Supplementary Information

SUPPLEMENTARY FIGURES	3
Supplementary Fig. 1	3
Supplementary Fig. 2	4
Supplementary Fig. 3	5
Supplementary Fig. 4	6
Supplementary Fig. 5	7
Supplementary Fig. 6	9
Supplementary Fig. 7	10
Supplementary Fig. 8	11
Supplementary Fig. 9	12
Supplementary Fig. 10	13
Supplementary Fig. 11	14
Supplementary Fig. 12	15
Supplementary Fig. 13	16
SUPPLEMENTARY TABLES	17
Supplementary Table 1	17
Supplementary Table 2	19
Supplementary Table 3	20
Supplementary Table 4	21
Supplementary Table 5	22
Supplementary Table 6	23
Supplementary Table 7	24
Supplementary Table 8	25
Supplementary Table 9	26
Supplementary Table 10	27
Supplementary Table 11	28
Supplementary Table 12	29
Supplementary Table 13	30
Supplementary Table 14	31
SUPPLEMENTARY NOTES	33
VA Million Veteran Program COVID-19 Science Initiative: Core Acknowledgment for Publications	33
VA Million Veteran Program COVID-19 Science Initiative	33
Mount Sinai COVID-19 Biobank: Core Acknowledgment for Publications	37
Other Acknowledgements	30 21
DESCRIPTION OF THE SUPPLEMENTARY DATA FILES	20 20
SUPPLEMENTARY DATA 1 TO 7	28 20
SUPPLEMENTARY DATA 8	۵0 41

SUPPLEMENTARY DATA 9	42
SUPPLEMENTARY DATA 10	43
SUPPLEMENTARY RESULTS	43
COVID-19 phenotypes genetically regulated gene expression (GReX) comparison.	43
SUPPLEMENTARY REFERENCES	44

SUPPLEMENTARY FIGURES

Supplementary Fig. 1

<u>Supplementary Fig. 1. Correlation of genetically regulated gene expression (GReX)</u> <u>across all tissues considering all COVID-19 phenotypes.</u> Correlation was calculated for imputed expression changes with the Pearson method. Dendrogram on the right edge is shown from Ward hierarchical clustering.

Supplementary Fig. 2. Comparison of COVID-19 GWAS phenotypes. Panel a. Correlation of GReX across COVID phenotypes taking into account all tissue models. Correlation was calculated for imputed expression changes with the Pearson method. Dendrogram on the right edge shows Ward hierarchical clustering. Panel b. PCA of GReX of COVID phenotypes showing clustering of phenotypes (e.g. A1&B1). The sums of the squared cosines of the first two principal components (PCs: Dim1 and Dim2) for each phenotype are color-coded as shown in the legend on the right and represent the importance of these PCs for each phenotype. A1: Very severe respiratory confirmed COVID vs. not hospitalized COVID ; A2: Very severe respiratory confirmed COVID vs. population; B1: Hospitalized COVID vs. not hospitalized COVID; B2: Hospitalized COVID vs. population; C1: COVID vs. lab/self-reported negative; C2: COVID vs. population; D1: predicted COVID from self-reported symptoms vs. predicted or self-reported non-COVID.

Significant gene-trait-tissue associations

Supplementary Fig. 3. TWAS gene-trait-tissue association counts per gene and COVID-19 phenotype (considering all tissue models). Only FDR-significant associations are shown. A1: Very severe respiratory confirmed COVID vs. not hospitalized COVID; A2: Very severe respiratory confirdifferentmed COVID vs. population; B1: Hospitalized COVID vs. not hospitalized COVID; B2: Hospitalized COVID vs. population; C1: COVID vs. lab/self-reported negative; C2: COVID vs. population; D1: predicted COVID from self-reported symptoms vs. predicted or self-reported non-COVID.

Significant gene-trait-tissue associations

Supplementary Fig. 4. TWAS gene-trait-tissue association counts per tissue and

<u>**COVID-19 phenotype.**</u> Only FDR-significant associations are shown. To estimate FDR-adjusted p values (significant if FDR-adjusted $p \le 0.05$) we consider all phenotypes and tissues. A1: Very severe respiratory confirmed COVID vs. not hospitalized COVID ; A2: Very severe respiratory confirmed COVID vs. not hospitalized COVID vs. not hospitalized COVID; B2: Hospitalized COVID vs. population; C1: COVID vs. lab/self-reported negative; C2: COVID vs. population; D1: predicted COVID from self-reported symptoms vs. predicted or self-reported non-COVID.

A. Signature vs. GReX (genetically regulated gene expression) antagonism (compounds/shRNA)

For each tissue TWAS (imputed GReX). Example: EpiXcan model of lung tissue (GTEx) for B2 COVID-19 phenotype

For each signature. Example: KDA010_MCF7_96H:TRCN0000058267:-666

Example is with shRNA but approach is identical for other compounds or perturbagens.

Cells: MCF7; shRNA: IL10RB; Tx duration: 96 hours

B. Summarization of effect of signatures at the level of compound/shrna for all cell lines and tissues

Perturbagen	Cell line	TWAS	Average	Fo
· · · · · · · · · · · · · · · · · · ·		tissue	Rank	-
IL10RB	Cell line 1	Tissue 1	10	
GENE 1	Cell line 2	Tissue 1	15	- t
GENE 2	Cell line 1	Tissue 1	25	
IL10RB	Cell line 2	Tissue 2	35	
IL10RB	Cell line 2	Tissue 1	38	
GENE 2	Cell line 2	Tissue 1	40	
IL10RB	Cell line 1	Tissue 2	42	>
GENE 1	Cell line 1	Tissue 1	47	ensit
GENE 1	Cell line 2	Tissue 2	50	ð
GENE 2	Cell line 1	Tissue 2	62	
GENE 1	Cell line 1	Tissue 2	65	
GENE 2	Cell line 2	Tissue 2	70	

For each perturbagen use average ranks (lower is better) from A to perform: - Mann-Whitney U test for significance (with FDR correction) - Estimate GReX antagonism pseudo z score: - Hodges - Lehnman estimator_{compound} SD average ranks of all compounds shRNA LIORB (n=272) other (n=1283789) - 1.5e-05 - 0.0e+00

50000

Signature AvgRank

75000

25000

C. Gene prioritization approach (currenlty for shRNA; also CRISPR and overexpression in the future)

Supplementary Fig. 5. Gene target prioritization approach. Panel A. Each signature from the perturbagen signature library (e.g. *IL10RB* shRNA treatment for 96 hours in MCF7 cells)

was assessed for its ability to reverse the trait-associated imputed transcriptomes. Panel B. Signatures were grouped by peturbagen (shRNA) and we first tested whether the signatures for a specific perturbagen are more likely to be ranked higher or lower (Mann-Whitney U test); then $Hodges-Lehmann\ estimator_{perturbagen}$ we obtained a GReX antagonism pseudo z-score as follows: -SD average ranks of all perturbagens (terms compound and peturbagen are used interchangeably). Panel C. Identification of candidate gene targets by integrating TWAS gene-trait associations and predicted effects of shRNAs in reversing COVID-19-associated transcriptomes. On the left (scatter plot), the x-axis corresponds to the average TWAS z-score (z_{TWAS}) across all EpiXcan tissues that had at least one FDR significant gene-trait association and the y-axis corresponds to the GReX antagonism pseudo z-score (pseudo $z_{GReX antagonism}$) which is defined as the negative Hodges-Lehmann estimator (of the median difference between that specific shRNA vs. all other shRNAs) divided by the standard deviation of the ranks of the compounds ($-\frac{Hodges-Lehmann estimator_{perturbagen}}{SD average ranks of all perturbagens}$). A positive pseudo z-score was interpreted as a potentially therapeutic shRNA whereas a negative pseudo z-score would suggest that the shRNA was not antagonizing the imputed transcriptome and is thus likely to exacerbate the phenotype. It is worth noting that we only generated shRNA gene expression signatures for 4,302 genes which is a subset of the genes that were reliably imputed from the TWAS. At the center, we see the histogram of the combined z scores ($z_{combined} = \overline{z_{TWAS}} + pseudo z_{GReX antagonism}$). On the right (QQ plot same as in Figure 2C), we show the p value corresponding to the joint statistic of the two approaches $(z_{combined})$ described above against the null. FDR-significant candidate genes are labelled orange (whereas non FDR-significant are grey) and we also provide the direction of the predicted therapeutic intervention when this can be determined (upregulation or downregulation). IL10RB, PMVK and ZNF426 are the three FDR-significant target genes, PSMD2, OAS1 and IFNAR2 are also displayed since they were FDR-significant TWAS genes to demonstrate the added value of the approach.

