to the joint statistic of the two approaches ( ) described𝑧
𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑

above against the null. FDR-significant candidate genes are labelled orange (whereas non
FDR-significant are grey) and we also provide the direction of the predicted therapeutic
intervention when this can be determined (upregulation or downregulation). IL10RB, PMVK and
ZNF426 are the three FDR-significant target genes, PSMD2, OAS1 and IFNAR2 are also
displayed since they were FDR-significant TWAS genes to demonstrate the added value of the
approach.
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Supplementary Fig. 6

Supplementary Fig. 6. Transethnic meta-analysis for IL10RB and IFNAR2 GReX with
COVID-19 outcomes. Death (A) and severity score (B).
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Supplementary Fig. 7

Supplementary Fig. 7. Effect of IL10RB shRNA on SARS-CoV-2 viral load in
hiPSC-derived NGN-2 glutamatergic neurons. shRNA for IL10RB was used to knock-down
IL10RB in hiPSC-derived NGN2-glutamatergic neurons. ***, ** and * correspond to p values
from the linear model as ≤ 0.001, 0.01 and 0.05, respectively. For the SARS-CoV-2 viral load
(right panel) we perform pairwise comparison with unpaired t-test; ***, ** and * correspond to p
values of ≤ 0.001, 0.01 and 0.05, respectively. Even when considering only cells infected with
SARS-CoV-2 (CoV+), there is no statistically significant difference in IL10RB expression (p =
0.3243, unpaired t-test).
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Supplementary Fig. 8

Supplementary Fig. 8. Effect of IFNAR2 shRNA on SARS-CoV-2 viral load in
hiPSC-derived NGN-2 glutamatergic neurons. shRNAs for IFNAR2 were used to knock-down
IFNAR2 in hiPSC-derived NGN2-glutamatergic neurons. ***, ** and * correspond to p values
from the linear model of ≤ 0.001, 0.01 and 0.05, respectively. For the SARS-CoV-2 viral load
(right panel) we perform pairwise comparison with unpaired t-test; ***, ** and * correspond to p
values of ≤ 0.001, 0.01 and 0.05, respectively.
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Supplementary Fig. 9

Supplementary Fig. 9. Competitive betacoronavirus gene set enrichment analysis in
hiPSC-derived NGN-2 glutamatergic neurons. Distribution of competitive enrichment t
statistics for gene sets that correspond to betacoronavirus relevant gene sets e.g. infections
across different cell systems and tissues (n=192; pruned betacoronavirus gene sets with a
Jaccard index filter of 0.2). P values are from sign test against a theoretical median of 0.
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Supplementary Fig. 10

Supplementary Fig. 10. Effect of IL10RB and IFNAR2 expression manipulation on SARS-CoV-2 viral load in A549-ACE2
alveolar cells. SARS-CoV-2 log2(-ΔΔCt) values reflecting the amount of SARS-CoV-2 S RNA in response to knock-down or
overexpression of IL10RB (A) and IFNAR2 (B). KD: knock-down from pooled siRNA transfection; OE: overexpression with
pLVX.TetOne expression vector; statistical test: Pearson’s correlation analysis. Quantification was performed using RT-qPCR and
analyzed with the -ΔΔCt method and values were normalized against their respective controls (Ctrl): non-infected cells for IL10RB
and IFNAR2 expression levels (x-axes) and SARS-CoV-2 infected cells for SARS-CoV-2 viral load (y-axes). Within the siRNA
subgroup, controls were cells transfected with non-targeting control siRNA and infected with SARS-CoV-2 at an MOI of 0.02 for 48
hours. Within the overexpression subgroup, controls were cells treated with doxycycline to induce expression of 2x-strept-eGFP, and
infected with SARS-CoV-2 at an MOI of 0.02 for 48 hours. For pairwise comparisons, see Supplementary Table 10.
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Supplementary Fig. 11

Supplementary Fig. 11. Correlation map of SNPs with sizable contribution to the Blood
(STARNET) models of IFNAR2 and IL10RB. SNPs that were used for IFNAR2 are orange,
IL10RB are blue and those used by both have these two colors alternating by letter. The top
panel shows SNP correlation (R2 and D’), the middle panel shows the model weights and the
bottom panel the genes in the region. Only SNPs with a model prior ≥ 2 for each model are
shown; SNP correlation based on 1000G reference panel.
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Supplementary Fig. 12

