

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com

BMJ Open

Quality of reporting of randomized controlled trials in artificial intelligence: a systematic review

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-061519
Article Type:	Original research
Date Submitted by the Author:	30-Jan-2022
Complete List of Authors:	Shahzad, Rida; Shahzad Eye Hospital Ayub, Bushra; Aga Khan University Hospital Siddiqui, M. A. Rehman; Aga Khan University Hospital, Department of Ophthalmology and Visual Sciences
Keywords:	STATISTICS & RESEARCH METHODS, Clinical trials < THERAPEUTICS, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Title: Quality of reporting of randomized controlled trials in artificial intelligence: a systematic review

Authors:

Rida Shahzad¹

Bushra Ayub²

M. A. Rehman Siddiqui^{1,3,4}

Authors Affiliations:

- 1. Shahzad Eye Hospital, Karachi, Pakistan
- 2. Aga Khan University Hospital, Karachi, Pakistan
- Section of Ophthalmology, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
- 4. The Eye Centre, South City Hospital, Karachi, Pakistan

Corresponding author:

M. A. Rehman Siddiqui

Section of Ophthalmology, Department of Surgery,

Aga Khan University Hospital,

National Stadium Road, P.O. Box 3500,

Karachi, Pakistan

Email: rehman.siddiqui@gmail.com

Funding: None

Keywords:

CONSORT, CONSORT-AI, artificial intelligence, deep learning, machine learning, randomized controlled trials.

SYNOPSIS

Quality of reporting of randomised controlled trials of artificial intelligence in health care is suboptimal.

ABSTRACT

Objectives: The aim of this study was to evaluate quality of reporting of randomised controlled trials (RCTs) of artificial intelligence (AI) in health care from 2015 to 2020 against Consolidated Standards of Reporting Trials – Artificial Intelligence (CONSORT-AI) guidelines.

Methods: We searched PubMed and EMBASE databases to identify eligible studies from 2015 to 2020. The included studies were graded using the CONSORT-AI checklist comprising of 43 items by two independent graders. The results were tabulated and descriptive statistics were reported.

Results: We screened 939 potential abstracts, of which 73 full-text articles were reviewed for eligibility. A total of 15 studies were included. Number of participants ranged from 28 to 1058. Studies pertained to medical fields including medicine (n = 2), psychiatry (n = 3), gastroenterology (n = 5), cardiology (n = 2), ophthalmology (n = 1), endocrinology (n = 1), and neurology (n = 1). Studies were from countries including China (n = 6), United States (n = 6), United Kingdom (n = 1), Netherlands (n = 1), and Israel (n = 1). Only 3 items of the CONSORT-AI items were fully reported in all studies. Five items were not applicable in more than 85% of the studies. Twenty per cent of the studies did not report more than 50% of the CONSORT-AI checklist items.

Conclusions: Quality of reporting of RCTs in AI in suboptimal. There is a high risk of bias in existing RCTs, therefore caution must be taken when generalizing the findings of these RCTs in real-world settings.

ARTICLE SUMMARY

Strengths and Limitations of the Study:

- This systematic review is the first study to evaluate quality of reporting of RCTs in AI of all medical fields using the CONSORT-AI guidelines.
- It helps to assess applicability of AI algorithms in real world clinical settings.
- A limitation of this study is the utilization of two databases, covering a span of 5
 years only.

INTRODUCTION

Artificial intelligence (AI) is a field of immense potential in healthcare. With an increase in computational power and portability, AI is finding increased utility in the medical realm, with a special emphasis on deep learning and neural networks. Medical applications of AI range from screening, diagnosis, prognosis, and generation of management plans. ¹⁻⁵ For example, AI has been extensively studied in ophthalmology for various diseases such as diabetic retinopathy, ⁶ age-related macular degeneration, ⁷ and glaucoma. ⁸ However, increased hype associated with AI - without sound evidence base - and subsequent failure to deliver, may result in disappointment. ⁹

Randomized controlled trials (RCTs) are the highest quality of evidence used by clinicians in decision-making regarding interventions. ¹⁰ RCTs may be susceptible to various forms of biases. Adequate reporting of RCTs is vital, so that the results and conclusions derived from a study may be assessed critically by the readers. ^{11.12}

The CONSORT (Consolidated Standards of Reporting Trials) statement was introduced in 1996 to establish guidelines to improve the reporting quality of clinical trials. Additionally, CONSORT statement is a useful guide that helps readers with the critical appraisal of RCTs to ascertain their reliability and clinical applicability. The most recent update of the CONSORT statement was published in 2010, listing 25 minimum reporting requirements. Several extensions to CONSORT also exist, which cater to certain specific study designs. 15-18

RCTs of AI have unique characteristics. Issues have been voiced regarding the design and reporting of such studies. ^{19,20} CONSORT-AI was recently published as an extension of the CONSORT 2010 statement to evaluate RCTs involving AI. Fourteen new items were added to the checklist – including 11 extensions and 3 elaborations. ^{21,22}

The aim of this study was to evaluate the quality of reporting of RCTs of AI intervention for medical conditions, published from 2015 to 2020, based on CONSORT-AI guidelines.

METHODS

We performed a systematic review of RCTs of AI for medical conditions published between January 2015 and December 2020. We searched PubMed and EMBASE databases for potential studies. The PubMed search was conducted using the MeSH terms: "artificial intelligence", "machine learning", and "deep learning". The term "artificial intelligence", "deep learning" and machine learning" were searched in EMBASE. In both the databases, the search was limited to RCTs, publications in the English language, from the year 2015 to 2020, and human subjects (Appendix 1). The records were screened by two independent investigators for potential inclusion. The abstracts of RCTs using artificial intelligence, deep

learning, and machine learning were further evaluated for possible inclusion. Protocols, studies on robotics, and post-hoc analyses of randomized controlled trials were excluded.

Full-text articles of all shortlisted abstracts were then screened for eligibility. Publications were included if AI was used as an intervention for a medical condition, if there was a comparator control group in the study and there was evidence of randomization. In case of a disagreement, a senior reviewer assessed the full text and the disagreement was resolved with consensus. The exclusion criteria were non-randomized studies, secondary studies, post-hoc analyses, or if the intervention investigated was not AI. Additionally, if the target condition was not a medical disease or if the research pertained to medical education, the study was excluded.

The CONSORT-AI checklist of 43 items (Supplementary table 1) was used to grade the included studies. Each item was scored fully-, partially- or not- reported. If an item was irrelevant to a particular study, it was labeled as "not applicable". Each publication was scored by two trained graders independently. Differences were discussed with the senior reviewer to reach a consensus.

The results were tabulated by writing all the reported items as the numerator and the total number of applicable items as the denominator. The descriptive statistics for the study population and clinical characteristics are reported. The protocol of this study was submitted to PROSPERO in February 2021.

RESULTS

Study selection

The initial search identified 939 potential records. Seventy-three articles were considered as potentially eligible after screening of abstracts. Following a review of full-text manuscripts, a total of 15 manuscripts were included in the systematic review (Figure 1).

General characteristics

The included studies (Supplementary table 2) were from the years 2016 to 2020. The number of participants ranged from 28 to 1058. They pertained to various medical fields, including medicine (n = 2), psychiatry (n = 3), gastroenterology (n = 5), cardiology (n = 2), ophthalmology (n = 1), endocrinology (n = 1), and neurology (n = 1). Studies were from different parts of the world, including China (n = 6), United States (n = 6), United Kingdom (n = 1), Netherlands (n = 1), and Israel (n = 1). There were no multicenter trials.

Adherence to reporting standards

The median number of fully reported CONSORT-AI checklist items in the included studies was 26 (range 7-36) of a possible total of 43. Overall, only 3 (items # 1b, 4b, and 21) out of possible 43 items were fully reported in all 15 studies. Five items (items #3b, 6b, 7b, 14b, and 17b) were deemed not applicable in more than 85% of the included studies. The two least reported items were item #5iii (not reported in 14/15 studies) and item #24 (not reported in 12/15 studies). Twenty per cent (3/15) of included studies did not report more than 50% of the CONSORT-AI checklist items. The reporting of each item is given in Table 1.

Table 1: Summary of CONSORT-AI Items:

	Item	Fully	Partially	Not	Not	Applicable	Applicable
		Reported	Reported	Reported	Applicable	Items Total	Items Total
						Score	(%)
Title and	1a,	14	1	0	0	15	100
Abstract	1a(i)						
	1b,	15	0	0	0	15	100
	1b(ii)						
Introduction							
Background and	2a,	14	1	0	0	15	100
objectives	2a(i)						
	2b	13	0	2	0	13	87
Methods							
Trial Design	3a	9	2	4	0	11	73
	3b	2	0	0	13	2	100
Participants	4ai	13	0	2	0	13	87
	4aii	4	0	11	0	4	27
	4b	15	0	0	0	15	100
Intervention	5i	4	0	11	0	4	27
	5ii	10	0	5	0	10	67
	5iii	1	0	14	0	1	7
	5iv	14	0	1	0	14	93
	5v	14	0	1	0	14	93
	5vi	11	0	4	0	11	73
Outcomes	6a	13	0	2	0	13	87
	6b	0	0	0	15	0	0
Sample size	7a	10	0	5	0	10	67
	7b	1	0	0	14	1	100

Sequence	8a	12	0	3	0	12	80
generation	8b	9	0	6	0	9	60
Randomisation							
Allocation	9	6	0	9	0	6	40
concealment							
mechanism							
Implementation	10	7	3	5	0	10	67
Blinding	11a	9	0	6	0	9	60
	11b	7	0	6	2	7	47
Statistical	12a	13	0	2	0	13	87
methods	12b	11	0	4	0	11	73
Results							
Participant flow	13a	12	2	1	0	14	93
	13b	11	1	3	0	12	80
Recruitment	14a	13	0	2	0	13	87
	14b	0	0	0	15	0	0
Baseline data	15	13	0	2	0	13	87
Numbers	16	11	1	3	0	12	80
analyzed							
Outcomes and	17a	9	3	3	0	12	80
estimation	17b	1	0	0	14	1	7
Ancillary	18	10	0	5	0	10	67
analyses							
Harms	19	0	5	10	0	5	33
Discussion							
Limitations	20	13	0	2	0	13	87
Generalizability	21	15	0	0	0	15	100
Interpretation	22	14	0	1	0	14	93

Other							
information							
Registration	23	14	0	1	0	14	93
Protocol	24	3	0	12	0	3	20
Funding	25	4	7	4	0	11	73

The most frequently reported items were: intended use of the AI intervention within the trial in the title and/or abstract [item# 1b], settings and locations where the data were collected [item# 4b], and generalizability of the findings [item# 21].

Patient and Public Involvement

No patient or public was involved in this study.

Ethics approval statement

This study is a systematic review which did not involve human subjects. Therefore, no ethics approval was required.

DISCUSSION

In our Review, the quality of reporting of RCTs varied widely. For example, the item regarding title and abstract (item #1a), authors of all studies successfully identified them as RCTs of AI. Similarly, all studies fully reported the intended use of the AI intervention within the trial (item#1b). The importance of clearly reporting these items is for easy identification of trials during literature search and future systematic review. A recent review suggested that good scientific manuscript titles which convey the main role of their respective studies is positively related to their clarity and impact.²³

Likewise, items regarding the introduction of the article and description of AI intervention in the clinical pathway had a 100% reporting score, with 93% being fully and 7% being partially reported (item#2a). However, two out of fifteen studies failed to report their specific objectives or hypothesis (item #2b). Adequate reporting of these factors reflects clarity on the role of AI in their respective fields. A well-formulated introduction would inform the reader of relevant background knowledge regarding the goal of the intervention, in addition to giving them essential knowledge on how it was applied and what results it was expected to yield.²⁴ It is important to note, however, that these items can be easily reported within the manuscript by performing a good background literature review. The main purpose of ensuring appropriate reporting of these items is to ensure that the intended use and context of the AI intervention within the study is well understood by the reader.