A. OUTCOME: COVID-19 ASSOCIATED DEATH

ILTORB	IL1	0RB -> [Death	Standardised Mean			
HARE Population	Beta	SE	n	Difference	g	95% Cl	weight
EUR	0.12	0.0392	14262	H	0.12	[0.04; 0.20]	65.4%
AFR	0.08	0.0646	5828	★	0.08	[-0.05; 0.20]	24.1%
HIS	0.10	0.1003	2870	- _	0.10	[-0.10; 0.30]	10.0%
ASN	1.00	0.4644	266	1 1 1	- 1.00	[0.09; 1.91]	0.5%
Fixed effect model			23226	\$	0.11	[0.05; 0.17]	100.0%
Prediction interval						[-0.15; 0.37]	
Heterogeneity: $I^2 = 24$	4%,τ ² :	= 0.0019	, p = 0.27				
				-1.5 -1 -0.5 0 0.5 1 1.5			

IFNAR2	IFN	AR2 -> [Death	Standardised Mean			
HARE Population	Beta	SE	n	Difference	g	95% CI	weight
EUR	-0.05	0.0392	14262	—	-0.05	[-0.13; 0.03]	66.0%
AFR	0.04	0.0659	5828	* -	0.04	[-0.09; 0.17]	23.4%
HIS	-0.18	0.1005	2870		-0.18	[-0.38; 0.01]	10.0%
ASN	-0.77	0.4214	266		-0.77	[–1.60; 0.05]	0.6%
Fixed effect model			23226	\$	-0.05	[-0.11; 0.01]	100.0%
Prediction interval						[-0.51; 0.38]	
Heterogeneity: $I^2 = 5$	3% , τ ² =	0.0070 ,	p = 0.09				
				1.5 -1 -0.5 0 0.5 1 1.5	5		

B. OUTCOME: COVID-19 SEVERITY

IL10RB	IL10RB –> Severity			Standa	Standardised Mean				
HARE Population	Beta	SE	'n	Di	ifference		g	95% Cl	weight
EUR	0.06	0.0204	14262		+		0.06	[0.02; 0.10]	60.3%
AFR	0.08	0.0297	5828		÷		0.08	[0.02; 0.14]	28.4%
HIS	0.06	0.0484	2870		- <u>+</u>		0.06	[-0.04; 0.15]	10.7%
ASN	0.46	0.2102	266				- 0.46	[0.05; 0.88]	0.6%
Fixed effect model			23226		\$		0.07	[0.04; 0.10]	100.0%
Prediction interval					+			[–0.05; 0.19]	
Heterogeneity: $I^2 = 22$	2% , τ ² =	= 0.0004 ,	p = 0.28						
				-0.5	0	0.5			
IFNAR2	IFNAF	82 -> Se	veritv	Standa	ardised M	ean			
HARE Population	Beta	SE	n	C	Difference			g 95%	Cl weight
EUR	-0.06	0.0203	14262		+-		-0.06	5 [-0.10; -0.0	02] 60.3%
AFR	-0.08	0.0296	5828				-0.08	3 [-0.13; -0.0	28.4%
HIS	-0.09	0.0482	2870				-0.09	9 [-0.19; 0.0	00] 10.7%
ASN	-0.41	0.2037	266				-0.4	1 [-0.81; -0.0	0.6%
Fixed effect model			23226		\$		-0.0	7 [-0.10; -0.0	04] 100.0%
Prediction interval								[-0.15; 0.0	1]
Heterogeneity: $1^2 = 69$	%, τ ² <	0.0001 ,	p = 0.37	Γ					
				-0.5	0	0.5			

Supplementary Fig. 6. Transethnic meta-analysis for *IL10RB* and *IFNAR2* GReX with COVID-19 outcomes. Death (A) and severity score (B).

Supplementary Fig. 7. Effect of IL10RB shRNA on SARS-CoV-2 viral load in <u>hiPSC-derived NGN-2 glutamatergic neurons</u>. shRNA for IL10RB was used to knock-down *IL10RB* in hiPSC-derived NGN2-glutamatergic neurons. ***, ** and * correspond to p values from the linear model as \leq 0.001, 0.01 and 0.05, respectively. For the SARS-CoV-2 viral load (right panel) we perform pairwise comparison with unpaired t-test; ***, ** and * correspond to p values of \leq 0.001, 0.01 and 0.05, respectively. Even when considering only cells infected with SARS-CoV-2 (CoV+), there is no statistically significant difference in *IL10RB* expression (p = 0.3243, unpaired t-test).

Supplementary Fig. 8. Effect of IFNAR2 shRNA on SARS-CoV-2 viral load in hiPSC-derived NGN-2 glutamatergic neurons. shRNAs for IFNAR2 were used to knock-down *IFNAR2* in hiPSC-derived NGN2-glutamatergic neurons. ***, ** and * correspond to p values from the linear model of \leq 0.001, 0.01 and 0.05, respectively. For the SARS-CoV-2 viral load (right panel) we perform pairwise comparison with unpaired t-test; ***, ** and * correspond to p values of \leq 0.001, 0.01 and 0.05, respectively.

Supplementary Fig. 9. Competitive betacoronavirus gene set enrichment analysis in hiPSC-derived NGN-2 glutamatergic neurons. Distribution of competitive enrichment t statistics for gene sets that correspond to betacoronavirus relevant gene sets e.g. infections across different cell systems and tissues (n=192; pruned betacoronavirus gene sets with a Jaccard index filter of 0.2). P values are from sign test against a theoretical median of 0.

Supplementary Fig. 10. Effect of *IL10RB* **and** *IFNAR2* **expression manipulation on SARS-CoV-2 viral load in A549-ACE2 alveolar cells. SARS-CoV-2 log2(-ΔΔCt) values reflecting the amount of SARS-CoV-2 S RNA in response to knock-down or overexpression of** *IL10RB* **(A) and** *IFNAR2* **(B). KD: knock-down from pooled siRNA transfection; OE: overexpression with pLVX.TetOne expression vector; statistical test: Pearson's correlation analysis. Quantification was performed using RT-qPCR and analyzed with the -ΔΔCt method and values were normalized against their respective controls (Ctrl): non-infected cells for** *IL10RB* **and** *IFNAR2* **expression levels (x-axes) and SARS-CoV-2 infected cells for SARS-CoV-2 viral load (y-axes). Within the siRNA subgroup, controls were cells transfected with non-targeting control siRNA and infected with SARS-CoV-2 at an MOI of 0.02 for 48 hours. Within the overexpression subgroup, controls were cells treated with doxycycline to induce expression of 2x-strept-eGFP, and infected with SARS-CoV-2 at an MOI of 0.02 for 48 hours. For pairwise comparisons, see Supplementary Table 10.**

Supplementary Fig. 11. Correlation map of SNPs with sizable contribution to the Blood (STARNET) models of *IFNAR2* and *IL10RB*. SNPs that were used for *IFNAR2* are orange, *IL10RB* are blue and those used by both have these two colors alternating by letter. The top panel shows SNP correlation (R^2 and D'), the middle panel shows the model weights and the bottom panel the genes in the region. Only SNPs with a model prior \geq 2 for each model are shown; SNP correlation based on 1000G reference panel.

Supplementary Fig. 12. Density plots of TWAS association z-scores for FDR-significant genes (across all 7 COVID-19 phenotypes and 42 tissues). For some genes, such as *IL10RB*, there was a relatively consistent shift of the z-scores to one direction (e.g. right) whereas other genes, such as *IFNAR2*, showed both low and high z-score values suggesting phenotype and/or tissue specificity. FDR-significant genes (FDR-adjusted p≤0.05) for all COVID-19 phenotypes and tissues are displayed.