Supplementary Fig. 12. Density plots of TWAS association z-scores for FDR-significant
genes (across all 7 COVID-19 phenotypes and 42 tissues). For some genes, such as
IL10RB, there was a relatively consistent shift of the z-scores to one direction (e.g. right)
whereas other genes, such as IFNAR2, showed both low and high z-score values suggesting
phenotype and/or tissue specificity. FDR-significant genes (FDR-adjusted p≤0.05) for all
COVID-19 phenotypes and tissues are displayed.
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Supplementary Fig. 13

Supplementary Fig. 13. Comparing tissue specificity for adipose and muscle tissues of
IL10RB and IFNAR2 TWAS z-scores. IFNAR2 (orange) TWAS z-scores are consistently low
for adipose tissue and high for skeletal muscle - this effect is consistent for related tissues (e.g.
visceral and subcutaneous adipose tissue) and across cohorts (STARNET and GTEx). No such
tissue specificity is observed in IL10RB (blue). Only the B2 phenotype for COVID-19 associated
hospitalization was considered (FDR for B2 is displayed on the right) and FDR significance
levels for z-scores are denoted with vertical dotted lines. Tissue z-scores not corresponding to
adipose or skeletal muscle tissue are faded. It is worth noting that the discordant faded blue dot
(IL10RB) with a negative z-score close to significance (<-3) doesn’t correspond to an
endogenous tissue (transformed fibroblasts, GTEx).
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SUPPLEMENTARY TABLES

Supplementary Table 1
Category: tissue/cell (Cohort) Transcriptomic imputation

method used
Used in gene targeting and
drug repurposing analysis?

Adipose: subcutaneous (GTEx) EpiXcan Yes
Adipose: subcutaneous (STARNET) EpiXcan Yes
Adipose: visceral (GTEx) EpiXcan Yes
Adipose: visceral (STARNET) EpiXcan Yes
Artery: Aorta (GTEx) EpiXcan Yes
Artery: Aorta (STARNET) EpiXcan Yes
Artery: coronary (GTEx) EpiXcan No
Artery: Mammary (STARNET) EpiXcan Yes
Artery: tibial (GTEx) PrediXcan No
Blood (GTEx) EpiXcan No
Blood (STARNET) EpiXcan Yes
Cells: EBV-transformed lymphocytes (GTEx) PrediXcan No
Cells: transformed fibroblasts (GTEx) PrediXcan No
Endocrine: adrenal gland (GTEx) EpiXcan No
Endocrine: pituitary (GTEx) PrediXcan No
Endocrine: thyroid (GTEx) PrediXcan No
GI: colon, sigmoid (GTEx) EpiXcan No
GI: colon, transverse (GTEx) EpiXcan No
GI: esophagus, GE junction (GTEx) EpiXcan Yes
GI: esophagus, mucosa (GTEx) EpiXcan Yes
GI: muscularis (GTEx) EpiXcan Yes
GI: pancreas (GTEx) EpiXcan Yes
GI: salivary gland, minor (GTEx) PrediXcan No
GI: stomach (GTEx) EpiXcan No
GI: terminal ileum (GTEx) EpiXcan No
Heart: atrial appendage (GTEx) EpiXcan No
Heart: left ventricle (GTEx) EpiXcan No
Liver (GTEx) EpiXcan No
Liver (STARNET) EpiXcan No
Muscle: skeletal (GTEx) EpiXcan Yes
Muscle: skeletal (STARNET) EpiXcan Yes
PNS: nerve, tibial (GTEx) PrediXcan No
Reproductive: mammary tissue (GTEx) EpiXcan Yes
Reproductive: ovary (GTEx) EpiXcan No
Reproductive: prostate (GTEx) PrediXcan No
Reproductive: testis (GTEx) PrediXcan No
Reproductive: uterus (GTEx) PrediXcan No
Reproductive: vagina (GTEx) PrediXcan No
Respiratory: lung (GTEx) EpiXcan Yes
Skin: not sun exposed, suprapubic (GTEx) EpiXcan No
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Skin: sun exposed lower leg (GTEx) EpiXcan Yes
Spleen (GTEx) EpiXcan No