When looking at the adherence to reporting standards in the methods section, a large range was observed, with 0%-100% of studies fully reporting each applicable item. Informing the readers regarding the AI intervention in question is essential to aid in understanding its role and in recognizing some of the difficulties faced with its implementation. A large number of studies were suboptimal in reporting certain items related to the AI intervention itself. Eleven out of fifteen studies did not mention the version of the AI algorithm used (item#5i). This could potentially confuse the reader regarding which version to apply the findings of the study to because an AI algorithm is likely to undergo multiple updates.²¹

Especially poor reporting standards were observed for items related to input data. Information about the input data helps readers understand the kind of data provided to train the algorithm to yield a given output. The overall performance of any given AI intervention is reliant on the

quality of input data.²⁵ However, only 4/15 studies identified the inclusion and exclusion criteria at the level of the input data. 33% of the studies did not report how the input data was acquired for the intervention. Moreover, a mere 7% of studies reported how poor quality or unavailable input data was handled and assessed (item#5iii). Such details are important, because they allow an evaluator to distinguish the AI platforms that are only work in ideal conditions from those which can be applied to real-world settings.²⁶

Some items regarding the AI intervention [items 5iv, 5v] were reported adequately in most studies. Fourteen out of 15 studies successfully reported both the output of the AI intervention, along with indicating human-AI interaction and the level of expertise required by users. Clarity on the human-AI interface is essential to ensure a standard approach, as well as to avoid ethical implications, such as being functionally safe.^{27,28} For example, it is essential that qualified experts can interpret dynamically complex variables exhibited by AI interfaces which are related to patients as well as the clinical context – only then it is possible that they enable an improvement in clinicians' decision-making process.²⁹ Finally, the type of outputs generated by an AI intervention directly impacts its clinical usability and any subsequent incidents encountered in the process.

Transparency in reporting the methods of a trial is also vital to inform the reader of potential biases in a study and evaluate the applicability of a particular intervention. Missing information may potentially result in readers making incorrect inferences from the findings of a study. While most authors successfully reported items like the location of data collection (100% of the studies), a large percentage of studies missed reporting vital components of the methodology. An essential component of RCTs is the process of randomization itself, to avoid selection bias.³⁰ However, 40% of the studies did not report the type of randomization

performed (item#8b), and 60% did not report the mechanism employed for random allocation concealment(item#9). Additionally, 40% of the studies did not report information regarding blinding following intervention assignment to study and control groups(item#11a). Only 47% of the studies stated similarities between the interventions assigned to the study and control groups(item#11b), which is important to educate the reader of how the AI intervention differs from standard management protocol. A systematic review of glioma treatment revealed that CONSORT items regarding randomization and blinding were reported in less than 25% of the studies, suggesting that these items lack optimal reporting.³¹ Incomplete reporting of these items leave large gaps in reporting of RCTs, and results in a lack of information needed to critically appraise the trial itself.

Presentation and reporting of results (items# 13-19) were made adequately in most of the studies, including participant flow, baseline data, as well as primary and secondary outcomes. However, only 5 out of 15 studies reported the presence or absence of important harms and unintended effects in each group (item# 19). This is an important item to report for the readers to assess potential risks of the intervention. Moreover, ten studies did not describe the results of any analysis of performance errors and how errors were identified. This is an important item to discuss especially as AI platforms can make errors that may be difficult to predict but may have disastrous effects if employed on a large scale.³² It is therefore important to report cases of error and outline risk mitigation strategies to conclude which settings and populations the AI intervention can be safely executed in.²¹

All studies sufficiently reported the CONSORT-AI items about the discussion section (items# 20-22) Interestingly, 15/15 of the studies were quick to offer promising generalizability of their findings in the clinical setting. Generalizability of AI systems can be limited, especially

when used in the real-world setting outside of the environment they were developed in.^{32,33} Therefore it is imperative that the generalizability of such studies be evaluated with caution. Two studies failed to list their limitations (item#20).

Observations regarding the applicability of the CONSORT-AI checklist itself were also made. Five of the items of the checklist were not applicable in more than 85% of the included studies. These included items referring to changes made to methods and outcomes after trial commencement, explanation of any interim analyses and stopping guidelines, why the trial was ended, and presentation of binary outcomes. As can be seen, most of these items pertain to changes made in the trial, which is not the case in most trials. Caution should be employed when scoring the study using CONSORT-AI with regards to these items, as they would result in the underestimation of the overall score of any particular study. A consideration that can be made in the future is to update these items in order to make them more applicable to RCTs in AI.

Another observation was that AI extensions of a few items were unrelated to the CONSORT item itself. For example, the item regarding harms was extended with the inquiry regarding the results of analysis of performance errors. Similarly, the item about funding of the study had the AI extension of accessibility of the AI intervention and/or its code, again making the two unrelated and irrelevant to each other. Full reporting of one of these two components would render the entire item as partially reported, as was seen in 7/15 of the studies in our review. A future update to the guidelines could consider making these items independent to each other, or by explicitly outlining their relevance to one another.

Certain general observations were also made regarding the included RCTs in our review. The sample size in the studies ranged from 28 to 1058. Sample size calculations were reported in only 10/15 of the studies. This wide range suggests that a standard approach to sample size calculation is not practiced in RCTs of AI. Diagnostic accuracy of human professionals is often set higher than that of AI while employing sample size estimation, which means that AI is inferior to human controls.³⁴ It is recommended that sample size calculations are performed using a non-inferior design by setting a more suitable non-inferiority margin, of diagnostic accuracy, of for example 5%.³⁵ Similarly, the majority of the studies took place in China, and were focused on gastroenterology, making them less representative of other fields and perhaps other parts of the world.

There are some limitations of our review. Potential eligible studies could have been missed in the inclusion process, as only two databases were searched. Furthermore, this review is a screenshot in time; additional AI RCTs could have been performed following our search final search date which are not included.

In conclusion, the standard of reporting in AI RCTs was suboptimal. We found that many trials were at high risk of bias, and data information was insufficient in most studies. Therefore, caution must be employed while generalizing the findings and applicability of such studies in the real world. Some factors related to poor reporting were related to the CONSORT-AI checklist itself. Improvement of reporting standards may be achieved in the future by addressing these variables.

Contributors

The idea for the study was conceived and planned by MARS. RS and BA carried out the literature review process including screening of abstracts and review of full text articles, while MARS acted as senior reviewer. RS and BA independently scored the included studies g the CONS.
cussion with MARS.
.Il authors reviewed and approve.

Competing interests
None declared

Funding
None

'ta sharing statement
 ' freely available.

Antre using the CONSORT-AI checklist and disagreements were resolved following a combined discussion with MARS. The manuscript was prepared by RS and BA and edited by MARS.

1. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature 2020;577(7788):89-94.

- Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al.
 Dermatologist-level classification of skin cancer with deep neural networks.
 Nature 2017;542(7639):115-8.
- 3. Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. *PLoS medicine* 2018;15(11):e1002686.
- 4. Tyler NS, Mosquera-Lopez CM, Wilson LM, Dodier RH, Branigan DL, Gabo VB, et al. An artificial intelligence decision support system for the management of type 1 diabetes. *Nat Metab* 2020;2(7):612-9.
- 5. Kim H, Goo JM, Lee KH, Kim YT, Park CM. Preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinomas. *Radiol* 2020;296(1):216-24.
- 6. Wong TY, Bressler NM. Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. *JAMA* 2016 Dec 13;316(22):2366-7.
- 7. von der Emde L, Pfau M, Dysli C, Thiele S, Möller PT, Lindner M, Schmid M, Fleckenstein M, Holz FG, Schmitz-Valckenberg S. Artificial intelligence for morphology-based function prediction in neovascular age-related macular degeneration. *Sci Rep* 2019 Jul 31;9(1):1-2.
- 8. Devalla SK, Liang Z, Pham TH, Boote C, Strouthidis NG, Thiery AH, Girard MJ. Glaucoma management in the era of artificial intelligence. *Br J Ophthalmol* 2020 Mar 1;104(3):301-11.
- Navarro CL, Damen JA, Takada T, Nijman SW, Dhiman P, Ma J, Collins GS, Bajpai R, Riley RD, Moons KG, Hooft L. Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. *Br Med J* 2021 Oct 20;375.

- 10. Altman DG. Better reporting of randomised controlled trials: the CONSORT statement. *British Medical Journal Publishing Group*; 1996.
- Jüni P, Altman DG, Egger M. Assessing the quality of controlled clinical trials. Br
 Med J 2001;323(7303):42-6.
- 12. Schulz KF, Chalmers I, Hayes RJ, Altman DG. Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials. *JAMA* 1995;273(5):408-12.
- 13. Begg C, Cho M, Eastwood S, Horton R, Moher D, Olkin I, et al. Improving the quality of reporting of randomized controlled trials: the CONSORT statement. *JAMA* 1996;276(8):637-9.
- 14. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. *Trials* 2010;11(1):1-8.
- 15. Boutron I, Altman DG, Moher D, Schulz KF, Ravaud P. CONSORT statement for randomized trials of nonpharmacologic treatments: a 2017 update and a CONSORT extension for nonpharmacologic trial abstracts. *Ann Int Med* 2017;167(1):40-7.
- 16. Hopewell S, Clarke M, Moher D, Wager E, Middleton P, Altman DG, et al. CONSORT for reporting randomised trials in journal and conference abstracts. *The Lancet* 2008;371(9609):281-3.
- 17. Gagnier JJ, Boon H, Rochon P, Moher D, Barnes J, Bombardier C. Reporting randomized, controlled trials of herbal interventions: an elaborated CONSORT statement. *Ann Int Med* 2006;144(5):364-7.
- 18. Calvert M, Blazeby J, Altman DG, Revicki DA, Moher D, Brundage MD, et al.

 Reporting of patient-reported outcomes in randomized trials: the CONSORT PRO extension. *JAMA* 2013;309(8):814-22.

- 19. Gregory J, Welliver S, Chong J. Top 10 reviewer critiques of radiology artificial intelligence (AI) articles: qualitative thematic analysis of reviewer critiques of machine learning/deep learning manuscripts submitted to JMRI. *J Magn Reson Imaging* 2020;52(1):248-54.
- 20. Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, Harvey H, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. *Br Med J* 2020;368.
- 21. Liu X, Rivera SC, Faes L, Di Ruffano LF, Yau C, Keane 10 PA, et al. Reporting guidelines for clinical trials evaluating artificial intelligence interventions are needed. *Nat Med* 2019;25:1467-8.
- 22. Liu X, Faes L, Calvert MJ, Denniston AK. Extension of the CONSORT and SPIRIT statements. *The Lancet* 2019;394(10205):1225.
- 23. Rossi MJ, Brand JC. Journal Article Titles Impact Their Citation Rates. *Arthroscopy* 2020;36(7):2025-9. 1.
- 24. Armağan A. How to write an introduction section of a scientific article? *Turk J Urol* 2013;39(Suppl 1):8-9.
- 25. Sabottke CF, Spieler BM. The effect of image resolution on deep learning in radiography. *Radiol Artif Intell* 2020 Jan 22;2(1):e190015.
- 26. Ibrahim H, Liu X, Rivera SC, Moher D, Chan AW, Sydes MR, Calvert MJ, Denniston AK. Reporting guidelines for clinical trials of artificial intelligence interventions: the SPIRIT-AI and CONSORT-AI guidelines. *Trials* 2021 Dec;22(1):1-5.
- 27. Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F, Jung K, Heller K, Kale D, Saeed M, Ossorio PN. Do no harm: a roadmap for responsible machine learning for health care. *Nat Me* 2019 Sep;25(9):1337-40.

- 28. Habli I, Lawton T, Porter Z. Artificial intelligence in health care: accountability and safety. *Bull World Health Organ* 2020 Apr 1;98(4):251.
- 29. Shortliffe EH, Sepúlveda MJ. Clinical decision support in the era of artificial intelligence. *JAMA* 2018 Dec 4;320(21):2199-200.
- 30. Lim CY, In J. Randomization in clinical studies. *Korean J Anesthesiol* 2019 Jun;72(3):221.
- 31. Tardy MP, Gal J, Chamorey E, Almairac F, Vandenbos F, Bondiau PY, Saada-Bouzid E. Quality of Randomized Controlled Trials Reporting in the Treatment of Adult Patients with High-Grade Gliomas. *Oncologist* 2018 Mar;23(3):337.
- 32. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. *BMC Med* 2019

 Dec;17(1):1-9.
- 33. Pooch EH, Ballester P, Barros RC. Can We Trust Deep Learning Based Diagnosis? The Impact of Domain Shift in Chest Radiograph Classification. In International Workshop on Thoracic Image Analysis 2020 Oct 8 (pp. 74-83).
 Springer, Cham.
- 34. Lin H, Li R, Liu Z, Chen J, Yang Y, Chen H, et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial. *EClinicalMedicine* 2019; 9: 52–9.
- 35. Zhou Q, Cao YH, Chen ZH. Optimizing the study design of clinical trials to identify the efficacy of artificial intelligence tools in clinical practices.

 EClinicalMedicine 2019 Nov 1;16:10-1.