Supplementary Fig. 13. Comparing tissue specificity for adipose and muscle tissues of *IL10RB* and *IFNAR2* TWAS z-scores. *IFNAR2* (orange) TWAS z-scores are consistently low for adipose tissue and high for skeletal muscle - this effect is consistent for related tissues (e.g. visceral and subcutaneous adipose tissue) and across cohorts (STARNET and GTEx). No such tissue specificity is observed in *IL10RB* (blue). Only the B2 phenotype for COVID-19 associated hospitalization was considered (FDR for B2 is displayed on the right) and FDR significance levels for z-scores are denoted with vertical dotted lines. Tissue z-scores not corresponding to adipose or skeletal muscle tissue are faded. It is worth noting that the discordant faded blue dot (*IL10RB*) with a negative z-score close to significance (<-3) doesn't correspond to an endogenous tissue (transformed fibroblasts, GTEx).

SUPPLEMENTARY TABLES

Supplementary Table 1

Category: tissue/cell (Cohort)	Transcriptomic imputation	Used in gene targeting and		
	method used	drug repurposing analysis?		
Adipose: subcutaneous (GTEx)	EpiXcan	Yes		
Adipose: subcutaneous (STARNET)	EpiXcan	Yes		
Adipose: visceral (GTEx)	EpiXcan	Yes		
Adipose: visceral (STARNET)	EpiXcan	Yes		
Artery: Aorta (GTEx)	EpiXcan	Yes		
Artery: Aorta (STARNET)	EpiXcan	Yes		
Artery: coronary (GTEx)	EpiXcan	No		
Artery: Mammary (STARNET)	EpiXcan	Yes		
Artery: tibial (GTEx)	PrediXcan	No		
Blood (GTEx)	EpiXcan	No		
Blood (STARNET)	EpiXcan	Yes		
Cells: EBV-transformed lymphocytes (GTEx)	PrediXcan	No		
Cells: transformed fibroblasts (GTEx)	PrediXcan	No		
Endocrine: adrenal gland (GTEx)	EpiXcan	No		
Endocrine: pituitary (GTEx)	PrediXcan	No		
Endocrine: thyroid (GTEx)	PrediXcan	No		
GI: colon, sigmoid (GTEx)	EpiXcan	No		
GI: colon, transverse (GTEx)	EpiXcan	No		
GI: esophagus, GE junction (GTEx)	EpiXcan	Yes		
GI: esophagus, mucosa (GTEx)	EpiXcan	Yes		
GI: muscularis (GTEx)	EpiXcan	Yes		
GI: pancreas (GTEx)	EpiXcan	Yes		
GI: salivary gland, minor (GTEx)	PrediXcan	No		
GI: stomach (GTEx)	EpiXcan	No		
GI: terminal ileum (GTEx)	EpiXcan	No		
Heart: atrial appendage (GTEx)	EpiXcan	No		
Heart: left ventricle (GTEx)	EpiXcan	No		
Liver (GTEx)	EpiXcan	No		
Liver (STARNET)	EpiXcan	No		
Muscle: skeletal (GTEx)	EpiXcan	Yes		
Muscle: skeletal (STARNET)	EpiXcan	Yes		
PNS: nerve, tibial (GTEx)	PrediXcan	No		
Reproductive: mammary tissue (GTEx)	EpiXcan	Yes		
Reproductive: ovary (GTEx)	EpiXcan	No		
Reproductive: prostate (GTEx)	PrediXcan	No		
Reproductive: testis (GTEx)	PrediXcan	No		
Reproductive: uterus (GTEx)	PrediXcan	No		
Reproductive: vagina (GTEx)	PrediXcan	No		
Respiratory: lung (GTEx)	EpiXcan	Yes		
Skin: not sun exposed, suprapubic (GTEx)	EpiXcan	No		

Skin: sun exposed lower leg (GTEx)	EpiXcan	Yes
Spleen (GTEx)	EpiXcan	No

Supplementary Table 1. The 42 transcriptomic imputation models used in this study. Information is also provided regarding which imputation method was used and whether it was used for the gene targeting and drug repurposing pipelines.

Short name	Phenotype	n _{cases}	n _{controls}	Ancestry superpopulation background	GWAS	TWAS results in
A1	Very severe respiratory confirmed covid vs. not hospitalized covid	269	688	EUR	"A1_ALL"	Supplementary Data 1
A2	Very severe respiratory confirmed COVID vs. population	4,336	623,902	EUR + AMR	"A2_ALL_leave_23andme "	Supplementary Data 2
B1	Hospitalized COVID vs. not hospitalized COVID	2,430	8,478	ALL except EAS	"B1_ALL"	Supplementary Data 3
B2	Hospitalized COVID vs. population	6,406	902,088	EUR	"B2_ALL_eur_leave_23an dme"	Supplementary Data 4
C1	COVID vs. lab/self-reported negative	8,668	101,861	ALL except EAS	"C1_ALL_leave_23andme "	Supplementary Data 5
C2	COVID vs. population	14,134	1,284,876	EUR	"C2_ALL_eur_leave_23an dme"	Supplementary Data 6
D1	predicted COVID from self-reported symptoms vs. predicted or self-reported non-COVID	3,204	35,728	EUR	"D1_ALL"	Supplementary Data 7

Supplementary Table 2. Overview of the GWAS summary statistics that were used. Column "Short name": short name of the phenotype; column "Phenotype": description of the phenotype; Columns "n_{cases}" and "n_{controls}" correspond to the number of cases and controls used in this study; column "Ancestry superpopulation background": ancestry superpopulations that were included in the GWAS; column "GWAS": GWAS summary statistics used; column "TWAS results in": Supplementary Data file where the TWAS results can be found. "EUR", "AMR", "EAS" stand for European, admixed American and East Asian ancestries. "ALL" refers to all the superpopulations, as defined by the 1000 genomes project which includes the above plus African and South Asian ancestries.

Supple	ementary	Table	3
--------	----------	-------	---

	Severity Analysis	PheWAS Cohort				
	EUR	AFR	HIS	ASN	ALL	EUR
Sample Size (%)	14,262 (61.4%)	5,828 (25.1%)	2,870 (12.4%)	266 (1.1%)	23,226 (100%)	296,407 (N/A)
Median Age (IQR)	71 (16)	64 (17)	60 (27)	50 (27)	68 (18)	71 (14)
Female (%)	1,231 (8.6%)	824 (14.1%)	295 (10.3%)	26 (9.8%)	2,376 (10.2%)	21,084 (7.1%)
Median Elixhauser (2yr) (IQR)	4 (13)	5 (14)	0 (8)	0 (4)	4 (13)	N/A
COVID Severity - Mild (%) - Median (%) - Severe (%) - Death (%)	10,851 (76.1%) 2,301 (16.1%) 383 (2.7%) 727 (5.1%)	4,113 (70.6%) 1,187 (20.4%) 266 (4.6%) 262 (4.5%)	2,221 (77.4%) 439 (15.3%) 93 (3.2%) 117 (4.1%)	217 (81.6%) 26 (9.8%) 8 (3.0%) 15 (5.6%)	17,402 (74.9%) 3,953 (17.0%) 750 (3.2%) 1,121 (4.8%)	N/A
Median ICD Count (IQR)	N/A	N/A	N/A	N/A	N/A	136 (175)
Median length of record (IQR)	N/A	N/A	N/A	N/A	N/A	4,575.4 (3,350.0)

Supplementary Table 3. Demographic characteristics of the MVP cohorts used in the GReX association with COVID-19 severity and death, and PheWAS.

Gene	Population	n	Beta	SE	Р	Bonferroni- adjusted p
IL10RB	ALL	23226	0.067	0.016	2.4×10 ⁻⁰⁵	9.8×10 ⁻⁰⁵
	EUR	14262	0.060	0.020	3.3×10 ^{-₀3}	1.3×10 ⁻⁰²
	AFR	5828	0.077	0.030	9.6×10 ^{-₀3}	3.8×10 ⁻⁰²
	HIS	2870	0.058	0.048	2.3×10 ⁻⁰¹	9.2×10 ⁻⁰¹
	ASN	266	0.465	0.210	2.7×10 ⁻⁰²	1.1×10 ⁻⁰¹
IFNAR2	ALL	23226	-0.071	0.016	6.2×10 ⁻⁰⁶	2.5×10 ⁻⁰⁵
	EUR	14262	-0.062	0.020	2.3×10 ⁻⁰³	9.0×10 ⁻⁰³
	AFR	5828	-0.076	0.030	1.0×10 ⁻⁰²	4.1×10 ⁻⁰²
	HIS	2870	-0.092	0.048	5.5×10 ⁻⁰²	2.2×10 ⁻⁰¹
	ASN	266	-0.409	0.204	4.4×10 ⁻⁰²	1.8×10 ⁻⁰¹

Supplementary Table 4. GReX association with COVID-19 severity. Bonferroni-adjustment is performed for $n_{genes} \times n_{outcomes} = 4$ for each population cohort.