Supplementary Table 1. The 42 transcriptomic imputation models used in this study.
Information is also provided regarding which imputation method was used and whether it was
used for the gene targeting and drug repurposing pipelines.
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Supplementary Table 2

Short
name

Phenotype ncases ncontrols Ancestry
superpopulation
background

GWAS TWAS results in

A1 Very severe respiratory
confirmed covid vs. not
hospitalized covid

269 688 EUR “A1_ALL” Supplementary Data 1

A2 Very severe respiratory
confirmed COVID vs.
population

4,336 623,902 EUR + AMR “A2_ALL_leave_23andme
”

Supplementary Data 2

B1 Hospitalized COVID vs.
not hospitalized COVID

2,430 8,478 ALL except EAS “B1_ALL” Supplementary Data 3

B2 Hospitalized COVID vs.
population

6,406 902,088 EUR “B2_ALL_eur_leave_23an
dme”

Supplementary Data 4

C1 COVID vs.
lab/self-reported negative

8,668 101,861 ALL except EAS “C1_ALL_leave_23andme
”

Supplementary Data 5

C2 COVID vs. population 14,134 1,284,876 EUR “C2_ALL_eur_leave_23an
dme”

Supplementary Data 6

D1 predicted COVID from
self-reported symptoms
vs. predicted or
self-reported non-COVID

3,204 35,728 EUR “D1_ALL” Supplementary Data 7

Supplementary Table 2. Overview of the GWAS summary statistics that were used. Column “Short name”: short name of the
phenotype; column “Phenotype”: description of the phenotype; Columns “ncases” and “ncontrols” correspond to the number of cases and
controls used in this study; column “Ancestry superpopulation background”: ancestry superpopulations that were included in the
GWAS; column “GWAS”: GWAS summary statistics used; column “TWAS results in”: Supplementary Data file where the TWAS
results can be found. “EUR”, “AMR”, “EAS” stand for European, admixed American and East Asian ancestries. “ALL” refers to all the
superpopulations, as defined by the 1000 genomes project which includes the above plus African and South Asian ancestries.
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Supplementary Table 3

Severity Analysis Cohort PheWAS Cohort

EUR AFR HIS ASN ALL EUR

Sample Size (%) 14,262 (61.4%) 5,828 (25.1%) 2,870 (12.4%) 266 (1.1%) 23,226 (100%) 296,407 (N/A)

Median Age
(IQR)

71 (16) 64 (17) 60 (27) 50 (27) 68 (18) 71 (14)

Female (%) 1,231 (8.6%) 824 (14.1%) 295 (10.3%) 26 (9.8%) 2,376 (10.2%) 21,084 (7.1%)

Median
Elixhauser (2yr)
(IQR)

4 (13) 5 (14) 0 (8) 0 (4) 4 (13) N/A

COVID Severity
- Mild (%)
- Median (%)
- Severe (%)
- Death (%)

10,851 (76.1%)
2,301 (16.1%)

383 (2.7%)
727 (5.1%)

4,113 (70.6%)
1,187 (20.4%)

266 (4.6%)
262 (4.5%)

2,221 (77.4%)
439 (15.3%)

93 (3.2%)
117 (4.1%)

217 (81.6%)
26 (9.8%)

8 (3.0%)
15 (5.6%)

17,402 (74.9%)
3,953 (17.0%)

750 (3.2%)
1,121 (4.8%)

N/A

Median ICD
Count (IQR)

N/A N/A N/A N/A N/A 136 (175)

Median length of
record (IQR)

N/A N/A N/A N/A N/A 4,575.4
(3,350.0)

Supplementary Table 3. Demographic characteristics of the MVP cohorts used in the GReX association with COVID-19
severity and death, and PheWAS.
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Supplementary Table 4