TO COLOR ON THE CO

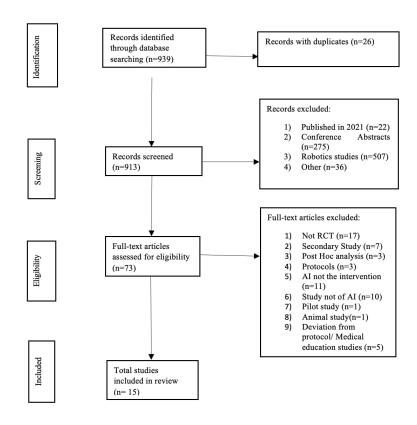


Figure 1: PRISMA flow chart

503x442mm (72 x 72 DPI)

Supplementary table 1: CONSORT-AI checklist**

Section	Item	CONSORT 2010 item	CONSORT-	Addressed	
					on page
					no.*
Title and abstrac	t :t				
		,		,	
Title and	1a	Identification as a	CONSORT-	(i) Indicate that the	
abstract		randomized trial in the	AI a,b	intervention involves	
		title	Elaboration	artificial	
				intelligence/machine	
				learning in the title	
				and/or abstract and	
		.0		specify the type of	
				model.	
	1b	Structured summary of	5 .	(ii) State the intended	
		trial design, methods,	4.	use of the AI	
		results, and conclusions		intervention within the	
		(for specific guidance	4	trial in the title and/or	
		see CONSORT for		abstract.	
		abstracts)		0	
Introduction					
Background and	2a	Scientific background	CONSORT-	Explain the intended use	
objectives		and explanation of	AI a (i)	of the AI intervention in	
		rationale	Extension	the context of the	
				clinical pathway,	
				including its purpose	
				and its intended users	
				(e.g. healthcare	

				professionals, patients,	
				public).	
	2b	Specific objectives or			
		hypotheses			
Methods					
Methous					
Trial design	3a	Description of trial			
		design			
		(such as parallel,			
		factorial) including			
		allocation ratio			
	3b	Important changes to			
		methods after trial			
		commencement (such as	5		
		eligibility criteria), with	7		
		reasons			
Doutioinants	4a	Eligibility criteria for	CONSORT-	State the inclusion and	
Participants	4a				
		participants	AI a (i)	exclusion criteria at the	
			Elaboration	level of participants.	
			CONSORT-	State the inclusion and	
			AI a (ii)	exclusion criteria at the	
			Extension	level of the input data.	
	4b	Settings and locations	CONSORT-	Describe how the AI	
		where the data were	AI b	intervention was	
		collected	Extension	integrated into the trial	
				setting, including any	
				onsite or on site	
				requirements.	

Interventions		The interventions for	CONSORT-	State which version of
		each group with	AI (i)	the AI algorithm was
		sufficient details to	Extension	used.
		allow replication,	CONSORT-	Describe how the input
	5	including how and when	AI (ii)	data were acquired and
		they were actually	Extension	selected for the
		administered		AI intervention.
			CONSORT-	Describe how poor
			AI (iii)	quality or unavailable
			Extension	input data were assessed
				and handled.
			CONSORT-	Specify whether there
		(0)	AI (iv)	was human-AI
			Extension.	interaction in the
				handling of the input
			۷.	data, and what level of
				expertise was required
				of users.
			CONSORT-	Specify the output of the
			AI (v)	AI intervention
			Extension	2/
			CONSORT-	Explain how the AI
			AI (vi)	intervention's outputs
			Extension	contributed to decision-
				making or other
				elements of clinical
				practice.
Outcomes	6a	Completely defined pre-		
		specified primary and		
		secondary outcome		

	1	measures, including how			
		and when they were			
		assessed			
	6b	Any changes to trial			
		outcomes after the trial			
		commenced, with			
		reasons			
Sample size	7a	How sample size was			
		determined			
	7b	When applicable,			
		explanation of any			
		interim analyses and			
		stopping guidelines			
Sequence	8a	Method used to generate			
generation		the random allocation			
		sequence			
	8b	Type of randomization;			
		details of any restriction	7		
		(such as blocking and			
		block size)			
Randomization	•	, ,			
A 11	1	T. 1	1	· · · · · · · · · · · · · · · · · · ·	
Allocation		Mechanism used to			
concealment	9	implement the random			
mechanism		allocation sequence			
		(such as sequentially			
		numbered containers),			
		describing any steps			
		taken to conceal the			

		sequence until			
		interventions were			
		assigned			
Implementation	10	Who generated the			
		random allocation			
		sequence, who enrolled			
		participants, and who			
		assigned participants to			
		interventions			
Blinding	11a	If done, who was			
		blinded after assignment			
		to interventions (for			
		example, participants,			
		care providers, those			
		assessing outcomes) and			
		how	۷.		
	11b	If relevant, description			
		of the similarity of			
		interventions			
Statistical	12a	Statistical methods used		0,	
methods		to compare groups for			
		primary and secondary		3/	
		outcomes			
	12b	Methods for additional			
		analyses, such as			
		subgroup analyses and			
		adjusted analyses			
Results	<u> </u>	1			

Participant flow	13a	For each group, the		
(a diagram is		numbers of participants		
strongly		who were randomly		
recommended)		assigned, received		
		intended treatment,		
		and were analyzed for		
		the primary outcome		
	13b	For each group, losses		
		and exclusions after		
		randomization, together		
		with reasons		
Recruitment	14a	Dates defining the		
		periods of recruitment		
		and follow-up		
	14b	Why the trial ended or		
		was stopped	4.	
Baseline data		A table showing baseline	(Q),	
	15	demographic and clinical	4	
		characteristics for each		
		group		
Numbers		For each group, number		
analyzed	16	of participants		
	10	(denominator) included		
		in each analysis and		
		whether the analysis was		
		by original assigned		
		groups		
Outcomes and	17a	For each primary and		
estimation		secondary outcome,		

		results for each group,			
		and the estimated effect			
		size and its precision			
		(such as % confidence			
		interval)			
	17b	For binary outcomes,			
		presentation of both			
		absolute and relative			
		effect sizes is			
		recommended			
Ancillary		Results of any other			
analyses	18	analyses performed,			
		including subgroup			
		analyses and adjusted			
		analyses, distinguishing			
		pre-specified from	/_		
		exploratory			
Harms		All important harms or	CONSORT-	Describe results of any	
	19	unintended effects in	AI	analysis of performance	
		each group (for specific	Extension	errors and how errors	
		guidance see CONSORT		were identified, where	
		for harms)		applicable. If no such	
				analysis was planned or	
				done, justify why not.	
Discussion	1	1	l	<u> </u>	<u> </u>
Limitations	20	Trial limitations,			
		addressing sources of			
		potential bias,			

		imprecision, and, if			
		relevant, multiplicity of			
		analyses			
Generalizability	21	Generalizability			
		(external validity,			
		applicability) of the trial			
		findings			
Interpretation	22	Interpretation consistent			
		with results, balancing			
		benefits and harms, and			
		considering other			
		relevant evidence			
Other information	on	· O.			
Registration	23	Registration number and			
11081011111111		name of trial registry	7		
		name of that registry			
Protocol	24	Where the full trial			
		protocol can be	7		
		accessed, if available			
Funding		Sources of funding and	CONSORT-	State whether and how	
	25	other support (such as	AI	the AI intervention	
		supply of drugs), role of	Extension.	and/or its code can be	
		funders		accessed, including any	
				restrictions to access or	
				re-use.	
_					

*Indicates page numbers to be completed by authors during protocol development

** 22. Liu X, Faes L, Calvert MJ, Denniston AK. Extension of the CONSORT and SPIRIT statements. The Lancet 2019;394(10205):1225.

Supplementary table 2: Included studies

No.	Authors	Year	Title	Countr	Specialty	Disease	Sample	Intervention	Control	Blinding	Primary	Trial
				y		studied	size				outcome	registration
1.	Sadasiva	2016	Impact of a	United	Medicine	Smoking	120	AI	Standard	Single	Influence	NR
	m, et al.		Collective	States		addiction		recommended	tailored	(study	of	
			Intelligence)				motivational	messages	staff)	messages	
			Tailored Messaging		5			messages				
			System on Smoking		700							
			Cessation: The		,6	<i>F b</i>						
			Perspect									
			Randomized				11					
			Experiment				, (4				
2.	Morrison	2017	The Effect of	United	Psychiatry	Stress	77	Smartphone-	Daily/oc	Not stated	Notificatio	ISRCTN6717
	, et al.		Timing and	States				based stress	casional		n response	7737
			Frequency of Push					management	notificati			
			Notifications on					system	ons			
			Usage of a						within			
			Smartphone- Based						pre-			
			Stress Management						defined			

			Intervention: An						time			
			Exploratory Trial						frames			
3.	Labovitz,	2017	Using Artificial	United	Cardiology	Ischemic	28	AI system	No daily	Not stated	Adherence	NCT0259925
	et al.		Intelligence to	States		stroke		monitoring	monitori		to therapy	9
			Reduce the Risk of						ng			
			Nonadherence in	0								
			Patients on		6							
			Anticoagulation		700							
			Therapy		76	r _						
4.	Rostill,	2018	Technology	United	Psychiatry	Dementi	408	Technology-	No	Not stated	Alerts	NR
	et al.		integrated health	Kingdo		a	1	integrated	TIHM			
			management for	m			, (health				
			dementia					management				
								for dementia	7/4			
5.	Wang, et	2018	Real-time	China	Gastroente	Adenom	1058	AI-aided	Standard	None	Adenoma	ChiCTR-
	al		automatic detection		rology	a		colonoscopy	colonosc		detection	DDD-
			system increases						opy		rate	17012221
			colonoscopic polyp									
			and adenoma									

			detection rates: a									
			prospective									
			randomised									
			controlled study									
6.	Lin, et al.	2019	Diagnostic Efficacy	China	Ophthalmo	Cataract	350	AI-assisted	Normal	Double	Diagnostic	NCT0324084
			and Therapeutic		logy			cataract	clinic		accuracy	8
			Decision-making		5			detection			for	
			Capacity of an		700						congenital	
			Artificial)ee,	/					cataracts	
			Intelligence			16						
			Platform for				11					
			Childhood				10	1/1.				
			Cataracts in Eye					"h	4			
			Clinics: A						7/1			
			Multicentre									
			Randomized									
			Controlled Trial									

7.	Voss, et	2019	Effect of Wearable	United	Psychiatry	Autism	474	AI-driven	Applied	Single	SRS-II,	NCT0356917
	al.		Digital Intervention	States				behavioral	behavior		EGG,	6
			for Improving					intervention	al		VABS-II,	
			Socialization in						analysis		NEPSY-II	
			Children With						therapy		socializati	
			Autism Spectrum) 4							on scores	
			Disorder A		5							
			Randomized		700							
			Clinical Trial		16	<i>f</i>						
8.	Wu, et	2019	Randomised	China	Gastroente	Upper GI	324	AI-aided	Standard	Single	Blind spot	ChiCTR1800
	al.		controlled trial of		rology	lesions	11	esophagogastr	esophago		rate	014809
			WISENSE, a real-				10	oduodenoscop	gastrodu			
			time					у	odenosco			
			quality improving						py			
			system for									
			monitoring blind									
			spots									
			_									

			during									
			esophagogastroduo									
			denoscopy									
9.	Wang, et	2020	Effect of a deep-	China	Gastroente	Adenom	1046	AI-aided	Sham	Double	Adenoma	ChiCTR1800
	al.		learning computer-		rology	a		colonoscopy			detection	017675
			aided detection	06							rate	
			system		5							
			on adenoma		Pec.							
			detection during		16	/						
			colonoscopy			16						
			(CADe-DB trial):				11					
			a double-blind				, (1/1.				
			randomised study						b			
10.	Persell,	2020	Effect of Home	United	Medicine	Hyperten	333	AI-driven	Blood	None	Systolic	NCT0328814
	et al.		Blood Pressure	States		sion		coaching app	pressure		blood	2
			Monitoring via a						tracking		pressure at	
			Smartphone						app		6 months	
			Hypertension									
			Coaching									

			Application or									
			Tracking									
			Application									
			on Adults With									
			Uncontrolled									
			Hypertension) 4								
			A Randomized		5							
			Clinical Trial		700							
11.	Wijnberg	2020	Effect of a Machine	Netherl	Cardiology	Intra-	68	AI-driven	Standard	None	Time-	NCT0337634
	e, et al.		Learning-Derived	ands		operative		early warning	care		weighted	7
			Early Warning			hypotens	1	system for			average of	
			System			ion	, (intraoperative			intraoperat	
			for Intraoperative					hypotension			ive	
			Hypotension vs						7/1		hypotensio	
			Standard Care on							•	n	
			Depth and Duration									
			of Intraoperative									
			Hypotension									
			of Intraoperative									