Population / ethnicity	Sample Size (%)	Median Age (IQR)	Female (%)
White / Hispanic or Latino	52 (9.2%)	66 (21.25)	24 (46.2%)
Black or African American / Hispanic or Latino	10 (1.8%)	52 (32)	7 (70%)
Unknown / Hispanic or Latino	107 (18.8%)	64 (25)	41 (38.3%)
More Than One Race / Hispanic or Latino	15 (2.6%)	64 (18)	7 (46.7%)
American Indian or Alaska Native / Hispanic or Latino	4 (0.7%)	63.5 (17.5)	1 (25%)
White / not Hispanic or Latino	128 (22.5%)	68 (28.5)	54 (42.2%)
Black or African American / not Hispanic or Latino	106 (18.7%)	63 (16.5)	54 (50.9%)
Unknown / not Hispanic or Latino	12 (2.1%)	62 (14.5)	1 (8.3%)
More Than One Race / not Hispanic or Latino	9 (1.6%)	56 (12)	4 (44.4%)
Asian / not Hispanic or Latino	36 (6.3%)	60 (22.25)	11 (30.6%)
American Indian or Alaska Native / not Hispanic or Latino	3 (0.5%)	62 (7.5)	0 (0%)
Native Hawaiian or Other Pacific Islander / not Hispanic or Latino	1 (0.2%)	68 (0)	1 (100%)
White / unknown	3 (0.5%)	88 (4.5)	2 (66.7%)
Unknown unknown	82 (14.4%)	62 (21.5)	35 (42.7%)

Supplementary Table 5. Demographic characteristics of the Mount Sinai COVID-19 Biobank.

	Count (%)
<pre># Individuals with number of samples below: - 1 - 2 - 3 - 4 - 5 - 6 - 7</pre>	176 (31.0%) 156 (27.5%) 110 (19.4%) 71 (12.5%) 39 (6.9%) 15 (2.6%) 1 (0.2%)
 # of samples with COVID Severity below: Control Moderate COVID-19 Severe COVID-19 Severe COVID-19 with EOD 	122 (10.1%) 600 (49.6%) 269 (22.2%) 218 (18.0%)

Supplementary Table 6. Sample characteristics of the Mount Sinai COVID-19 Biobank.

The differential gene expression analysis was based on samples not individuals. Here we provide information about how many samples were taken from each individual and a breakdown by severity for the samples.

Supplementary Table 7

gRNA	Target gene	logFC	t	P value
IL10RB-1	IL10RB	2.67	5.67	0.0000009
IL10RB-2	IL10RB	1.46	3.44	0.0012
IL10RB-3	IL10RB	1.67	3.90	0.0003
IL10RB-4	IL10RB	0.98	3.64	0.0007

Supplementary Table 7. Effect of CRISPRa gRNAs on target gene. Metrics for scrambled gRNA.

shRNA	Target gene	logFC	t	P value
IL10RB	IL10RB	0.06	0.27	0.78
IFNAR2	IFNAR2	-0.41	-2.39	0.02

Supplementary Table 8. Effect of shRNAs on target genes. Metrics for scrambled shRNA

Treatment	Target gene	logFC	t	P value
SARS-CoV-2 infection	IL10RB	0.025	0.13	0.89
SARS-CoV-2 infection	IFNAR2	0.3	3.70	0.00098

Supplementary Table 9. Effect of SARS-CoV-2 infection on target genes (*IL10RB* and *IFNAR2*). Metrics for non SARS-CoV-2 infected cells taking into account (scrambled gRNA and shRNA treatments).

|--|

Treatment group	Target gene	SARS-CoV- 2 infection	qPCR target	% control (-ΔΔCt method)	P value	Comparison
		No	IL10RB	9.5%	4.0×10 ⁻⁰⁶	a-IL10RB (n=3) vs. control siRNA (n=3)
	ILIVKD	Yes	SARS-CoV-2	47.7%	0.0088	a-IL10RB (n=3) vs. control siRNA (n=3)
SIRINA		No	IFNAR2	29.9%	0.00098	a-IFNARB (n=3) vs. control siRNA (n=3)
	IFNAR2	Yes	SARS-CoV-2	2.3%	1.4×10 ⁻⁰⁵	a-IFNARB (n=3) vs. control siRNA (n=3)
	11 4000	No	IL10RB	308,504.5%	0.013	IL10RB (n=3) vs. GFP induction (n=2); Dox+
Exogenous	Yes	SARS-CoV-2	681.6%	0.11	IL10RB (n=2) vs. GFP induction (n=2); Dox+	
expression		No	IFNAR2	775.5%	0.0053	IFNAR2 (n=3) vs. GFP induction (n=2); Dox+
	IFNAR2	Yes	SARS-CoV-2	1143.7%	0.06	IFNAR2 (n=3) vs. GFP induction (n=2); Dox+

<u>Supplementary Table 10. *In vitro* manipulation of IL10RB and IFNAR2 expression in A549 alveolar cells exogenously</u> <u>expressing ACE2 (A549-ACE2)</u>. Treatment group: either siRNA or overexpression (doxycycline induction of stable cell lines) experiments; Target gene: gene target of knock-down or overexpression; SARS-CoV-2 infection: whether cells were infected with SARS-CoV-2 or not; qPCR target: qPCR amplification target - measurements for which statistical tests were performed; details for statistical tests are provided in the remaining columns. We performed pairwise comparisons with unpaired t-test.

Gene (n _{SNPs in model})	N _{SNPs in EUR}	N _{SNPs in AFR}	N _{SNPs in HIS}	N _{SNPs in ASN}
IL10RB (20)	15	15	17	11
IFNAR2 (36)	20	15	20	16

Supplementary Table 11. Comparison of the number of SNP predictors present across different ancestral groups from the blood transcriptomic imputation model (STARNET) in MVP.

Severity	Description	n _{EUR}	n _{AFR}	n _{HIS}	n _{ASN}
Mild	SARS-CoV-2+	10,851	4,113	2,221	217
Moderate	SARS-CoV-2+ and hospitalized with or without low flow oxygen therapy	2,301	1,187	439	26
Severe	SARS-CoV-2+ and hospitalized with either ventilation, intubation, extracorporeal membrane oxygenation (EMCO), dialysis vasopressors or high flow oxygen therapy	383	266	93	8
Death	COVID-19 related death	727	262	117	15

Supplementary Table 12. COVID severity scale developed by VINCI and the MVP COVID-19 Science Initiative. Description and counts for each HARE-based population.

Severity	Description
Control	No COVID-19
Moderate	COVID-19 with abnormal (<94%) O2 saturation or pneumonia on imaging
Severe	COVID-19 with use of high-flow nasal cannula (HFNC), non-rebreather mask (NRB), bilevel positive airway pressure (BIPAP) or mechanical ventilation and no vasopressor use, and based on CrCl greater than 30 and alanine aminotransferase (ALT) less than 5× the upper limit of normal.
Severe with end-organ damage	COVID-19 as Severe but with use of vasopressors, or based on CrCl less than 30, new renal replacement therapy (hemodialysis/continuous veno-venous hemofiltration) or ALT more than 5× the upper limit of normal

Supplementary Table 13. COVID severity scale developed by the Mount Sinai COVID-19 Biobank. Severity score has been previously characterized in detail¹.