Gene Population n Beta SE P Bonferroni-
adjusted p

IL10RB ALL 23226 0.067 0.016 2.4×10-05 9.8×10-05

EUR 14262 0.060 0.020 3.3×10-03 1.3×10-02

AFR 5828 0.077 0.030 9.6×10-03 3.8×10-02

HIS 2870 0.058 0.048 2.3×10-01 9.2×10-01

ASN 266 0.465 0.210 2.7×10-02 1.1×10-01

IFNAR2 ALL 23226 -0.071 0.016 6.2×10-06 2.5×10-05

EUR 14262 -0.062 0.020 2.3×10-03 9.0×10-03

AFR 5828 -0.076 0.030 1.0×10-02 4.1×10-02

HIS 2870 -0.092 0.048 5.5×10-02 2.2×10-01

ASN 266 -0.409 0.204 4.4×10-02 1.8×10-01

Supplementary Table 4. GReX association with COVID-19 severity. Bonferroni-adjustment is
performed for ngenes × noutcomes = 4 for each population cohort.
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Supplementary Table 5

Population /
ethnicity

Sample Size (%) Median Age (IQR) Female (%)

White /
Hispanic or Latino

52 (9.2%) 66 (21.25) 24 (46.2%)

Black or African American /
Hispanic or Latino

10 (1.8%) 52 (32) 7 (70%)

Unknown /
Hispanic or Latino

107 (18.8%) 64 (25) 41 (38.3%)

More Than One Race /
Hispanic or Latino

15 (2.6%) 64 (18) 7 (46.7%)

American Indian or Alaska Native /
Hispanic or Latino

4 (0.7%) 63.5 (17.5) 1 (25%)

White /
not Hispanic or Latino

128 (22.5%) 68 (28.5) 54 (42.2%)

Black or African American /
not Hispanic or Latino

106 (18.7%) 63 (16.5) 54 (50.9%)

Unknown /
not Hispanic or Latino

12 (2.1%) 62 (14.5) 1 (8.3%)

More Than One Race /
not Hispanic or Latino

9 (1.6%) 56 (12) 4 (44.4%)

Asian /
not Hispanic or Latino

36 (6.3%) 60 (22.25) 11 (30.6%)

American Indian or Alaska Native /
not Hispanic or Latino

3 (0.5%) 62 (7.5) 0 (0%)

Native Hawaiian or Other Pacific
Islander /
not Hispanic or Latino

1 (0.2%) 68 (0) 1 (100%)

White /
unknown

3 (0.5%) 88 (4.5) 2 (66.7%)

Unknown
unknown

82 (14.4%) 62 (21.5) 35 (42.7%)

Supplementary Table 5. Demographic characteristics of the Mount Sinai COVID-19
Biobank.
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Supplementary Table 6

Count (%)

# Individuals with number of samples below:
- 1
- 2
- 3
- 4
- 5
- 6
- 7

176 (31.0%)
156 (27.5%)
110 (19.4%)
71 (12.5%)

39 (6.9%)
15 (2.6%)

1 (0.2%)

# of samples with COVID Severity below:
- Control
- Moderate COVID-19
- Severe COVID-19
- Severe COVID-19 with EOD

122 (10.1%)
600 (49.6%)
269 (22.2%)
218 (18.0%)

Supplementary Table 6. Sample characteristics of the Mount Sinai COVID-19 Biobank.
The differential gene expression analysis was based on samples not individuals. Here we
provide information about how many samples were taken from each individual and a breakdown
by severity for the samples.
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Supplementary Table 7

gRNA Target gene logFC t P value

IL10RB-1 IL10RB 2.67 5.67 0.0000009

IL10RB-2 IL10RB 1.46 3.44 0.0012

IL10RB-3 IL10RB 1.67 3.90 0.0003

IL10RB-4 IL10RB 0.98 3.64 0.0007

Supplementary Table 7. Effect of CRISPRa gRNAs on target gene. Metrics for scrambled
gRNA.
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Supplementary Table 8

shRNA Target gene logFC t P value

IL10RB IL10RB 0.06 0.27 0.78

IFNAR2 IFNAR2 -0.41 -2.39 0.02

Supplementary Table 8. Effect of shRNAs on target genes. Metrics for scrambled shRNA
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Supplementary Table 9

Treatment Target gene logFC t P value

SARS-CoV-2 infection IL10RB 0.025 0.13 0.89

SARS-CoV-2 infection IFNAR2 0.3 3.70 0.00098

Supplementary Table 9. Effect of SARS-CoV-2 infection on target genes (IL10RB and
IFNAR2). Metrics for non SARS-CoV-2 infected cells taking into account (scrambled gRNA and
shRNA treatments).