			During Elective									
			Noncardiac Surgery									
			The HYPE									
			Randomized									
			Clinical Trial									
12.	Pavel, et	2020	A machine-learning	United	Neurology	Neonatal	264	Automated	Conventi	Single	Diagnostic	NCT0243178
	al.		algorithm for	Kingdo	5	seizures		seizure	onal		accuracy	0
			neonatal seizure	m	700			detection	EEG		of	
			recognition: a)ee.	/		algorithm			healthcare	
			multicentre,		•	16					profession	
			randomised,				Vi				als with	
			controlled trial				10	1/1.			aid of	
									A		algorithm	
13.	Nimri, et	2020	Insulin dose	Israel	Endocrinol	Diabetes	108	AI-based	Physicia	Single	Time of	NCT0300380
	al.		optimization using		ogy			decision	n guided		glucose	6
			an automated					support	care		level	
			artificial					system			within	
			intelligence-based								target	
			decision support								range	
												_

			system in youths									
			with type 1 diabetes									
14.	Liu, et al.	2020	The single-monitor	China	Gastroente	Adenom	790	AI-aided	Routine	None	Adenoma	ChiCTR1800
			trial: an embedded		rology	a		colonoscopy	colonosc		detection	018058
			CADe						opy		rate	
			system increased	04								
			adenoma detection		5							
			during		700							
			colonoscopy: a		6							
			prospective									
			randomized study				Vi).				
15.	Gong, et	2020	Detection of	China	Gastroente	Adenom	704	AI-aided co	Unassiste	Single	Adenoma	ChiCTR1900
	al.		colorectal		rology	a		lonoscopy	d		detection	021984
			adenomas with a						colonosc		rate	
			real-time						opy			
			computer-aided									
			system									
			(ENDOANGEL): a									
			randomised									

	controlled study					
	-					

- 1. Sadasivam RS, Borglund EM, Adams R, Marlin BM, Houston TK. Impact of a collective intelligence tailored messaging system on smoking cessation: the Perspect randomized experiment. *JMIR* 2016;18(11):e285.
- 2. Morrison LG, Hargood C, Pejovic V, Geraghty AW, Lloyd S, Goodman N, et al. The effect of timing and frequency of push notifications on usage of a smartphone-based stress management intervention: an exploratory trial. *PloS one* 2017;12(1):e0169162.
- 3. Labovitz DL, Shafner L, Reyes Gil M, Virmani D, Hanina A. Using artificial intelligence to reduce the risk of nonadherence in patients on anticoagulation therapy. *Stroke* 2017;48(5):1416-9.
- 4. Rostill H, Nilforooshan R, Morgan A, Barnaghi P, Ream E, Chrysanthaki T. Technology integrated health management for dementia.

 *Br J Community Nurs 2018;23(10):502-8.
- 5. Wang P, Berzin TM, Brown JRG, Bharadwaj S, Becq A, Xiao X, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. *Gut* 2019;68(10):1813-9.
- 6. Lin H, Li R, Liu Z, Chen J, Yang Y, Chen H, et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial. *EClinicalMedicine* 2019; 9: 52–9.

- 7. Voss C, Schwartz J, Daniels J, Kline A, Haber N, Washington P, et al. Effect of wearable digital intervention for improving socialization in children with autism spectrum disorder: a randomized clinical trial. *JAMA Pediatr* 2019;173(5):446-54.
- 8. Wu L, Zhang J, Zhou W, An P, Shen L, Liu J, et al. Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy. *Gut* 2019;68(12):2161-9.
- 9. Wang P, Liu X, Berzin TM, Brown JRG, Liu P, Zhou C, et al. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. *Lancet Gastroenterol Hepatol* 2020;5(4):343-51.
- 10. Persell SD, Peprah YA, Lipiszko D, Lee JY, Li JJ, Ciolino JD, et al. Effect of home blood pressure monitoring via a smartphone hypertension coaching application or tracking application on adults with uncontrolled hypertension: a randomized clinical trial. *JAMA Netw Open* 2020;3(3):e200255-e.
- 11. Wijnberge M, Geerts BF, Hol L, Lemmers N, Mulder MP, Berge P, et al. Effect of a machine learning–derived early warning system for intraoperative hypotension vs standard care on depth and duration of intraoperative hypotension during elective noncardiac surgery: the HYPE randomized clinical trial. *JAMA* 2020;323(11):1052-60.
- 12. Pavel AM, Rennie JM, de Vries LS, Blennow M, Foran A, Shah DK, et al. A machine-learning algorithm for neonatal seizure recognition: a multicentre, randomised, controlled trial. *The Lancet Child & Adolescent Health* 2020;4(10):740-9.

- 13. Nimri R, Battelino T, Laffel LM, Slover RH, Schatz D, Weinzimer SA, et al. Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. *Nature medicine* 2020;26(9):1380-4.
- 14. Liu P, Wang P, Glissen Brown JR, Berzin TM, Zhou G, Liu W, et al. The single-monitor trial: an embedded CADe system increased adenoma detection during colonoscopy: a prospective randomized study. *Therap Adv Gastroenterol* 2020;13:1756284820979165.
- 15. Gong D, Wu L, Zhang J, Mu G, Shen L, Liu J, et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study. Lancet Gastroenterol Hepatol 2020;5(4):352-61.

APPENDIX 1

EMBASE:

- 1) *deep learning/
- 2) *artificial intelligence/
- 3) *machine learning/
- 4) 1 or 2 or 3

PubMed:

- 1. Artificial intelligence
- 2. Machine learning
- 3. Deep learning
- 4. 1 OR 2 OR 3

Restricted to:

Article type: Randomized Control Trial

Publication Date: 1/01/2015 to 31/12/2020

Species: HumanLanguage: English

Page 47 of 48

PRISMA 2020 Checklist

Section and Topic	Item #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	Page 1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Page 3
INTRODUCTION			5 1
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Page 4
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Page 5
METHODS	l _		5 5 6
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Page 5-6
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Page 5
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Page 5 + appendix 1
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Page 5-6
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Page 5-6
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Page 6
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	NA
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Page 5
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	14
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Figure 1
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	NA
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Table 2
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Page 6
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	NA
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	NA
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases). For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Not reported

PRISMA 2020 Checklist

Section and Topic	Item #	Checklist item	Location where item is reported
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	NA
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Page 14, figure 1
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Not reported
Study characteristics	17	Cite each included study and present its characteristics.	Table 2
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Not reported
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Not reported
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Not reported
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Table 3
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	Not reported
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	Not reported
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	Not reported
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Not reported
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Page 27
	23b	Discuss any limitations of the evidence included in the review.	Pahe 27-3
	23c	Discuss any limitations of the review processes used.	Page 31
	23d	Discuss implications of the results for practice, policy, and future research.	Page 31
OTHER INFORMA	TION		
Registration and	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	Page 14
protocol	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Page 14
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	NA
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	Page 1
Competing	26	Declare any competing interests of exiguoally house p://bmjopen.bmj.com/site/about/guidelines.xhtml	Not

PRISMA 2020 Checklist

Section and Topic	Item #	Checklist item	Location where item is reported
interests			reported
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	Not reported
From: Page MJ, McKe	enzie JE, f	Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 1 For more information, visit: http://www.prisma-statement.org/	0.1136/bmj.n71

BMJ Open

Quality of reporting of randomised controlled trials in artificial intelligence in health care: a systematic review

Journal:	BMJ Open		
Manuscript ID	bmjopen-2022-061519.R1		
Article Type:	Original research		
Date Submitted by the Author:	14-Jul-2022		
Complete List of Authors:	Shahzad, Rida; Shahzad Eye Hospital Ayub, Bushra; Aga Khan University Hospital Siddiqui, M. A. Rehman; Aga Khan University Hospital, Department of Ophthalmology and Visual Sciences		
Primary Subject Heading :	Medical publishing and peer review		
Secondary Subject Heading:	Qualitative research		
Keywords:	STATISTICS & RESEARCH METHODS, Clinical trials < THERAPEUTICS, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS		

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Title: Quality of reporting of randomised controlled trials in artificial intelligence in

health care: a systematic review

Authors:

Rida Shahzad¹

Bushra Ayub²

M. A. Rehman Siddiqui^{1,3,4}

Authors Affiliations:

- 1. Shahzad Eye Hospital, Karachi, Pakistan
- 2. Aga Khan University Hospital, Karachi, Pakistan
- 3. Department of Ophthalmology and Visual Sciences, Aga Khan University Hospital, Karachi, Pakistan
- 4. The Eye Centre, South City Hospital, Karachi, Pakistan

Corresponding author:

M. A. Rehman Siddiqui

Department of Ophthalmology and Visual Sciences,

Aga Khan University Hospital,

National Stadium Road, P.O. Box 3500,

Karachi, Pakistan

Email: rehman.siddiqui@gmail.com

Funding: None

Keywords:

CONSORT, CONSORT-AI, artificial intelligence, deep learning, machine learning, randomised controlled trials.

Word count: 2430 words

ABSTRACT

Objectives: The aim of this study was to evaluate the quality of reporting of randomised controlled trials (RCTs) of artificial intelligence (AI) in health care against Consolidated Standards of Reporting Trials – Artificial Intelligence (CONSORT-AI) guidelines.

Design: Systematic review

Data sources: We used PubMed and EMBASE databases to include studies from 2015 to 2021.

Eligibility criteria: We included RCTs which used AI as the intervention. Studies were in the English language. Protocols, conference abstracts, studies on robotics, and studies related to medical education were excluded.

Data extraction: The included studies were graded using the CONSORT-AI checklist, comprising 43 items, by two independent graders. The results were tabulated and descriptive statistics were reported.

Results: We screened 1501 potential abstracts, of which 112 full-text articles were reviewed for eligibility. A total of 42 studies were included. The number of participants ranged from 22 to 2352. Only two items of the CONSORT-AI items were fully reported in all studies. Five items were not applicable in more than 85% of the studies. Nineteen per cent (8/42) of the studies did not report more than 50% (21/43) of the CONSORT-AI checklist items.

Conclusions: The quality of reporting of RCTs in AI is suboptimal. Reporting is variable in existing RCTs, therefore caution must be taken when generalising the findings of these RCTs in real-world settings.

ARTICLE SUMMARY

Strengths and Limitations of the Study:

- This systematic review covers RCTs of AI pertaining to all medical fields.
- The CONSORT-AI guideline was used to assess reporting quality of some RCTs predating its publication to set a baseline for future studies.
- A limitation of this study is the utilization of two databases.

INTRODUCTION

Artificial intelligence (AI) is finding increased utility in the medical realm, with a special emphasis on deep learning. Medical applications of AI range from screening, diagnosis, prognosis, and generation of management plans. [1-5] For example, AI has been extensively studied in ophthalmology for various diseases such as diabetic retinopathy, [6] age-related macular degeneration, [7] and glaucoma. [8] However, increased hype associated with AI without sound evidence base – may result in inappropriate clinical decisions, which can potentially be detrimental to healthcare. [9]

Randomised controlled trials (RCTs) are one of the highest quality of evidence used by clinicians in decision-making regarding interventions. [10] RCTs may be susceptible to

various forms of biases. Adequate reporting of RCTs is vital to allow results and conclusions derived from a study to be assessed critically by readers. [11,12]

The CONSORT (Consolidated Standards of Reporting Trials) statement was introduced in 1996 to establish guidelines to improve the reporting quality of clinical trials. Additionally, the CONSORT statement is a useful guide that helps readers with the critical appraisal of RCTs to ascertain their reliability and clinical applicability. [13] The most recent update of the CONSORT statement was published in 2010, listing 25 minimum reporting requirements. [14] Several extensions to CONSORT also exist, which cater to certain specific study designs. [15-18]

There has been an exponential increase in AI-based healthcare studies in recent years due to rapid advances in computational power. However, the methodological rigor has not kept pace with the development in technology. For example, the design and quality of reporting in these studies have not always been adequate. [19,20] CONSORT-AI was recently published as an extension of the CONSORT 2010 statement to evaluate RCTs involving AI. Fourteen new items were added to the checklist – including 11 extensions and 3 elaborations. [21,22] These items mostly relate to the AI intervention in question and are necessary to independently evaluate and replicate the trial.

The aim of this study was to evaluate the quality of reporting of RCTs of AI intervention for medical conditions, published from 2015 to 2020, based on CONSORT-AI guidelines. While CONSORT-AI did not exist for much of this timeline, this study will serve as a baseline measure of reporting quality for comparison with future studies' adherence to CONSORT-AI guidelines.

METHODS

We performed a systematic review of RCTs of AI for medical conditions published from January 2015 to December 2021. We searched PubMed and EMBASE databases for potential studies. The PubMed search was conducted using the MeSH terms: "artificial intelligence", "machine learning", and "deep learning". The term "artificial intelligence", "deep learning" and machine learning" were searched in EMBASE. In both the databases, the search was limited to RCTs, publications in the English language, from the year 2015 to 2021, and human subjects (Appendix 1). The records were screened by two independent investigators (RS and BA) for potential inclusion. The abstracts of RCTs using artificial intelligence, deep learning, and machine learning were further evaluated for possible inclusion. Protocols, conference abstracts, studies on robotics, and post-hoc analyses of randomised controlled trials were excluded.