Experiment	Sequence name	Oligo Sequences
	<i>IL10RB</i> gRNA#1	caccgAGGCTTGGCAGATGCACACG / aaacCGTGTGCATCTGCCAAGCCTc (forward / reverse)
NGN2 - <i>IL10RB</i> CRISPRa	IL10RB gRNA#2	caccgGGATCCTCGCAAGCTTTGAA / aaacTTCAAAGCTTGCGAGGATCCc (forward / reverse)
	IL10RB gRNA#3	caccgGCATGCTGGAATGACGGTGG / aaacCCACCGTCATTCCAGCATGCc (forward / reverse)
	<i>IL10RB</i> gRNA#4	caccgTTGAAGTCCGCTCTCCGCAC / aaacGTGCGGAGAGCGGACTTCAAc (forward / reverse)
	Scramble gRNA	caccgGCACTCACATCGCTACATCA / aaacTGATGTAGCGATGTGAGTGCC (forward / reverse)
NGN2 - <i>IL10RB</i> shRNA	SHCLNG-NM_000628 (Sigma)	CCTGTGGATGACACCATTATT
NGN2 - <i>IFNAR2</i> shRNA	SHCLNG-NM_000874 (Sigma)	GCAGTAATAAAGTCTCCCTTA
A549 - IL10RB	D-007926-03	GCAAACAACCCAUGACGAA
SIRNA: M-007926-02-00	D-007926-04	GACCACACCUUGAGAGUCA
Human IL10RB	D-007926-05	CAGCUCAGUACCUAAGUUA
(3566) SIRNA - SMARTpool	D-007926-18	CUACACAGAGCACGGACUU
A549 - IL10RB	D-015411-01	GGUGAAAUUUCCAUCUAUU
M-015411-00-00	D-015411-02	CAGAGGGAAUUGUUAAGAA
Human IFNAR2	D-015411-03	GAGCAAGCAGUAAUAAAGU
(3455) siRNA - SMARTpool	D-015411-04	GAAGAUUUGAAGGUGGUUA

A549 - <i>IL10RB</i> overexpression	gBlocks gene fragment for <i>IL10RB</i>	ATGGCGTGGAGCCTTGGGAGCTGGCTGGCTGGCTGCCTGC
A549 - <i>IFNAR2</i> overexpression	gBlocks gene fragment for <i>IFNAR2</i>	ATGCTTTTGAGCCAGAATGCCTTCATCGTCAGATCACTTAATTTGGTTCTCATGGTGTATATCAGC CTCGTGTTTGGTATTTCATATGATTCGCCTGATTACACAGATGAATCTTGCACTTTCAAGATATCA TTGCGAAATTTCCGGTCCATCTTATCATGGGAATTAAAAAACCACTCCATTGTACCAACTCACTAT ACATTGCTGTATACAATCATGAGTAAACCAGAAGATTTGAAGGTGGTTAAGAACTGTGCAAATAC CACAAGATCATTTTGTGACCTCACAGATGAGTGGGAGAAGCACACACGAGGCCTATGTCACCGT CCTAGAAGGATTCAGCGGGAACACAACGTTGTTCAGTTGCTCACACAATTTCTGGCTGG

Supplementary Table 14: Nucleotide sequences.

SUPPLEMENTARY NOTES

VA Million Veteran Program COVID-19 Science Initiative: Core Acknowledgment for Publications

VA Million Veteran Program COVID-19 Science Initiative

MVP COVID-19 Science Program Steering Committee. Christopher J. O'Donnell¹⁹, J. Michael Gaziano¹⁹, Philip S. Tsao²⁴, Sumitra Muralidhar³⁶, Jean Beckham³⁷, Kyong-Mi Chang³⁸, Juan P. Casas¹⁹, Kelly Cho^{19,20}, Saiju Pyarajan¹⁹, Jennifer Huffman¹⁹ & Jennifer Moser³⁶

MVP COVID-19 Science Program Steering Committee Support. Lauren Thomann¹⁹, Helene Garcon¹⁹ & Nicole Kosik¹⁹

MVP COVID-19 Science Program Working Groups and Associated Chairs.

COVID-19 Related PheWAS. Katherine Liao¹⁹ & Scott Damrauer³⁸ **Disease Mechanisms**. Richard Hauger³⁹, Shiuh-Wen Luoh^{28,29} & Sudha Iyengar²⁵⁻²⁷ **Druggable Genome**. Juan P. Casas¹⁹

Genomics for Risk Prediction, PRS, and MR. Themistocles Assimes^{23,24}, Panagiotis Roussos¹⁻⁷ & Robert Striker^{30,31}

GWAS & Downstream Analysis. Jennifer Huffman¹⁹ & Yan Sun⁴¹

Pharmacogenomics. Adriana Hung⁴² & Sony Tuteja³⁸

VA COVID-19 Shared Data Resource. Scott L. DuVall²¹, Kristine E. Lynch²¹ & Elise Gatsby²¹

MVP COVID-19 Data Core. Kelly Cho^{19,20}, Lauren Costa¹⁹,Anne Yuk-Lam Ho¹⁹ & Rebecca Song¹⁹

MVP COVID-19 Genomics and PRS Working Group Roster. Panagiotis Roussos⁷, Tim Assimes^{23,24}, Rob Striker³⁰, Helene Garcon¹⁹, Jenny Huffman⁵⁵, Jacob Joseph¹⁹, Reid Thompson²⁹, Wen-Chih Wu⁴⁶, Austin Nguyen¹⁷, Emily Wan¹⁹, Renato Polimanti⁴³, Frank Wendt⁴³, Dan Levey⁴³, Pradeep Natarajan⁴⁷, John McGeary⁴⁶, Merry-Lynn McDonald⁴⁸, Rob Igo²⁵, Murray B Stein³⁹, Michael Lewis⁴⁹, Scott Damrauer³⁸, Anurag Verma³⁸, Kyong-Mi Chang³⁸, Ravi Madduri⁵⁰, Jimmy Efird⁵¹, Darshana Jhala³⁸, Jeffrey Petersen³⁸, James Meigs⁴⁷, Benjamin Voight⁵², Joel Gelernter⁴³, Jin Zhou⁵³, Michael Levin³⁸, Edward Siew⁴², Giorgio Sirugo⁵⁴, Austin Hilliard²⁴, Elvis Akwo⁵⁸, Adriana Hung⁴², Shiuh-Wen Luoh^{28,29}, Jessica Minnier¹⁷, Rose Huang¹⁹, Liam Gaziano⁵⁵, Sharvari Dalal³⁸, Cassy Robinson-Cohen⁴², Ran Tao⁵⁸, Phil Tsao²⁴, Mehrdad Arjomandi⁵⁶, Marijana Vujkovic³⁸, Anoop Sendamarai¹⁹, Uma Saxena⁴⁷ & Saiju Pyarajan¹⁹

MVP COVID-19 GWAS Working Group Roster. Jenny Huffman⁵⁵, Yan Sun⁴¹, Helene Garcon¹⁹, Jacob Joseph¹⁹, Reid Thompson²⁹, Mary Wood²⁹, Dana Crawford²⁵, Emily Wan¹⁹, Renato Polimanti⁴³, Frank Wendt⁴³, Gita Pathak⁴³, Pradeep Natarajan⁴⁷, John McGeary⁴⁶, Merry-Lynn McDonald⁴⁸, Rob Igo²⁵, Scott Damrauer³⁸, Anurag Verma³⁸, Ravi Madduri⁵⁰, Jimmy Efird⁵¹,

Benjamin Voight⁵², Joel Gelernter⁴³, Michael Levin³⁸, Richard Hauger³⁹, Valerio Napolioni⁵⁷, Michael Matheny⁴², Alex Bick¹⁹, Edward Siew⁴², Austin Hilliard²⁴, Adriana Hung⁴², Shiuh-Wen Luoh^{28,29,40}, Rose Huang¹⁹, Matt Freiberg⁵⁸, Quinn S. Wells⁵⁸, Cassy Robinson-Cohen⁴², Alex Pereira⁴⁰, Kyong-Mi Chang³⁸, Saiju Pyarajan¹⁹, Anoop Sendamarai¹⁹, Uma Saxena⁴⁷, Gina Peloso⁵⁵ & Catherine Tcheandjieu²⁴

MVP Executive Committee. J. Michael Gaziano¹⁹, Sumitra Muralidhar³⁶, Rachel Ramoni³⁶, Jean Beckham³⁷, Kyong-Mi Chang³⁸, Christopher J. O'Donnell¹⁹, Philip S. Tsao²⁴, James Breeling³⁶, Grant Huang³⁶ & Juan P. Casas¹⁹

MVP Program Office. Sumitra Muralidhar³⁶ & Jennifer Moser³⁶

MVP Recruitment/Enrollment.