26



Supplementary Table 10

Treatment
group

Target
gene

SARS-CoV-
2 infection

qPCR target % control
(-ΔΔCt
method)

P value Comparison

siRNA

IL10RB
No IL10RB 9.5% 4.0×10-06 a-IL10RB (n=3) vs. control siRNA (n=3)

Yes SARS-CoV-2 47.7% 0.0088 a-IL10RB (n=3) vs. control siRNA (n=3)

IFNAR2
No IFNAR2 29.9% 0.00098 a-IFNARB (n=3) vs. control siRNA (n=3)

Yes SARS-CoV-2 2.3% 1.4×10-05 a-IFNARB (n=3) vs. control siRNA (n=3)

Exogenous
expression

IL10RB
No IL10RB 308,504.5% 0.013 IL10RB (n=3) vs. GFP induction (n=2); Dox+

Yes SARS-CoV-2 681.6% 0.11 IL10RB (n=2) vs. GFP induction (n=2); Dox+

IFNAR2
No IFNAR2 775.5% 0.0053 IFNAR2 (n=3) vs. GFP induction (n=2); Dox+

Yes SARS-CoV-2 1143.7% 0.06 IFNAR2 (n=3) vs. GFP induction (n=2); Dox+

Supplementary Table 10. In vitro manipulation of IL10RB and IFNAR2 expression in A549 alveolar cells exogenously
expressing ACE2 (A549-ACE2). Treatment group: either siRNA or overexpression (doxycycline induction of stable cell lines)
experiments; Target gene: gene target of knock-down or overexpression; SARS-CoV-2 infection: whether cells were infected with
SARS-CoV-2 or not; qPCR target: qPCR amplification target - measurements for which statistical tests were performed; details for
statistical tests are provided in the remaining columns. We performed pairwise comparisons with unpaired t-test.
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Supplementary Table 11

Gene (nSNPs in model) nSNPs in EUR nSNPs in AFR nSNPs in HIS nSNPs in ASN

IL10RB (20) 15 15 17 11

IFNAR2 (36) 20 15 20 16

Supplementary Table 11. Comparison of the number of SNP predictors present across
different ancestral groups from the blood transcriptomic imputation model (STARNET) in
MVP.
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Supplementary Table 12

Severity Description nEUR nAFR nHIS nASN

Mild SARS-CoV-2+ 10,851 4,113 2,221 217

Moderate SARS-CoV-2+ and hospitalized with or
without low flow oxygen therapy

2,301 1,187 439 26

Severe SARS-CoV-2+ and hospitalized with
either ventilation, intubation,
extracorporeal membrane oxygenation
(EMCO), dialysis vasopressors or high
flow oxygen therapy

383 266 93 8

Death COVID-19 related death 727 262 117 15

Supplementary Table 12. COVID severity scale developed by VINCI and the MVP
COVID-19 Science Initiative. Description and counts for each HARE-based population.
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Supplementary Table 13

Severity Description

Control No COVID-19

Moderate COVID-19 with abnormal (<94%) O2
saturation or pneumonia on imaging

Severe COVID-19 with use of high-flow nasal cannula
(HFNC), non-rebreather mask (NRB), bilevel
positive airway pressure (BIPAP) or
mechanical ventilation and no vasopressor
use, and based on CrCl greater than 30 and
alanine aminotransferase (ALT) less than 5×
the upper limit of normal.

Severe with end-organ
damage

COVID-19 as Severe but with use of
vasopressors, or based on CrCl less than 30,
new renal replacement therapy
(hemodialysis/continuous veno-venous
hemofiltration) or ALT more than 5× the upper
limit of normal

Supplementary Table 13. COVID severity scale developed by the Mount Sinai COVID-19
Biobank. Severity score has been previously characterized in detail1.
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Supplementary Table 14

Experiment Sequence name Oligo Sequences

NGN2 - IL10RB
CRISPRa

IL10RB gRNA#1 caccgAGGCTTGGCAGATGCACACG / aaacCGTGTGCATCTGCCAAGCCTc (forward / reverse)