Full-text articles of all shortlisted abstracts were then screened for eligibility. Publications were included if AI was used as an intervention for a medical condition, if there was a comparator control group in the study and if there was evidence of randomization. In case of a disagreement, a senior reviewer assessed the full text and the disagreement was resolved with consensus. The exclusion criteria were non-randomised studies, secondary studies, post-hoc analyses, or if the intervention investigated was not AI. Additionally, if the target condition was not a medical disease or if the research pertained to medical education, the study was excluded.

The CONSORT-AI checklist of 43 items (Supplementary Table 1) was used to grade the included studies. Each item was scored fully-, partially- or not- reported. If an item was irrelevant to a particular study, it was labelled as "not applicable". Each publication was scored by two trained graders (RS and BA) independently. Differences were discussed with the senior reviewer (MARS) to reach a consensus.

The results were tabulated by writing all the reported items as the numerator and the total number of applicable items as the denominator. The descriptive statistics for the study population and clinical characteristics are reported. The protocol of this study was submitted to PROSPERO in February 2021. The only deviation from the submitted protocol was extension of the search until December 2021 to keep this review up-to-date.

RESULTS

Study selection

The initial search identified 1501 potential records. One hundred and twelve articles were considered as potentially eligible after screening of abstracts. Following a review of full-text manuscripts, a total of 42 manuscripts were included in the systematic review (Figure 1).

General characteristics

The included studies (Supplementary table 2) were from the years 2016 to 2021(Figure 2). The number of participants ranged from 22 to 2352. They pertained to various medical fields, including gastroenterology (n = 12) medicine (n = 6), cardiology (n = 5), psychiatry (n = 4),

ophthalmology (n = 2), endocrinology (n = 2), paediatrics (n = 2), oncology (n = 2), orthopaedics (n = 2), surgery (n = 1), radiology (n = 1), neurology (n = 1), pulmonology (n = 1) and dentistry (n = 1). Studies were from different parts of the world, including China (n = 16), United States (n = 14), Japan (n = 3), United Kingdom (n = 2), Spain (n = 2), Netherlands (n = 1), Germany (n = 1), Korea (n = 1), Denmark (n = 1) and Israel (n = 1). (Figure 3)

Adherence to reporting standards

The median number of fully reported CONSORT-AI checklist items in the included studies was 30 (range 7-37) of a possible total of 43. Overall, only 2 (items # 1b, and 21) out of possible 43 items were fully reported in all 42 studies. Five items (items #3b, 6b, 7b, 14b, and 17b) were deemed not applicable in more than 85% of the included studies. The two least reported items were item #5iii (not reported in 36/42 studies) and item #24 (not reported in 31/42 studies). Nineteen per cent (8/42) of included studies did not report more than 50% (21/43) of the CONSORT-AI checklist items. The reporting of each item is given in Table 1.

Table 1: CONSORT-AI scores of included studies

	Item	Fully Reported	Partially Reported	Not Reported	Not Applicable
Title and Abstract	1a, 1a(i)	41	1	0	0
	1b, 1b(ii)	42	0	0	0
Introduction					
Background and	2a, 2a(i)	41	1	0	0
objectives	2b	38	0	4	0
Methods					

Trial Design	3a	26	6	10	0
	3b	6	0	0	36
Participants	4ai	39	0	3	0
	4aii	15	0	27	0
	4b	40	0	2	0
Intervention	5i	15	0	27	0
	5ii	34	0	8	0
	5iii	6	0	36	0
	5iv	37	0	5	0
	5v	41	0	1	0
	5vi	31	0	11	0
Outcomes	6a	39	0	3	0
	6b	2	0	0	40
Sample size	7a	30	0	11	1
	7b	2	0	0	40
Sequence	8a	34	0	8	0
generation	8b	25	0	17	0
Randomisation					
Allocation	9	24	0	18	0
concealment					
mechanism					
Implementation	10	18	3	21	0
Blinding	11a	24	0	18	0
	11b	23	0	17	2

Statistical methods	12a	39	0	3	0
	12b	34	0	8	0
Results					
Participant flow	13a	32	2	8	0
	13b	29	1	12	0
Recruitment	14a	38	0	4	0
	14b	1	0	0	41
Baseline data	15	32	0	10	0
Numbers analyzed	16	32	1	9	0
Outcomes and	17a	31	3	8	0
estimation	17b	1	0	0	41
Ancillary analyses	18	33	0	9	0
Harms	19	4	11	27	0
Discussion			70		
Limitations	20	36	0	6	0
Generalizability	21	42	0	0	0
Interpretation	22	41	0	1	0
Other information					
Registration	23	35	0	7	0
Protocol	24	11	0	31	0
Funding	25	10	20	12	0

Patient and Public Involvement

No patient or public was involved in this study.

DISCUSSION

In our review, variable reporting standards of RCTs of AI in healthcare were observed. While some items were reported adequately – for example, those relating to the abstract and introduction of the manuscript – other items particularly in the methods section had poor reporting scores.

Our results reinforce previously published findings. In a systematic review conducted by Liu et al, it was seen that sufficient reporting and external validation was done in less than one-third of the included 82 deep learning studies, thereby limiting their reliability. [23] Similarly, Nagendran et al. also found deviations from reporting standards, with less than 50% adherence to 12/29 items in the TRIPOD guidelines, and high levels of bias in AI studies. [20] Bozkurt et al. reported that demographic specifics of study populations were poorly reported in studies developing ML models from electronic health records, and external validation was omitted in 88% of the models. [24] In another systematic review of 28 articles regarding machine learning models for medical diagnosis, Yusuf et al. discovered that all studies in their systematic review failed to follow reporting guidelines. [25] Our study also revealed variable reporting of CONSORT-AI items in RCTs of AI in healthcare, suggesting there is still room in AI studies for further improving the quality of their reporting.

The CONSORT-AI checklist was developed to encourage transparent reporting of RCTs in AI. The extensions and elaborations added to the original CONSORT guideline largely emphasize the peculiarities related to AI intervention itself and its clinical application. These include details of the interventions, such as algorithm version, input and output data, how the intervention was integrated into the trial, and whether there was human and AI interaction. This information is crucial for the critical appraisal of a study and facilitates replication of

clinical trials. [23] These items had variable reporting scores in our study (items 4a to 5vi). Twenty-seven out of 42 (64%) studies did not mention the version of the AI algorithm used. This could confuse the reader regarding which version to apply the study findings to because an AI algorithm is likely to undergo multiple updates. [21] Moreover, information regarding input data was largely missed in the majority of included studies; with only 35% (15/42) of the studies identifying the inclusion and exclusion criteria at the level of the input data, and a mere 14% (6/42) of studies reported how poor quality or unavailable input data was handled and assessed. Such details are essential, as the overall performance of any given AI intervention relies on the quality of input data. Additionally, this information allows an evaluator to distinguish AI platforms that may only work in ideal conditions from those which can be applied to real-world settings. [26,27]

On the other hand, items regarding human-AI interaction and required expertise level, as well as AI output were fully reported by majority of studies (37 and 41/42, respectively). Clarity about the human-AI interface is essential to ensure a standard approach and functional safety, as well as to avoid ethical implications. [28,29] For example, it is essential that qualified experts can interpret dynamically complex variables exhibited by AI interfaces which are related to patients as well as the clinical context – only then it is possible that AI platforms enable an improvement in clinicians' decision-making process. [30] It is encouraging to see most authors report these items clearly.

Interestingly, although missing out on important information regarding the details of AI intervention, 42/42 of the studies were promising generalizability of their findings in the clinical setting. The generalizability of AI systems may be limited; especially when used in

the real-world setting outside of the environment they were developed in. [31,32] Therefore, caution must be employed when evaluating such studies.

An important factor to consider about CONSORT-AI, however, is the applicability of each item to clinical trials. Five items of the CONSORT-AI checklist were deemed to be not applicable in the majority of studies evaluated. Three of these items referred to changes made to methods and outcomes after trial commencement, and why the trial was ended (items 3b, 6b and 14b). These items pertain to modifications made in the protocol, which was not the case in most included studies.

Another item not applicable to most of the included studies was an explanation about any interim analysis and stopping guidelines. Since AI is a relatively recent advance in healthcare, harms and adverse events from AI have not been clearly defined yet. Perhaps this is the reason stopping guidelines were not reported in 40 out of 42 included studies. This ties closely to item 19: which requires reporting of adverse events in AI trials and a description of the analysis of performance errors. AI platforms can make errors that can be difficult to predict and go beyond human judgement, but may have harmful effects if employed on a large scale. [31] Only 4/42 studies fully reported this item, even though it is important to report information about error and outline risk mitigation strategies to decide which settings and populations the AI intervention can be safely employed in. [21] These points emphasize that AI clinical trials in healthcare have not integrated the concept of harm related to AI intervention to determine appropriate stopping guidelines.

Certain general observations were made regarding the included RCTs in our review. There was a large range of sample size (22 to 2352) in the studies. This wide range suggests that a standard approach to sample size calculation is not practised in RCTs of AI. For example, the diagnostic accuracy of healthcare professionals is often set higher than that of AI while employing sample size estimation, which presumes that AI is inferior to humans. [33] It is recommended that sample size calculations are performed using a non-inferior design by setting a more suitable non-inferiority margin, of diagnostic accuracy, for example 5%. [34] Similarly, the majority of the studies took place in China, and were focused on gastroenterology, making them less representative of other fields and perhaps other parts of the world.

There are some limitations to our review. Potential eligible studies could have been missed in the inclusion process, as only two databases were searched. The majority of the included studies were published before the CONSORT-AI checklist was widely available. Hence, some authors may not be aware of ideal information to report about an RCT of AI.

In conclusion, the standards of reporting in RCTs of AI were variable. We found certain important information regarding the AI intervention was insufficiently reported in many studies. Therefore, caution must be employed by healthcare service providers and policymakers when using these studies to inform decision-making.

Contributorship

The idea for the study was conceived and planned by MARS. RS and BA carried out the literature review process including screening of abstracts and review of full-text articles, while MARS acted as a senior reviewer. RS and BA independently scored the included studies using the CONSORT-AI checklist and disagreements were resolved following a combined discussion with MARS. The manuscript was prepared by RS and BA and edited by RS. All authors re anding Statement No funding

Competing of interests

Tone declared MARS. All authors reviewed and approved the final manuscript.

This study is a systematic review which did not involve human subjects. Therefore, no ethics approval was required.

Data sharing statement

No additional data available.

REFERENCES:

- 1. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. *Nature* 2020;577(7788):89-94.
- 2. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al.

 Dermatologist-level classification of skin cancer with deep neural networks.

 Nature 2017;542(7639):115-8.
- 3. Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. *PLoS medicine* 2018;15(11):e1002686.
- 4. Tyler NS, Mosquera-Lopez CM, Wilson LM, Dodier RH, Branigan DL, Gabo VB, et al. An artificial intelligence decision support system for the management of type 1 diabetes. *Nat Metab* 2020;2(7):612-9.
- 5. Kim H, Goo JM, Lee KH, Kim YT, Park CM. Preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinomas. *Radiol* 2020;296(1):216-24.
- 6. Wong TY, Bressler NM. Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. *JAMA* 2016 Dec 13;316(22):2366-7.
- 7. von der Emde L, Pfau M, Dysli C, Thiele S, Möller PT, Lindner M, Schmid M, Fleckenstein M, Holz FG, Schmitz-Valckenberg S. Artificial intelligence for morphology-based function prediction in neovascular age-related macular degeneration. *Sci Rep* 2019 Jul 31;9(1):1-2.

- 8. Devalla SK, Liang Z, Pham TH, Boote C, Strouthidis NG, Thiery AH, Girard MJ. Glaucoma management in the era of artificial intelligence. *Br J Ophthalmol* 2020 Mar 1;104(3):301-11.
- 9. Navarro CL, Damen JA, Takada T, Nijman SW, Dhiman P, Ma J, Collins GS, Bajpai R, Riley RD, Moons KG, Hooft L. Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. *Br Med J* 2021 Oct 20;375.
- 10. Altman DG. Better reporting of randomised controlled trials: the CONSORT statement. *British Medical Journal Publishing Group*; 1996.
- 11. Jüni P, Altman DG, Egger M. Assessing the quality of controlled clinical trials. *Br Med J* 2001;323(7303):42-6.
- 12. Schulz KF, Chalmers I, Hayes RJ, Altman DG. Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials. *JAMA* 1995;273(5):408-12.
- 13. Begg C, Cho M, Eastwood S, Horton R, Moher D, Olkin I, et al. Improving the quality of reporting of randomized controlled trials: the CONSORT statement. *JAMA* 1996;276(8):637-9.
- 14. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. *Trials* 2010;11(1):1-8.
- 15. Boutron I, Altman DG, Moher D, Schulz KF, Ravaud P. CONSORT statement for randomized trials of nonpharmacologic treatments: a 2017 update and a CONSORT extension for nonpharmacologic trial abstracts. *Ann Int Med* 2017;167(1):40-7.