Director/Deputy Director, Boston. Stacey B. Whitbourne¹⁹ & Jessica V. Brewer¹⁹ Clinical Epidemiology Research Center (CERC), West Haven. Mihaela Aslan⁴³ Cooperative Studies Program Clinical Research Pharmacy Coordinating Center, Albuquerque. Todd Connor⁴⁴ & Dean P. Argyres⁴⁴ Genomics Coordinating Center, Palo Alto. Philip S. Tsao²⁴ MVP Boston Coordinating Center, Boston. J. Michael Gaziano¹⁹ MVP Information Center, Canandaigua. Brady Stephens⁴⁵ VA Central Biorepository, Boston. Mary T. Brophy¹⁹, Donald E. Humphries¹⁹ & Luis E. Selva¹⁹ MVP Informatics, Boston. Nhan Do¹⁹ & Shahpoor (Alex) Shayan¹⁹ MVP Data Operations/Analytics, Boston. Kelly Cho^{19,20} Director of Regulatory Affairs. Lori Churby²⁴

MVP Science.

Science Operations. Christopher J. O'Donnell¹⁹
Genomics Core. Christopher J. O'Donnell¹⁹, Saiju Pyarajan¹⁹ & Philip S. Tsao²⁴
Data Core. Kelly Cho^{19,20}
VA Informatics and Computing Infrastructure (VINCI). Scott L. DuVall²¹
Data and Computational Sciences. Saiju Pyarajan¹⁹
Statistical Genetics. Elizabeth Hauser³⁷, Yan Sun⁴¹ & Hongyu Zhao⁴³

MVP Local Site Investigators. Peter Wilson⁴¹, Rachel McArdle⁵⁹, Louis Dellitalia⁶⁰, Kristin Mattocks⁶¹, John Harley⁶², Jeffrey Whittle⁶³, Frank Jacono²⁷, Jean Beckham³⁷, John Wells⁶⁴, Salvador Gutierrez⁶⁵, Gretchen Gibson⁶⁶, Kimberly Hammer⁶⁷, Laurence Kaminsky⁶⁸, Gerardo Villareal⁴⁴, Scott Kinlay¹⁹, Junzhe Xu⁶⁹, Mark Hamner⁷⁰, Roy Mathew⁷¹, Sujata Bhushan⁷², Pran Iruvanti⁷³, Michael Godschalk⁷⁴, Zuhair Ballas⁷⁵, Douglas Ivins⁷⁶, Stephen Mastorides⁷⁷, Jonathan Moorman⁷⁸, Saib Gappy⁷⁹, Jon Klein⁸⁰, Nora Ratcliffe⁸¹, Hermes Florez⁸², Olaoluwa Okusaga⁸³, Maureen Murdoch⁸⁴, Peruvemba Sriram⁸⁵, Shing Shing Yeh⁸⁶, Neeraj Tandon⁸⁷, Darshana Jhala³⁸, Samuel Aguayo⁸⁸, David Cohen²⁹, Satish Sharma⁴⁶, Suthat Liangpunsakul⁸⁹, Kris Ann Oursler⁹⁰, Mary Whooley⁹¹, Sunil Ahuja⁹², Joseph Constans⁹³, Paul Meyer⁹⁴, Jennifer Greco⁹⁵, Michael Rauchman⁹⁶, Richard Servatius⁹⁷, Melinda Gaddy⁹⁸, Agnes Wallbom⁴⁹, Timothy

Morgan⁹⁹, Todd Stapley¹⁰⁰, Scott Sherman¹⁰¹, George Ross¹⁰², Philip Tsao²⁴, Patrick Strollo¹⁰³, Edward Boyko¹⁰⁴, Laurence Meyer¹⁰⁵, Samir Gupta³⁹, Mostaqul Huq¹⁰⁶, Joseph Fayad¹⁰⁷, Adriana Hung⁴², Jack Lichy¹⁰⁸, Robin Hurley¹⁰⁹, Brooks Robey¹¹⁰ & Robert Striker^{30,31}

¹Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ²Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ³Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ⁴Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ⁵Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ⁶Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ⁷Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA. 8Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ⁹Department of Psychiatry, Yale University, New Haven, CT, USA. ¹⁰Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹¹Department of Microbiology, Grossman School of Medicine, New York University, New York, NY, USA. ¹²Department of Medicine, Grossman School of Medicine, New York University, New York, NY, USA. ¹³Vilcek Institute of Graduate Biomedical Sciences, New York University, New York, NY, USA. ¹⁴Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹⁵Virus Engineering Center for Therapeutics and Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹⁶Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹⁷Biostatistics Shared Resources, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA. ¹⁸New York Genome Center, New York, NY, USA. ¹⁹VA Boston Healthcare System, Boston, MA, USA. ²⁰Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. ²¹VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA. ²²Division of Epidemiology, University of Utah, Salt Lake City, UT, USA. ²³Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. ²⁴VA Palo Alto Health Care System, Palo Alto, CA, USA. ²⁵Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA. ²⁶Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA. ²⁷VA Northeast Ohio Healthcare System, Cleveland VA Medical Center, Cleveland, OH, USA. ²⁸Department of Medicine, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA. ²⁹VA Portland Health Care System, Portland, OR, USA. ³⁰Division of Infectious Diseases, Department of Medicine, University of Wisconsin, Madison, WI, USA. ³¹William S. Middleton Memorial Veterans Hospital, Madison, WI, USA. ³²Sema4, Stamford, CT, USA. ³³Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ³⁴Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ³⁵Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ³⁶US Department of Veterans Affairs, Washington, DC, USA. ³⁷Durham VA Medical Center, Durham, NC, USA. ³⁸Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA. ³⁹VA San Diego Healthcare System, San Diego, CA, USA. ⁴⁰Department of Genetics, Harvard Medical School, Harvard University, Boston, MA, USA. ⁴¹Atlanta VA Medical Center, Decatur, GA, USA. ⁴²VA Tennessee Valley Healthcare System,

South Nashville, TN, USA. ⁴³VA Connecticut Healthcare System, West Haven, CT, USA. ⁴⁴New Mexico VA Health Care System, Albuquerque, NM, USA. ⁴⁵Canandaigua VA Medical Center, Canandaigua, NY, USA. ⁴⁶Providence VA Medical Center, Providence, RI, USA. ⁴⁷Massachusetts General Hospital, Boston, MA, USA. ⁴⁸ Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA . ⁴⁹VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA. ⁵⁰Argonne National Laboratory, Chicago, IL, USA . ⁵¹VA Cooperative Studies Program Coordinating Center, Boston, MA, USA. ⁵²Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA. ⁵³UCLA Medical School, Los Angeles, CA, USA. ⁵⁴Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA. ⁵⁵Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Cardiology Section, VA Boston Healthcare System, Boston, MA, USA. ⁵⁶UCSF Medical Center, Medicine, San Francisco, CA, USA. 57 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA. ⁵⁸Vanderbilt University Medical Center, Nashville, TN, USA. ⁵⁹Bay Pines VA Healthcare System, Bay Pines, FL, USA. 60 Birmingham VA Medical Center, Birmingham AL, USA. ⁶¹Central Western Massachusetts Healthcare System, Leeds, MA, USA. ⁶²Cincinnati VA Medical Center, Cincinnati, OH, USA. ⁶³Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA. ⁶⁴Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA ⁶⁵Edward Hines, Jr. VA Medical Center, Hines, IL, USA. ⁶⁶Veterans Health Care System of the Ozarks, Fayetteville, AR, USA. ⁶⁷Fargo VA Health Care System, Fargo, ND, USA. ⁶⁸VA Health Care Upstate New York, Albany, NY, USA. ⁶⁹VA Western New York Healthcare System, Buffalo, NY, USA. ⁷⁰Ralph H. Johnson VA Medical Center, Mental Health Research, Charleston, SC, USA. ⁷¹Columbia VA Health Care System, Columbia, SC, USA. ⁷²VA North Texas Health Care System, Dallas, TX, USA. ⁷³Hampton VA Medical Center, Hampton, VA, USA. ⁷⁴Richmond VA Medical Center, Richmond, VA, USA. ⁷⁵Iowa City VA Health Care System, Iowa City, IA, USA. ⁷⁶Eastern Oklahoma VA Health Care System, Muskogee, OK, USA. ⁷⁷James A. Haley Veterans' Hospital, Tampa, FL, USA. ⁷⁸James H. Quillen VA Medical Center, Mountain Home, TN, USA. ⁷⁹John D. Dingell VA Medical Center, Detroit, MI, USA. ⁸⁰Louisville VA Medical Center, Louisville, KY, USA. ⁸¹Manchester VA Medical Center, Manchester, NH, USA. ⁸²Miami VA Health Care System, Miami FL, USA. 83 Michael E. DeBakey VA Medical Center, Houston, TX, USA. ⁸⁴Minneapolis VA Health Care System, Minneapolis, MN, USA. ⁸⁵N. FL/S. GA Veterans Health System, Gainesville, FL, USA. ⁸⁶Northport VA Medical Center, Northport, NY, USA. ⁸⁷Overton Brooks VA Medical Center, Shreveport, LA, USA. ⁸⁸Phoenix VA Health Care System, Phoenix, AZ, USA. 89Richard Roudebush VA Medical Center, Indianapolis, IN, USA. 90Salem VA Medical Center, Salem, VA, USA. ⁹¹San Francisco VA Health Care System, San Francisco, CA, USA. ⁹²South Texas Veterans Health Care System, San Antonio, TX, USA. ⁹³Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA. ⁹⁴Southern Arizona VA Health Care System, Tucson, AZ, USA. ⁹⁵Sioux Falls VA Health Care System, Sioux Falls, SD, USA. ⁹⁶St. Louis VA Health Care System, St. Louis, MO, USA. ⁹⁷Syracuse VA Medical Center, Syracuse, NY, USA. ⁹⁸VA Eastern Kansas Health Care System, Leavenworth, KS, USA. ⁹⁹VA Long Beach Healthcare System, Long Beach, CA, USA. ¹⁰⁰VA Maine Healthcare System, Augusta, ME, USA. ¹⁰¹VA New York Harbor Healthcare System, New York, NY, USA. ¹⁰²VA Pacific Islands Health Care System, Honolulu, HI, USA. ¹⁰³VA Pittsburgh Health Care System, Pittsburgh, PA,