IL10RB gRNA#2 caccgGGATCCTCGCAAGCTTTGAA / aaacTTCAAAGCTTGCGAGGATCCc (forward / reverse)

IL10RB gRNA#3 caccgGCATGCTGGAATGACGGTGG / aaacCCACCGTCATTCCAGCATGCc (forward / reverse)

IL10RB gRNA#4 caccgTTGAAGTCCGCTCTCCGCAC / aaacGTGCGGAGAGCGGACTTCAAc (forward / reverse)

Scramble gRNA caccgGCACTCACATCGCTACATCA / aaacTGATGTAGCGATGTGAGTGCC (forward / reverse)

NGN2 - IL10RB
shRNA

SHCLNG-NM_000628
(Sigma)

CCTGTGGATGACACCATTATT

NGN2 - IFNAR2
shRNA

SHCLNG-NM_000874
(Sigma)

GCAGTAATAAAGTCTCCCTTA

A549 - IL10RB
siRNA:
M-007926-02-00
05 siGENOME
Human IL10RB
(3588) siRNA -
SMARTpool

D-007926-03 GCAAACAACCCAUGACGAA

D-007926-04 GACCACACCUUGAGAGUCA

D-007926-05 CAGCUCAGUACCUAAGUUA

D-007926-18 CUACACAGAGCACGGACUU

A549 - IL10RB
siRNA:
M-015411-00-00
05 siGENOME
Human IFNAR2
(3455) siRNA -
SMARTpool

D-015411-01 GGUGAAAUUUCCAUCUAUU

D-015411-02 CAGAGGGAAUUGUUAAGAA

D-015411-03 GAGCAAGCAGUAAUAAAGU

D-015411-04 GAAGAUUUGAAGGUGGUUA
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A549 - IL10RB
overexpression

gBlocks gene
fragment for IL10RB

ATGGCGTGGAGCCTTGGGAGCTGGCTGGGTGGCTGCCTGCTGGTGTCAGCATTGGGAATGGT
ACCACCTCCCGAAAATGTCAGAATGAATTCTGTTAATTTCAAGAACATTCTACAGTGGGAGTCAC
CTGCTTTTGCCAAAGGGAACCTGACTTTCACAGCTCAGTACCTAAGTTATAGGATATTCCAAGAT
AAATGCATGAATACTACCTTGACGGAATGTGATTTCTCAAGTCTTTCCAAGTATGGTGACCACAC
CTTGAGAGTCAGGGCTGAATTTGCAGATGAGCATTCAGACTGGGTAAACATCACCTTCTGTCCT
GTGGATGACACCATTATTGGACCCCCTGGAATGCAAGTAGAAGTACTTGCTGATTCTTTACATAT
GCGTTTCTTAGCCCCTAAAATTGAGAATGAATACGAAACTTGGACTATGAAGAATGTGTATAACTC
ATGGACTTATAATGTGCAATACTGGAAAAACGGTACTGATGAAAAGTTTCAAATTACTCCCCAGTA
TGACTTTGAGGTCCTCAGAAACCTGGAGCCATGGACAACTTATTGTGTTCAAGTTCGAGGGTTT
CTTCCTGATCGGAACAAAGCTGGGGAATGGAGTGAGCCTGTCTGTGAGCAAACAACCCATGAC
GAAACGGTCCCCTCCTGGATGGTGGCCGTCATCCTCATGGCCTCGGTCTTCATGGTCTGCCTG
GCACTCCTCGGCTGCTTCGCCTTGCTGTGGTGCGTTTACAAGAAGACAAAGTACGCCTTCTCC
CCTAGGAATTCTCTTCCACAGCACCTGAAAGAGTTTTTGGGCCATCCTCATCATAACACACTTCT
GTTTTTCTCCTTTCCATTGTCGGATGAGAATGATGTTTTTGACAAGCTAAGTGTCATTGCAGAAG
ACTCTGAGAGCGGCAAGCAGAATCCTGGTGACAGCTGCAGCCTCGGGACCCCGCCTGGGCA
GGGGCCCCAAAGC