- 16. Hopewell S, Clarke M, Moher D, Wager E, Middleton P, Altman DG, et al.
 CONSORT for reporting randomised trials in journal and conference abstracts.
 The Lancet 2008;371(9609):281-3.
- 17. Gagnier JJ, Boon H, Rochon P, Moher D, Barnes J, Bombardier C. Reporting randomized, controlled trials of herbal interventions: an elaborated CONSORT statement. *Ann Int Med* 2006;144(5):364-7.
- 18. Calvert M, Blazeby J, Altman DG, Revicki DA, Moher D, Brundage MD, et al.

 Reporting of patient-reported outcomes in randomized trials: the CONSORT PRO extension. *JAMA* 2013;309(8):814-22.
- 19. Gregory J, Welliver S, Chong J. Top 10 reviewer critiques of radiology artificial intelligence (AI) articles: qualitative thematic analysis of reviewer critiques of machine learning/deep learning manuscripts submitted to JMRI. *J Magn Reson Imaging* 2020;52(1):248-54.
- 20. Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, Harvey H, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. *Br Med J* 2020;368.
- 21. Liu X, Rivera SC, Faes L, Di Ruffano LF, Yau C, Keane 10 PA, et al. Reporting guidelines for clinical trials evaluating artificial intelligence interventions are needed. *Nat Med* 2019;25:1467-8.
- 22. Liu X, Faes L, Calvert MJ, Denniston AK. Extension of the CONSORT and SPIRIT statements. *The Lancet* 2019;394(10205):1225.
- 23. Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health 2019;1(6):e271-e97

- 24. Bozkurt S, Cahan EM, Seneviratne MG, et al. Reporting of demographic data and representativeness in machine learning models using electronic health records. J Am Med Inform Assoc 2020;27(12):1878-84.
- 25. Yusuf M, Atal I, Li J, et al. Reporting quality of studies using machine learning models for medical diagnosis: a systematic review. BMJ Open 2020;10(3):e034568.
- 26. Sabottke CF, Spieler BM. The effect of image resolution on deep learning in radiography. *Radiol Artif Intell* 2020 Jan 22;2(1):e190015.
- 27. Ibrahim H, Liu X, Rivera SC, Moher D, Chan AW, Sydes MR, Calvert MJ, Denniston AK. Reporting guidelines for clinical trials of artificial intelligence interventions: the SPIRIT-AI and CONSORT-AI guidelines. *Trials* 2021 Dec;22(1):1-5.
- 28. Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F, Jung K, Heller K, Kale D, Saeed M, Ossorio PN. Do no harm: a roadmap for responsible machine learning for health care. *Nat Me* 2019 Sep;25(9):1337-40.
- 29. Habli I, Lawton T, Porter Z. Artificial intelligence in health care: accountability and safety. *Bull World Health Organ* 2020 Apr 1;98(4):251.
- 30. Shortliffe EH, Sepúlveda MJ. Clinical decision support in the era of artificial intelligence. *JAMA* 2018 Dec 4;320(21):2199-200.
- 31. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. *BMC Med* 2019

 Dec;17(1):1-9.
- 32. Pooch EH, Ballester P, Barros RC. Can We Trust Deep Learning Based

 Diagnosis? The Impact of Domain Shift in Chest Radiograph Classification. In

International Workshop on Thoracic Image Analysis 2020 Oct 8 (pp. 74-83). Springer, Cham.

- 33. Lin H, Li R, Liu Z, Chen J, Yang Y, Chen H, et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial. *EClinicalMedicine* 2019; 9: 52–9.
- 34. Zhou Q, Cao YH, Chen ZH. Optimizing the study design of clinical trials to identify the efficacy of artificial intelligence tools in clinical practices.

 EClinicalMedicine 2019 Nov 1;16:10-1.

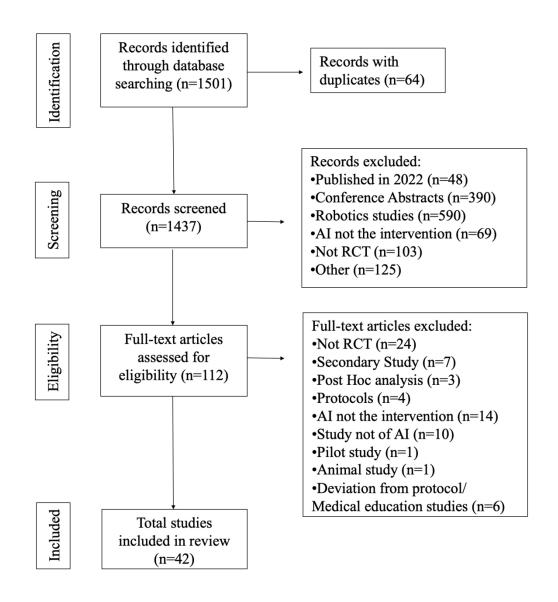
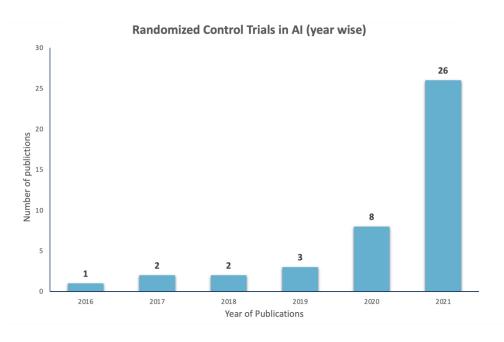
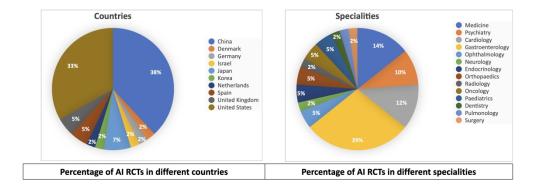

FIGURE LEGENDS:

Figure 1: PRISMA flowchart

Figure 2: Year-wise distribution of RCTs in AI


Figure 3: Percentage of AI RCTs in different countries and specialties



PRISMA flow chart

293x349mm (144 x 144 DPI)

Year-wise distribution of RCTs in AI 403x244mm (144 x 144 DPI)

Percentage of AI RCTs in different countries and specialties $608 \times 295 \text{mm}$ (144 x 144 DPI)

Supplementary table 1: CONSORT-AI checklist**

Section	Item	CONSORT 2010 item	CONSORT-	AI item	Addressed
					on page
					no.*
Title and abstrac	t :t				
		,		,	
Title and	1a	Identification as a	CONSORT-	(i) Indicate that the	
abstract		randomized trial in the	AI a,b	intervention involves	
		title	Elaboration	artificial	
				intelligence/machine	
				learning in the title	
				and/or abstract and	
		.0		specify the type of	
				model.	
	1b	Structured summary of	5 .	(ii) State the intended	
		trial design, methods,	4.	use of the AI	
		results, and conclusions		intervention within the	
		(for specific guidance	4	trial in the title and/or	
		see CONSORT for		abstract.	
		abstracts)		O _A	
Introduction					
Background and	2a	Scientific background	CONSORT-	Explain the intended use	
objectives		and explanation of	AI a (i)	of the AI intervention in	
		rationale	Extension	the context of the	
				clinical pathway,	
				including its purpose	
				and its intended users	
				(e.g. healthcare	

				professionals, patients,	
				public).	
	2b	Specific objectives or			
		hypotheses			
Methods					
1,10thous					
Trial design	3a	Description of trial			
		design			
		(such as parallel,			
		factorial) including			
		allocation ratio			
	3b	Important changes to			
		methods after trial			
		commencement (such as	5		
		eligibility criteria), with	7		
		reasons			
Participants	4a	Eligibility criteria for	CONSORT-	State the inclusion and	
Farticipants	44				
		participants	AI a (i)	exclusion criteria at the	
			Elaboration	level of participants.	
			CONSORT-	State the inclusion and	
			AI a (ii)	exclusion criteria at the	
			Extension	level of the input data.	
	4b	Settings and locations	CONSORT-	Describe how the AI	
		where the data were	AI b	intervention was	
		collected	Extension	integrated into the trial	
				setting, including any	
				onsite or on site	
				requirements.	

Interventions		The interventions for	CONSORT-	State which version of
		each group with	AI (i)	the AI algorithm was
		sufficient details to	Extension	used.
		allow replication,	CONSORT-	Describe how the input
	5	including how and when	AI (ii)	data were acquired and
		they were actually	Extension	selected for the
		administered		AI intervention.
			CONSORT-	Describe how poor
			AI (iii)	quality or unavailable
			Extension	input data were assessed
		6		and handled.
			CONSORT-	Specify whether there
			AI (iv)	was human-AI
			Extension.	interaction in the
				handling of the input
		C	7	data, and what level of
				expertise was required
				of users.
			CONSORT-	Specify the output of the
			AI (v)	AI intervention
			Extension	2/
			CONSORT-	Explain how the AI
			AI (vi)	intervention's outputs
			Extension	contributed to decision-
				making or other
				elements of clinical
				practice.
Outcomes	6a	Completely defined pre-		
		specified primary and		
		secondary outcome		
			I	

	1	management in also dim a have			
		measures, including how			
		and when they were			
		assessed			
	6b	Any changes to trial			
		outcomes after the trial			
		commenced, with			
		reasons			
Sample size	7a	How sample size was			
		determined			
		0,			
	7b	When applicable,			
		explanation of any			
		interim analyses and			
		stopping guidelines			
G	0.				
Sequence	8a	Method used to generate			
generation		the random allocation) ,		
		sequence	4.		
	8b	Type of randomization;			
		details of any restriction	4		
		(such as blocking and			
		block size)		\mathbf{O}_{λ}	
		block size)			
Randomization					
Allocation		Mechanism used to			
concealment	9	implement the random			
mechanism		allocation sequence			
		(such as sequentially			
		numbered containers),			
		describing any steps			
		taken to conceal the			
		taken to conceal the			

		sequence until			
		interventions were			
		assigned			
Implementation	10	Who generated the			
		random allocation			
		sequence, who enrolled			
		participants, and who			
		assigned participants to			
		interventions			
Blinding	11a	If done, who was			
		blinded after assignment			
		to interventions (for			
		example, participants,			
		care providers, those			
		assessing outcomes) and			
		how	۷.		
	11b	If relevant, description			
		of the similarity of			
		interventions	7		
Statistical	12a	Statistical methods used		0,	
methods		to compare groups for		3/	
		primary and secondary			
		outcomes			
	12b	Methods for additional			
		analyses, such as			
		subgroup analyses and			
		adjusted analyses			
Results	<u> </u>	1		<u> </u>	

Participant flow	13a	For each group, the			
(a diagram is		numbers of participants			
strongly		who were randomly			
recommended)		assigned, received			
		intended treatment,			
		and were analyzed for			
		the primary outcome			
	13b	For each group, losses			
		and exclusions after			
		randomization, together			
		with reasons			
Recruitment	14a	Dates defining the			
		periods of recruitment			
		and follow-up			
	14b	Why the trial ended or			
		was stopped	4.		
Baseline data		A table showing baseline			
	15	demographic and clinical	1		
		characteristics for each			
		group		9	
Numbers		For each group, number			
analyzed	16	of participants			
	10	(denominator) included			
		in each analysis and			
		whether the analysis was			
		by original assigned			
		groups			
Outcomes and	17a	For each primary and			
estimation		secondary outcome,			

		results for each group,			
		and the estimated effect			
		size and its precision			
		(such as % confidence			
		interval)			
	17b	For binary outcomes,			
		presentation of both			
		absolute and relative			
		effect sizes is			
		recommended			
Ancillary		Results of any other			
analyses	18	analyses performed,			
		including subgroup			
		analyses and adjusted			
		analyses, distinguishing			
		pre-specified from	7		
		exploratory	7		
Harms		All important harms or	CONSORT-	Describe results of any	
	19	unintended effects in	AI	analysis of performance	
		each group (for specific	Extension	errors and how errors	
		guidance see CONSORT		were identified, where	
		for harms)		applicable. If no such	
				analysis was planned or	
				done, justify why not.	
Discussion					
Limitations	20	Trial limitations,			
Limitations	20				
		addressing sources of			
		potential bias,			

		imprecision, and, if			
		relevant, multiplicity of			
		analyses			
Generalizability	21	Generalizability			
		(external validity,			
		applicability) of the trial			
		findings			
Interpretation	22	Interpretation consistent			
		with results, balancing			
		benefits and harms, and			
		considering other			
		relevant evidence			
Other information	on	10.			
Registration	23	Registration number and			T
Registration	23		/		
		name of trial registry			
Protocol	24	Where the full trial			
		protocol can be	7		
		accessed, if available		0.	
Funding		Sources of funding and	CONSORT-	State whether and how	
	25	other support (such as	AI	the AI intervention	
		supply of drugs), role of	Extension.	and/or its code can be	
		funders		accessed, including any	
				restrictions to access or	
				re-use.	
	1	ı		ı	ı

*Indicates page numbers to be completed by authors during protocol development

** 22. Liu X, Faes L, Calvert MJ, Denniston AK. Extension of the CONSORT and SPIRIT statements. The Lancet 2019;394(10205):1225.