USA. ¹⁰⁴VA Puget Sound Health Care System, Seattle, WA, USA. ¹⁰⁵VA Salt Lake City Health Care System, Salt Lake City, UT, USA. ¹⁰⁶VA Sierra Nevada Health Care System, Reno, NV, USA. ¹⁰⁷VA Southern Nevada Healthcare System, North Las Vegas, NV, USA. ¹⁰⁸Washington DC VA Medical Center, Washington, D. C., USA. ¹⁰⁹W.G. (Bill) Hefner VA Medical Center, Salisbury, NC, USA & ¹¹⁰White River Junction VA Medical Center, White River Junction, VT, USA

Mount Sinai COVID-19 Biobank: Core Acknowledgment for Publications

Charuta Agashe¹¹¹, Priyal Agrawal¹¹¹, Alara Akyatan¹¹¹, Kasey Alesso-Carra¹¹¹, Eziwoma Alibo¹¹¹, Kelvin Alvarez¹¹¹, Angelo Amabile¹¹¹, Carmen Argmann¹¹¹, Kimberly Argueta¹¹¹, Steven Ascolillo¹¹¹, Rasheed Bailey¹¹¹, Craig Batchelor¹¹¹, Noam D. Beckmann^{5,6,10,111}, Aviva G. Beckmann¹¹¹, Priya Begani¹¹¹, Jessica Le Berichel¹¹¹, Dusan Bogunovic¹¹¹, Swaroop Bose¹¹¹, Cansu Cimen Bozkus¹¹¹, Paloma Bravo¹¹¹, Mark Buckup¹¹¹, Larissa Burka¹¹¹, Sharlene Calorossi¹¹¹, Lena Cambron¹¹¹, Guillermo Carbonell¹¹¹, Gina Carrara¹¹¹, Mario A. Cedillo¹¹¹, Christie Chang¹¹¹, Serena Chang¹¹¹, Alexander W. Charney^{1,3,5,6,8,10,111}, Steven T. Chen¹¹¹, Esther Cheng¹¹¹, Jonathan Chien¹¹¹, Mashkura Chowdhury¹¹¹, Jonathan Chung¹¹¹, Phillip H. Comella¹¹¹, Dana Cosgrove¹¹¹, Francesca Cossarini¹¹¹, Liam Cotter¹¹¹, Arpit Dave¹¹¹, Travis Dawson¹¹¹, Bheesham Dayal¹¹¹, Diane Marie Del Valle¹¹¹, Maxime Dhainaut¹¹¹, Rebecca Dornfeld¹¹¹, Katie Dul¹¹¹, Melody Eaton¹¹¹, Nissan Eber¹¹¹, Cordelia Elaiho¹¹¹, Ethan Ellis¹¹¹, Frank Fabris¹¹¹, Jeremiah Faith¹¹¹, Dominique Falci¹¹¹, Susie Feng¹¹¹, Brian Fennessy¹¹¹, Marie Fernandes¹¹¹, Nataly Fishman¹¹¹, Nancy J. Francoeur¹¹¹, Sandeep Gangadharan¹¹¹, Daniel Geanon¹¹¹, Bruce D. Gelb¹¹¹, Benjamin S. Glicksberg¹¹¹, Sacha Gnjatic¹¹¹, Joanna Grabowska¹¹¹, Gavin Gyimesi¹¹¹, Maha Hamdani¹¹¹, Diana Handler¹¹¹, Jocelyn Harris¹¹¹, Matthew Hartnett¹¹¹, Sandra Hatem¹¹¹, Manon Herbinet¹¹¹, Elva Herrera¹¹¹, Arielle Hochman¹¹¹, Gabriel E. Hoffman^{1-6,111}, Jaime Hook¹¹¹, Laila Horta¹¹¹, Etienne Humblin¹¹¹, Suraj Jaladanki¹¹¹, Hajra Jamal¹¹¹, Jessica S. Johnson¹¹¹, Gurpawan Kang¹¹¹, Neha Karekar¹¹¹, Subha Karim¹¹¹, Geoffrey Kelly¹¹¹, Jong Kim¹¹¹, Seunghee Kim-Schulze¹¹¹, Arvind Kumar¹¹¹, Jose Lacunza¹¹¹, Alona Lansky¹¹¹, Dannielle Lebovitch¹¹¹, Brian Lee¹¹¹, Grace Lee¹¹¹, Gyu Ho Lee¹¹¹, Jacky Lee¹¹¹, John Leech¹¹¹, Lauren Lepow¹¹¹, Michael B. Leventhal¹¹¹, Lora E. Liharska¹¹¹, Katherine Lindblad¹¹¹, Alexandra Livanos¹¹¹, Bojan Losic¹¹¹, Rosalie Machado¹¹¹, Kent Madrid¹¹¹, Zafar Mahmood¹¹¹, Kelcey Mar¹¹¹, Thomas U. Marron¹¹¹, Glenn Martin¹¹¹, Robert Marvin¹¹¹, Shrisha Maskey¹¹¹, Paul Matthews¹¹¹, Katherine Meckel¹¹¹, Saurabh Mehandru¹¹¹, Miriam Merad^{33-35,111}, Cynthia Mercedes¹¹¹, Elyze Merzier¹¹¹, Dara Meyer¹¹¹, Gurkan Mollaoglu¹¹¹, Sarah Morris¹¹¹, Konstantinos Mouskas¹¹¹, Emily Moya¹¹¹, Naa-akomaah Yeboah¹¹¹, Girish Nadkarni¹¹¹, Kai Nie, Marjorie Nisenholtz¹¹¹, George Ofori-Amanfo¹¹¹, Kenan Onel¹¹¹, Merouane Ounadjela¹¹¹, Manishkumar Patel¹¹¹, Vishwendra Patel¹¹¹, Cassandra Pruitt¹¹¹, Adeeb Rahman¹¹¹, Shivani Rathi¹¹¹, Jamie Redes¹¹¹, Ivan Reyes-Torres¹¹¹, Alcina Rodrigues¹¹¹, Alfonso Rodriguez¹¹¹, Vladimir Roudko¹¹¹, Panos Roussos^{1-7,111}, Evelyn Ruiz¹¹¹, Pearl Scalzo, Eric E. Schadt^{5,6,32,111}, leisha Scott¹¹¹, Robert Sebra¹¹¹, Hardik Shah¹¹¹, Pedro Silva¹¹¹, Nicole W. Simons¹¹¹, Melissa Smith¹¹¹, Alessandra Soares Schanoski¹¹¹, Juan Soto¹¹¹, Shwetha Hara Sridhar¹¹¹, Stacey-Ann Brown¹¹¹, Hiyab Stefanos¹¹¹, Meghan Straw¹¹¹, Robert Sweeney¹¹¹, Alexandra Tabachnikova¹¹¹, Collin Teaque¹¹¹, Ryan Thompson¹¹¹, Manying Tin¹¹¹, Kevin Tuballes¹¹¹, Scott R. Tyler¹¹¹, Bhaskar Upadhyaya¹¹¹, Akhil Vaid¹¹¹, Verena Van Der Heide¹¹¹, Natalie Vaninov¹¹¹, Konstantinos Vlachos¹¹¹, Daniel