A549 - IFNAR2
overexpression

gBlocks gene
fragment for
IFNAR2

ATGCTTTTGAGCCAGAATGCCTTCATCGTCAGATCACTTAATTTGGTTCTCATGGTGTATATCAGC
CTCGTGTTTGGTATTTCATATGATTCGCCTGATTACACAGATGAATCTTGCACTTTCAAGATATCA
TTGCGAAATTTCCGGTCCATCTTATCATGGGAATTAAAAAACCACTCCATTGTACCAACTCACTAT
ACATTGCTGTATACAATCATGAGTAAACCAGAAGATTTGAAGGTGGTTAAGAACTGTGCAAATAC
CACAAGATCATTTTGTGACCTCACAGATGAGTGGAGAAGCACACACGAGGCCTATGTCACCGT
CCTAGAAGGATTCAGCGGGAACACAACGTTGTTCAGTTGCTCACACAATTTCTGGCTGGCCATA
GACATGTCTTTTGAACCACCAGAGTTTGAGATTGTTGGTTTTACCAACCACATTAATGTGATGGT
GAAATTTCCATCTATTGTTGAGGAAGAATTACAGTTTGATTTATCTCTCGTCATTGAAGAACAGTC
AGAGGGAATTGTTAAGAAGCATAAACCCGAAATAAAAGGAAACATGAGTGGAAATTTCACCTATA
TCATTGACAAGTTAATTCCAAACACGAACTACTGTGTATCTGTTTATTTAGAGCACAGTGATGAGC
AAGCAGTAATAAAGTCTCCCTTAAAATGCACCCTCCTTCCACCTGGCCAGGAATCAGAATCAGC
AGAATCTGCCAAAATAGGAGGAATAATTACTGTGTTTTTGATAGCATTGGTCTTGACAAGCACCA
TAGTGACACTGAAATGGATTGGTTATATATGCTTAAGAAATAGCCTCCCCAAAGTCTTGAGGCAA
GGTCTCACTAAGGGCTGGAATGCAGTGGCTATTCACAGGTGCAGTCATAATGCACTACAGTCTG
AAACTCCTGAGCTCAAACAGTCGTCCTGCCTAAGCTTCCCCAGTAGCTGGGATTACAAGCGTG
CATCCCTGTGCCCCAGTGAT

Supplementary Table 14: Nucleotide sequences.
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DESCRIPTION OF THE SUPPLEMENTARY DATA FILES

SUPPLEMENTARY DATA 1 TO 7
Brief description: TWAS results for COVID-19 GWASs:

Name Phenotype TWAS results in

A1 Very severe respiratory confirmed covid vs. not
hospitalized covid

Supplementary Data 1

A2 Very severe respiratory confirmed COVID vs. population Supplementary Data 2

B1 Hospitalized COVID vs. not hospitalized COVID Supplementary Data 3

B2 Hospitalized COVID vs. population Supplementary Data 4

C1 COVID vs. lab/self-reported negative Supplementary Data 5

C2 COVID vs. population Supplementary Data 6

D1 predicted COVID from self-reported symptoms vs.
predicted or self-reported non-COVID

Supplementary Data 7
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Each sheet within an excel file represents a different tissue. Column descriptions:

Column Description

gene
a gene's id: as listed in the Tissue Transcriptome model. Ensemble Id for
most gene model releases (e.g. in this study). Can also be an intron's id
for splicing model releases

gene_name gene name as listed by the Transcriptome Model, typically HUGO for a
gene (e.g. in this study). It can also be an intron's id.

zscore S-PrediXcan or S-EpiXcan's association result for the gene

effect_size S-PrediXcan or S-EpiXcan's association effect size for the gene. Can
only be computed when beta from the GWAS is used.

pvalue p-value of the aforementioned statistic

var_g
variance of the gene expression, calculated as W' * G * W (where W is
the vector of SNP weights in a gene's model, W' is its transpose, and G
is the covariance matrix)

pred_perf_r2 R2
CV (cross-validated) of tissue model's correlation to gene's measured

transcriptome (prediction performance). Recommended filtering is > 0.01

pred_perf_pval p-value of tissue model's correlation to gene's measured transcriptome
(prediction performance).

pred_perf_qval q-value of tissue model's correlation to gene's measured transcriptome
(prediction performance).