Supplementary table 2: Included studies

No.	Authors	Year	Title	Countr	Specialty	Disease	Sample	Intervention	Control	Blinding	Primary	Trial
				y		studied	size				outcome	registration
1.	Sadasiva	2016	Impact of a	United	Medicine	Smoking	120	AI	Standard	Single	Influence	NR
	m, et al.		Collective	States		addiction		recommended	tailored	(study	of	
			Intelligence) 4				motivational	messages	staff)	messages	
			Tailored Messaging		5			messages				
			System on Smoking		700							
			Cessation: The		16	16						
			Perspect			16						
			Randomized				1					
			Experiment				, (1/1				
2.	Morrison	2017	The Effect of	United	Psychiatry	Stress	77	Smartphone-	Daily/oc	Not stated	Notificatio	ISRCTN6717
	, et al.		Timing and	States				based stress	casional		n response	7737
			Frequency of Push					management	notificati			
			Notifications on					system	ons			
			Usage of a						within			
			Smartphone- Based						pre-			
			Stress Management						defined			

Intervention: An time **Exploratory Trial** frames 2017 Using Artificial United Cardiology Ischemic No daily Adherence NCT0259925 3. Labovitz, AI system Not stated Intelligence to monitoring to therapy 9 States stroke monitori et al. Reduce the Risk of ng Nonadherence in Patients on Anticoagulation Therapy NR 4. Rostill, 2018 Technology United Psychiatry Dementi 408 Technology-No Not stated Alerts et al. integrated health Kingdo integrated TIHM a health management for m dementia management for dementia 5. Wang, et 2018 Real-time China Adenom 1058 AI-aided Standard None Adenoma ChiCTR-Gastroente DDDautomatic detection al rology colonoscopy colonosc detection a 17012221 system increases opy rate colonoscopic polyp and adenoma

BMJ Open

Page 36 of 68

			detection rates: a									
			prospective									
			randomised									
			controlled study									
6.	Lin, et al.	2019	Diagnostic Efficacy	China	Ophthalmo	Cataract	350	AI-assisted	Normal	Double	Diagnostic	NCT0324084
			and Therapeutic) 4	logy			cataract	clinic		accuracy	8
			Decision-making		5			detection			for	
			Capacity of an		700						congenital	
			Artificial		66	<i>/</i> -					cataracts	
			Intelligence			16						
			Platform for				Vi,					
			Childhood				10	240				
			Cataracts in Eye									
			Clinics: A						7/1			
			Multicentre							•		
			Randomized									
			Controlled Trial									

Voss, et	2019	Effect of Wearable	United	Psychiatry	Autism	474	AI-driven	Applied	Single	SRS-II,	NCT0356917
al.		Digital Intervention	States				behavioral	behavior		EGG,	6
		for Improving					intervention	al		VABS-II,	
		Socialization in						analysis		NEPSY-II	
		Children With						therapy		socializati	
		Autism Spectrum								on scores	
		Disorder A		5							
		Randomized		700							
		Clinical Trial		,6	/						
Wu, et	2019	Randomised	China	Gastroente	Upper GI	324	AI-aided	Standard	Single	Blind spot	ChiCTR1800
al.		controlled trial of		rology	lesions	Vi,	esophagogastr	esophago		rate	014809
		WISENSE, a real-				10	oduodenoscop	gastrodu			
		time					у	odenosco			
		quality improving						ру			
		system for									
		monitoring blind									
		spots									
	al. Wu, et	al. Wu, et 2019	al. Digital Intervention for Improving Socialization in Children With Autism Spectrum Disorder A Randomized Clinical Trial Wu, et 2019 Randomised al. controlled trial of WISENSE, a real- time quality improving system for monitoring blind	al. Digital Intervention for Improving Socialization in Children With Autism Spectrum Disorder A Randomized Clinical Trial Wu, et 2019 Randomised China al. controlled trial of WISENSE, a realtime quality improving system for monitoring blind	al. Digital Intervention for Improving Socialization in Children With Autism Spectrum Disorder A Randomized Clinical Trial Wu, et 2019 Randomised China Gastroente al. China Gastroente rology WISENSE, a real- time quality improving system for monitoring blind	al. Digital Intervention for Improving Socialization in Children With Autism Spectrum Disorder A Randomized Clinical Trial Wu, et 2019 Randomised China Gastroente Upper GI al. WISENSE, a real- time quality improving system for monitoring blind	al. Digital Intervention for Improving Socialization in Children With Autism Spectrum Disorder A Randomized Clinical Trial Wu, et 2019 Randomised China Gastroente Upper GI 324 al. Wisense, a real- time quality improving system for monitoring blind	al. Digital Intervention for Improving Socialization in Children With Autism Spectrum Disorder A Randomized Clinical Trial Wu, et 2019 Randomised controlled trial of WISENSE, a real- time quality improving system for monitoring blind Disital Intervention States Behavioral intervention Dehavioral intervention States Behavioral intervention States Behavioral intervention States Behavioral intervention Socialization in Children With Autism Spectrum Disorder A Randomized Clinical Trial Vuper GI 324 AI-aided esophagogastr oduodenoscop y	al. Digital Intervention for Improving Socialization in Children With Autism Spectrum Disorder A Randomized Clinical Trial Wu, et 2019 Randomised controlled trial of WISENSE, a real- time quality improving system for monitoring blind Digital Intervention States States Behavioral intervention al Al-aided Al-aided Standard esophagogastr esophago oduodenoscop py y odenosco py y odenosco	al. Digital Intervention for Improving Socialization in Children With Autism Spectrum Disorder A Randomized Clinical Trial Wu, et 2019 Randomised al. Controlled trial of WISENSE, a real- time quality improving system for monitoring blind Digital Intervention States Digital Intervention States Behavioral intervention al analysis therapy Al-aided Standard Single esophago oduodenoscop py y odenosco py system for monitoring blind	al. Digital Intervention States

			during									
			esophagogastroduo									
			denoscopy									
9.	Wang, et	2020	Effect of a deep-	China	Gastroente	Adenom	1046	AI-aided	Sham	Double	Adenoma	ChiCTR1800
	al.		learning computer-		rology	a		colonoscopy			detection	017675
			aided detection	06							rate	
			system		5							
			on adenoma		Pec.							
			detection during		16	/						
			colonoscopy			16						
			(CADe-DB trial):				11					
			a double-blind				10	1/1.				
			randomised study						L			
10.	Persell,	2020	Effect of Home	United	Medicine	Hyperten	333	AI-driven	Blood	None	Systolic	NCT0328814
	et al.		Blood Pressure	States		sion		coaching app	pressure		blood	2
			Monitoring via a						tracking		pressure at	
			Smartphone						app		6 months	
			Hypertension									
			Coaching									

			Application or									
			Tracking									
			Application									
			on Adults With									
			Uncontrolled									
			Hypertension									
			A Randomized		5							
			Clinical Trial		700							
11.	Wijnberg	2020	Effect of a Machine	Netherl	Cardiology	Intra-	68	AI-driven	Standard	None	Time-	NCT0337634
	e, et al.		Learning–Derived	ands		operative		early warning	care		weighted	7
			Early Warning			hypotens	Vi	system for			average of	
			System			ion	, (intraoperative			intraoperat	
			for Intraoperative					hypotension			ive	
			Hypotension vs						7/1		hypotensio	
			Standard Care on								n	
			Depth and Duration									
			of Intraoperative									
			Hypotension									

			During Elective									
			Noncardiac Surgery									
			The HYPE									
			Randomized									
			Clinical Trial									
12.	Pavel, et	2020	A machine-learning	United	Neurology	Neonatal	264	Automated	Conventi	Single	Diagnostic	NCT0243178
	al.		algorithm for	Kingdo	5	seizures		seizure	onal		accuracy	0
			neonatal seizure	m	700			detection	EEG		of	
			recognition: a		,6	/		algorithm			healthcare	
			multicentre,		Pee.	16					profession	
			randomised,				Vi				als with	
			controlled trial				10	4			aid of	
											algorithm	
13.	Nimri, et	2020	Insulin dose	Israel	Endocrinol	Diabetes	108	AI-based	Physicia	Single	Time of	NCT0300380
	al.		optimization using		ogy			decision	n guided		glucose	6
			an automated					support	care		level	
			artificial					system			within	
			intelligence-based								target	
			decision support								range	

			system in youths									
			with type 1 diabetes									
14.	Liu, et al.	2020	The single-monitor	China	Gastroente	Adenom	790	AI-aided	Routine	None	Adenoma	ChiCTR1800
			trial: an embedded		rology	a		colonoscopy	colonosc		detection	018058
			CADe						opy		rate	
			system increased	04								
			adenoma detection		5							
			during		66							
			colonoscopy: a		16	/						
			prospective			16						
			randomized study				Vi					
15.	Gong, et	2020	Detection of	China	Gastroente	Adenom	704	AI-aided co	Unassiste	Single	Adenoma	ChiCTR1900
	al.		colorectal		rology	a		lonoscopy	d		detection	021984
			adenomas with a						colonosc		rate	
			real-time						opy			
			computer-aided									
			system									
			(ENDOANGEL): a									
			randomised									

			controlled study									
16.	Luo, et	2020	Artificial	China	Gastroente	Polyps	150	AI-aided	Unaided	None	Polyp	NCT0471262
	al.		Intelligence-		rology			colonoscopy	colonosc		detection	65
			Assisted						ору		rate	
			Colonoscopy for									
			Detection									
			of Colon Polyps: a									
			Prospective,									
			Randomized Cohort		6	/						
			Study			1						
15		2021	-	.	0.1.1	N. 1/1		A.T	77 1	27	D : 1 1	(ID (D) CODD)
17.	Anan, at	2021	Effects of an	Japan	Orthopaedi	Neck/sho	94	AI-assisted	Usual	None	Pain level	(UMIN-CTR)
	al.		Artificial		cs	ulder and		health	care			000033894
			Intelligence-			back pain		program	routine			
			Assisted Health						7/			
			Program on									
			Workers With									
			Neck/Shoulder									
			Pain/Stiffness and									
			Low Back Pain:									

			Randomized									
			Controlled Trial									
18.	Blomber	2021	Effect of Machine	Denma	Cardiology	Cardiac	654	AI-led alerts	Normal	Double	Recognitio	NCT0421930
	g, et al.		Learning on	rk		arrest			protocol		n of	6
			Dispatcher								cardiac	
			Recognition of Out-	0							arrest	
			of-Hospital Cardiac		5							
			Arrest During Calls		000							
			to Emergency		76	<i>/</i>						
			Medical Services:									
			A Randomized				1					
			Clinical Trial				, ('h.				
19.	Chen, et	2021	The Role of Deep	China	Cardiology	Heart	80	AI-based	Routine	None	Mortality	NR
	al.		Learning-Based			failure		echocardiogra	echocard		and	
			Echocardiography					phy	iography		rehospitali	
			in the Diagnosis								zation rate	
			and Evaluation of									
			the Effects of									
			Routine Anti-Heart-									

			Failure Western									
			Medicines in									
			Elderly Patients									
			with Acute Left									
			Heart Failure									
20.	Eng, et	2021	Artificial	United	Radiology	Skeletal	1903	AI diagnostic	Without	None	Mean	NCT0353009
	al.		Intelligence	States	5	age		aid	aid		absolute	8
			Algorithm		700						difference	
			Improves		,6	/					between	
			Radiologist		•	16					the	
			Performance in				1				skeletal	
			Skeletal Age				10	1/1.			age	
			Assessment									
21.	Harada,	2021	Efficacy of	Japan	Medicine	Various	22	AI-assisted	Without	Single	Diagnostic	UMIN000042
	et al.		artificial-			medical		differential	AI		accuracy	881
			intelligence-driven			condition		diagnosis	assistanc			
			differential-			S			e			
			diagnosis list on the									
			diagnostic accuracy									

			of physicians: An									
			open-label									
			randomized									
			controlled study									
22.	Hassoon,	2021	Randomized trial of	United	Oncology	Different	42	AI coaching	Written	Single	Change in	NCT0321207
	et al.		two artificial	States		cancer			informati		steps per	9
			intelligence		5	types			on		day	
			coaching		066							
			interventions to		,6	/						
			increase physical			16						
			activity in cancer				Vi					
			survivors				,(4				
23.	Jayakum	2021	Comparison of an	United	Orthopaedi	Osteoart	129	AI-enabled	Educatio	None	Knee OA	NCT0395600
	ar, et al.		Artificial	States	cs	hritis		patient	nal		Decision	4
			Intelligence-					decision aid	material	•	Quality	
			Enabled Patient									
			Decision Aid vs									
			Educational									
			Material on									