Wacker¹¹¹, Laura Walker¹¹¹, Hadley Walsh¹¹¹, Bo Wang¹¹¹, Wenhui Wang¹¹¹, C. Matthias Wilk¹¹¹, Lillian Wilkins¹¹¹, Karen M. Wilson¹¹¹, Jessica Wilson¹¹¹, Hui Xie¹¹¹, Li Xue¹¹¹, Nancy Yi¹¹¹, Ying-chih Wang¹¹¹, Mahlet Yishak¹¹¹, Sabina Young¹¹¹, Alex Yu¹¹¹, Nina Zaks¹¹¹ & Renyuan Zha¹¹¹

¹Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ²Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ³Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ⁴Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ⁵Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ⁶Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ⁷Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA. ⁸Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹⁰Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ³²Sema4, Stamford, CT, USA. ³³Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ³⁵Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹¹Mount Sinai COVID-19 Biobank, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Other Acknowledgements

Figure 4b: Created with BioRender.com.

DESCRIPTION OF THE SUPPLEMENTARY DATA FILES

SUPPLEMENTARY DATA 1 TO 7

Brief description: TWAS results for COVID-19 GWASs:

Name	Phenotype	TWAS results in
A1	Very severe respiratory confirmed covid vs. not hospitalized covid	Supplementary Data 1
A2	Very severe respiratory confirmed COVID vs. population	Supplementary Data 2
B1	Hospitalized COVID vs. not hospitalized COVID	Supplementary Data 3
B2	Hospitalized COVID vs. population	Supplementary Data 4
C1	COVID vs. lab/self-reported negative	Supplementary Data 5
C2	COVID vs. population	Supplementary Data 6
D1	predicted COVID from self-reported symptoms vs. predicted or self-reported non-COVID	Supplementary Data 7

Each sheet within an excel file represents a different tissue. Column descriptions:

Column	Description
gene	a gene's id: as listed in the Tissue Transcriptome model. Ensemble Id for most gene model releases (e.g. in this study). Can also be an intron's id for splicing model releases
gene_name	gene name as listed by the Transcriptome Model, typically HUGO for a gene (e.g. in this study). It can also be an intron's id.
zscore	S-PrediXcan or S-EpiXcan's association result for the gene
effect_size	S-PrediXcan or S-EpiXcan's association effect size for the gene. Can only be computed when beta from the GWAS is used.
pvalue	p-value of the aforementioned statistic
var_g	variance of the gene expression, calculated as W' * G * W (where W is the vector of SNP weights in a gene's model, W' is its transpose, and G is the covariance matrix)
pred_perf_r2	R^{2}_{CV} (cross-validated) of tissue model's correlation to gene's measured transcriptome (prediction performance). Recommended filtering is > 0.01
pred_perf_pval	p-value of tissue model's correlation to gene's measured transcriptome (prediction performance).
pred_perf_qval	q-value of tissue model's correlation to gene's measured transcriptome (prediction performance).
n_snps_used	number of SNPs from GWAS that were used in the S-PrediXcan or S-EpiXcan analysis
n_snps_in_cov	number of SNPs in the covariance matrix
n_snps_in_model	number of SNPs in the imputation model
gwas	GWAS name (phenotype) from the COVID-19 hg
tissue	Imputation model used
method	Imputation method used for imputation model construction (in this study PrediXcan or EpiXcan)
gwas_fdr	FDR-adjusted p value ² for association when considering all gene-trait associations across all tissue models within this specific GWAS (e.g. COVID-19 B2 phenotype)

Tissue.keyword	Pattern matching string for internal pipeline
fdr_all	FDR-adjusted p value ² for association when considering all gene-trait associations across all tissue models and all GWASs (all COVID-19 phenotypes)
var_g	variance of the gene expression, calculated as W' * G * W (where W is the vector of SNP weights in a gene's model, W' is its transpose, and G is the covariance matrix)

SUPPLEMENTARY DATA 8

Brief description: Results from JEPEGMIX2-P pathway analysis.

Column descriptions (Sheet: Summary_of_significant):

Column	Description
Name	Gene set name
Count.Bon.Sig	Number of tissues were this gene set is Bonferroni significant
Min.Pval	Min JEPEGMIX2-P p-value from all tissues
Min.Bonferroni	Min Bonferroni-adjusted JEPEGMIX2-P p-value from all tissues

Column descriptions (Sheet: All_results):

Column	Description
Туре	Type name
Tissue	Tissue name
Name	Gene set name
df	Degrees of freedom
Chisq	chi-square
Pval	JEPEGMIX2-P p-value
Qval_holm	JEPEGMIX2-P q-value with Holm method
Qval_fdr	JEPEGMIX2-P q-value with FDR method
Dom_sing	JEPEGMIX2-P dominate signal
Sign_genes	JEPEGMIX2-P significant genes

SUPPLEMENTARY DATA 9

Brief description: Results of *IL10RB* and *IFNAR2* GReX PheWAS

Column descriptions:

Column	Description
ID	Concatenation of gene and phenotype analyzed
phecode	Phecode identifier in string format
beta	Association of gene expression and phenotype for gene and phenotype described in ID column
p	P value for association of gene expression and phenotype for gene and phenotype described in ID column
neg_log10p	-log ₁₀ transformation of p column
beta_dir	Binary classifier for direction of beta column. TRUE if positive. FALSE if negative.
beta_mag	Absolute value of beta column
phecode_num	Numerical phecode
Phenotype	Phenotype associated with each phecode
exclude_name	Category for each phecode. Phecodes were grouped into categories using Phecode Map v1.2 with manual curation for some uncategorized phecodes. Refer to Supplementary Data 10 for mappings.
HasCounts	Number of individuals in cohort with >0 counts for this phecode
NoCounts	Number of individuals in cohort with 0 counts for this phecode
gene	Gene whose expression was used in regression model for the specified phecode
adjusted.p	Adjusted p value using method specified in MC.method column
neg_log10adjusted.p	-log ₁₀ transformation of adjusted.p column
Rank	Rank of association significance from most significant to least
MC.method	Method for generating adjusted.p column from p column

SUPPLEMENTARY DATA 10

Brief description: Table translating Phecodes to Phenotypes and the respective phenotype categories they belong to.

Column descriptions:

Column	Description
Phecode	Numerical phecode
Phenotype	Phenotype associated with phecode
exclude_name	Category for each phecode. Phecodes were grouped into categories using Phecode Map v1.2 with manual curation for some uncategorized phecodes

SUPPLEMENTARY RESULTS

COVID-19 phenotypes genetically regulated gene expression (GReX) comparison.

As shown by correlation, hierarchical and principal component analysis (Supplementary Fig. 2) of the COVID-19 phenotypes GReX, the phenotypes mainly cluster in 4 groups: (1) The severe vs. not severe COVID group (A1 and B1), (2) The severe COVID vs. population group (A2 and B2), (3) the any COVID vs. population or lab/self-reported negative group (C1 and C2) and finally (4) a group comprising the predicted COVID phenotype (D1). It is worth noting that this GReX-based phenotypic clustering persists, despite differences in the different ancestries included in the genetic analysis (e.g. A1&B1, A2&B2, C1&C2) (Supplementary Table 2).

SUPPLEMENTARY REFERENCES

- 1. Del Valle, D. M. *et al.* An inflammatory cytokine signature predicts COVID-19 severity and survival. *Nat. Med.* **26**, 1636–1643 (2020).
- Hochberg, Y. & Benjamini, Y. More powerful procedures for multiple significance testing. *Stat. Med.* 9, 811–818 (1990).