n_snps_used number of SNPs from GWAS that were used in the S-PrediXcan or
S-EpiXcan analysis

n_snps_in_cov number of SNPs in the covariance matrix

n_snps_in_model number of SNPs in the imputation model

gwas GWAS name (phenotype) from the COVID-19 hg

tissue Imputation model used

method Imputation method used for imputation model construction (in this study
PrediXcan or EpiXcan)

gwas_fdr
FDR-adjusted p value2 for association when considering all gene-trait
associations across all tissue models within this specific GWAS (e.g.
COVID-19 B2 phenotype)
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Tissue.keyword Pattern matching string for internal pipeline

fdr_all
FDR-adjusted p value2 for association when considering all gene-trait
associations across all tissue models and all GWASs (all COVID-19
phenotypes)

var_g
variance of the gene expression, calculated as W' * G * W (where W is
the vector of SNP weights in a gene's model, W' is its transpose, and G
is the covariance matrix)
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SUPPLEMENTARY DATA 8
Brief description: Results from JEPEGMIX2-P pathway analysis.

Column descriptions (Sheet: Summary_of_significant):

Column Description

Name Gene set name

Count.Bon.Sig Number of tissues were this gene set is Bonferroni significant

Min.Pval Min JEPEGMIX2-P p-value from all tissues

Min.Bonferroni Min Bonferroni-adjusted JEPEGMIX2-P p-value from all tissues

Column descriptions (Sheet: All_results):

Column Description

Type Type name

Tissue Tissue name

Name Gene set name

df Degrees of freedom

Chisq chi-square

Pval JEPEGMIX2-P p-value

Qval_holm JEPEGMIX2-P q-value with Holm method

Qval_fdr JEPEGMIX2-P q-value with FDR method

Dom_sing JEPEGMIX2-P dominate signal

Sign_genes JEPEGMIX2-P significant genes
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SUPPLEMENTARY DATA 9
Brief description: Results of IL10RB and IFNAR2 GReX PheWAS

Column descriptions:

Column Description

ID Concatenation of gene and phenotype analyzed

phecode Phecode identifier in string format

beta Association of gene expression and phenotype for gene and
phenotype described in ID column

p P value for association of gene expression and phenotype for gene
and phenotype described in ID column

neg_log10p -log10 transformation of p column

beta_dir Binary classifier for direction of beta column. TRUE if positive.
FALSE if negative.

beta_mag Absolute value of beta column

phecode_num Numerical phecode

Phenotype Phenotype associated with each phecode

exclude_name

Category for each phecode. Phecodes were grouped into
categories using Phecode Map v1.2 with manual curation for some
uncategorized phecodes. Refer to Supplementary Data 10 for
mappings.

HasCounts Number of individuals in cohort with >0 counts for this phecode

NoCounts Number of individuals in cohort with 0 counts for this phecode

gene Gene whose expression was used in regression model for the
specified phecode

adjusted.p Adjusted p value using method specified in MC.method column

neg_log10adjusted.p -log10 transformation of adjusted.p column

Rank Rank of association significance from most significant to least

MC.method Method for generating adjusted.p column from p column
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SUPPLEMENTARY DATA 10
Brief description: Table translating Phecodes to Phenotypes and the respective phenotype
categories they belong to.

Column descriptions:

Column Description

Phecode Numerical phecode

Phenotype Phenotype associated with phecode

exclude_name
Category for each phecode. Phecodes were grouped into categories
using Phecode Map v1.2 with manual curation for some uncategorized
phecodes

SUPPLEMENTARY RESULTS

COVID-19 phenotypes genetically regulated gene expression (GReX) comparison.
As shown by correlation, hierarchical and principal component analysis (Supplementary Fig. 2)
of the COVID-19 phenotypes GReX, the phenotypes mainly cluster in 4 groups: (1) The severe
vs. not severe COVID group (A1 and B1), (2) The severe COVID vs. population group (A2 and
B2), (3) the any COVID vs. population or lab/self-reported negative group (C1 and C2) and
finally (4) a group comprising the predicted COVID phenotype (D1). It is worth noting that this
GReX-based phenotypic clustering persists, despite differences in the different ancestries
included in the genetic analysis (e.g. A1&B1, A2&B2, C1&C2) (Supplementary Table 2).
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