24.	Kamba, et al.	2021	Decision Quality, Shared Decision- Making, Patient Experience, and Functional Outcomes in Adults with Knee Osteoarthritis: A Randomized Clinical Trial Reducing adenoma miss rate of colonoscopy assisted by artificial intelligence: a multicenter randomized	Japan	Gastroente	Adenom	358	AI-aided colonoscopy	Unaided colonose opy	None	Adenoma miss rate	jRCTs032190 061
			randomized controlled trial									

25.	Luna, et	2021	Artificial	United	Medicine	Physical	30	AI-assisted	Unassiste	Single	Successful	NCT0462459
	al.		intelligence	States		therapy		exercise	d		squats	4
			application versus					application	exercise			
			physical therapist									
			for squat									
			evaluation: a) 4								
			randomized		6							
			controlled trial		60							
26.	Medina,	2021	Electrophysiologica	Spain	Psychiatry	Attention	29	AI-driven	Commeri	Single	Conners	ISRCTN7104
	et al.		l brain changes			deficit		cognitive	cal video		СРТ	1318
			associated with			hyperacti	11	stimulation	games		(CPT-III)	
			cognitive			vity	, (program			score	
			improvement in a			disorder						
			pediatric attention						7/			
			deficit hyperactivity									
			disorder digital									
			artificial									
			intelligence-driven									
			intervention:									

			Randomized									
			controlled trial									
27.	Mertens,	2021	Artificial	Germa	Dentistry	Caries	22	AI-based	Unaided	None	Accuracy	DRKS000223
	et al.		intelligence for	ny				diagnostic	diagnosis		metrics	57
			caries detection:					support				
			Randomized trial	04								
28.	Prochask	2021	A randomized	United	Medicine	Substanc	180	AI relational	No	None	Past-	NCT0409600
	a, et al.		controlled trial of a	States	700	e-related		conversational	interventi		month	1
			therapeutic		16	disorders		agent	on during		substance	
			relational agent for						the study		use	
			reducing substance				1				occasions	
			misuse during the				, (1/1.				
			COVID-19									
			pandemic						7/1			
29.	Rafferty,	2021	A novel mobile app	United	Gastroente	Irritable	58	AI dietry	Educatio	None	Quality of	NCT0425655
	et al.		(heali) for disease	States	rology	bowel		mobile app	nal		life score	1
			treatment in			syndrom			material			
			participants with			e						
			irritable bowel									

Page 50 of 68

			syndrome:									
			Randomized									
			controlled pilot trial									
30.	Seok, et	2021	A personalized 3d-	Korea	Endocrinol	Thyroid	53	AI 3D-printed	Without	None	Patient	KCT0005069
	al.		printed model for		ogy	lesions		thyroid model	model		general	
			obtaining informed) 4							knowledge	
			consent process for		5						and	
			thyroid surgery: A		700						satisfactio	
			randomized clinical			<i>/</i> -					n	
			study using a deep			16						
			learning approach				1					
			with mesh-type 3d				, (1/1.				
			modeling					Alassisted				
31.	Seol, et	2021	Artificial	United	Paediatrics	Childhoo	184	AI-assisted	Usual	Single	Asthma	NCT0286596
	al.		intelligence-assisted	States		d asthma		decision	asthma		exacerbati	7
			clinical decision					support	care		on	
			support for								occurrence	
			childhood asthma								within one	
			management: A								year	

			randomized clinical									
			trial									
32.	Strombla	2021	Effect of a	United	Surgery	Gynaecol	683	AI-assisted	Standard	None	Accurate	NCT0347137
	d, et al.		Predictive Model	States		ogical		surgical	estimatio		surgery	7
			on Planned Surgical			and		predictions	n process		duration	
			Duration Accuracy,),		colorecta					prediction	
			Patient Wait Time,		5	1 surgery						
			and Use of		Dee.							
			Presurgical		,6	/						
			Resources: A			16						
			Randomized				Vi,					
			Clinical Trial				,('h.				
33.	Turino,	2021	Management and	Spain	Pulmonolo	Obstructi	60	Intelligent	Standard	None	Complianc	NCT0311695
	et al.		treatment of		gy	ve sleep		monitoring	manage		e to CPAP	8
			patients with			apnea		system	ment			
			obstructive sleep									
			apnea using an									
			intelligent									
			monitoring system									

34.	Wang, et	2021	based on machine learning aiming to improve continuous positive airway pressure treatment compliance: Randomized controlled trial Utilization of Ultrasonic Image Characteristics Combined with Endoscopic	China	Gastroente	Early gastric cancer	80	Endoscopy with AI-based ultrasound imaging	Endosco py alone	None	Detection rate of upper gastric cancer	NR
			Randomized		5							
			controlled trial		900							
34.	Wang, et	2021	Utilization of	China	Gastroente	Early	80	Endoscopy	Endosco	None	Detection	NR
	al.		Ultrasonic Image		rology	gastric		with AI-based	py alone		rate of	
			Characteristics			cancer	11	ultrasound			upper	
			Combined with				, (imaging			gastric	
			Endoscopic								cancer	
			Detection on the						γ_{ν}			
			Basis of Artificial									
			Intelligence									
			Algorithm in									
			Diagnosis of Early									
			Upper									

			Gastrointestinal									
			Cancer									
35.	Wu, et	2021	Evaluation of the	China	Gastroente	Early	1050	AI-aided	Endosco	Single	Number of	ChiCTR1800
	al.		effects of an		rology	gastric		endoscopy	py alone		blind spots	018403
			artificial			cancer					during	
			intelligence system),							endoscopy	
			on endoscopy		5							
			quality and		700							
			preliminary testing		,6	/		240				
			of its performance			16						
			in detecting early				Vi					
			gastric cancer: a				10	1/1.				
			randomized									
			controlled trial						7/			
36.	Wu, et	2021	Effect of a deep	China	Gastroente	Gastric	1886	AI-assisted	Unaided	Single	Gastric	ChiCTR2000
	al.		learning-based		rology	neoplasm		endoscopy	endoscop		neoplasm	034453
			system on the miss						у		miss rate	
			rate of gastric									
			neoplasms during									

			upper gastrointestinal endoscopy: a single-centre, tandem, randomised controlled trial									
37.	Xu, et al.	2021	The Clinical Value	China	Ophthalmo	Fungal	1089	AI-assisted	Unassiste	None	Accuracy	NR
	,,		of Explainable		logy	keratitis		image reading	d image			
			Deep Learning for		6	/			reading			
			Diagnosing Fungal			16						
			Keratitis Using in				1					
			vivo Confocal				10	1/1.				
			Microscopy Images									
38.	Xu, et al.	2021	Artificial	China	Gastroente	Polyp	2352	AI-assisted	Conventi	None	Polyp	ChiCTR1800
			intelligence-assisted		rology			colonoscopy	onal		detection	015607
			colonoscopy: A						colonosc		rate	
			prospective,						ору			
			multicenter,									
			randomized									
	<u> </u>	<u> </u>	l		I		<u> </u>		l	I	l	<u> </u>

			controlled trial of									
			polyp detection									
39.	Yao, et	2021	Artificial	United	Cardiology	Low	358	AI-enabled	Usual	None	New	NCT0400008
	al.		intelligence-enabled	States		ejection		electrocardiog	care		diagnosis	7
			electrocardiograms			fraction		rams			of low	
			for identification of	0							ejection	
			patients with low		5						fraction	
			ejection fraction: a		66							
			pragmatic,		16	<i>f</i>						
			randomized clinical									
			trial				Vi					
40.	Zeng, et	2021	Long-Term	China	Medicine	Sports	150	AI-based	General	None	Blood	NR
	al.		Assessment of			health		personalized	manage		glucose,	
			Rehabilitation			manage		sports	ment		blood	
			Treatment of Sports			ment		management			pressure,	
			through Artificial					service system			lipids	
			Intelligence									
			Research									

41.	Zhang, et	2021	Artificial	China	Oncology	Breast	90	AI-based ultra	Routine	Double	Accuracy	NR
	al.		Intelligence			cancer		sound image	ultrasoun		metrics	
			Algorithm-Based					segmentation	d			
			Ultrasound Image									
			Segmentation									
			Technology in the									
			Diagnosis of Breast		5							
			Cancer Axillary		700							
			Lymph Node		,6	/						
			Metastasis			16						
42.	Zhang, et	2021	Value of	China	Paediatrics	Cerebral	73	AI-assisted	Original	None	Cerebral	NR
	al.		Rehabilitation			palsy	10	analysis of	images		artery	
			Training for					brain images			blood flow	
			Children with						7/1		velocity	
			Cerebral Palsy								(VP) and	
			Diagnosed and								Vasscular	
			Analyzed by								pulse	
			Computed								index (PI)	
			Tomography									

	Imaging					
	Information					
	Features under					
	Deep Learning					

- 1. Sadasivam RS, Borglund EM, Adams R, Marlin BM, Houston TK. Impact of a collective intelligence tailored messaging system on smoking cessation: the Perspect randomized experiment. *JMIR* 2016;18(11):e285.
- 2. Morrison LG, Hargood C, Pejovic V, Geraghty AW, Lloyd S, Goodman N, et al. The effect of timing and frequency of push notifications on usage of a smartphone-based stress management intervention: an exploratory trial. *PloS one* 2017;12(1):e0169162.
- 3. Labovitz DL, Shafner L, Reyes Gil M, Virmani D, Hanina A. Using artificial intelligence to reduce the risk of nonadherence in patients on anticoagulation therapy. *Stroke* 2017;48(5):1416-9.
- 4. Rostill H, Nilforooshan R, Morgan A, Barnaghi P, Ream E, Chrysanthaki T. Technology integrated health management for dementia. Br J Community Nurs 2018;23(10):502-8.
- 5. Wang P, Berzin TM, Brown JRG, Bharadwaj S, Becq A, Xiao X, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. *Gut* 2019;68(10):1813-9.

- 6. Lin H, Li R, Liu Z, Chen J, Yang Y, Chen H, et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial. *EClinicalMedicine* 2019; 9: 52–9.
- 7. Voss C, Schwartz J, Daniels J, Kline A, Haber N, Washington P, et al. Effect of wearable digital intervention for improving socialization in children with autism spectrum disorder: a randomized clinical trial. *JAMA Pediatr* 2019;173(5):446-54.
- 8. Wu L, Zhang J, Zhou W, An P, Shen L, Liu J, et al. Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy. *Gut* 2019;68(12):2161-9.
- 9. Wang P, Liu X, Berzin TM, Brown JRG, Liu P, Zhou C, et al. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. *Lancet Gastroenterol Hepatol* 2020;5(4):343-51.
- 10. Persell SD, Peprah YA, Lipiszko D, Lee JY, Li JJ, Ciolino JD, et al. Effect of home blood pressure monitoring via a smartphone hypertension coaching application or tracking application on adults with uncontrolled hypertension: a randomized clinical trial. *JAMA Netw Open* 2020;3(3):e200255-e.
- 11. Wijnberge M, Geerts BF, Hol L, Lemmers N, Mulder MP, Berge P, et al. Effect of a machine learning–derived early warning system for intraoperative hypotension vs standard care on depth and duration of intraoperative hypotension during elective noncardiac surgery: the HYPE randomized clinical trial. *JAMA* 2020;323(11):1052-60.

- 12. Pavel AM, Rennie JM, de Vries LS, Blennow M, Foran A, Shah DK, et al. A machine-learning algorithm for neonatal seizure recognition: a multicentre, randomised, controlled trial. *The Lancet Child & Adolescent Health* 2020;4(10):740-9.
- 13. Nimri R, Battelino T, Laffel LM, Slover RH, Schatz D, Weinzimer SA, et al. Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. *Nature medicine* 2020;26(9):1380-4.
- 14. Liu P, Wang P, Glissen Brown JR, Berzin TM, Zhou G, Liu W, et al. The single-monitor trial: an embedded CADe system increased adenoma detection during colonoscopy: a prospective randomized study. *Therap Adv Gastroenterol* 2020;13:1756284820979165.
- 15. Gong D, Wu L, Zhang J, Mu G, Shen L, Liu J, et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study. *Lancet Gastroenterol Hepatol* 2020;5(4):352-61.
- 16. Luo Y, Zhang Y, Liu M, Lai Y, Liu P, Wang Z, Xing T, Huang Y, Li Y, Li A, Wang Y. Artificial intelligence-assisted colonoscopy for detection of colon polyps: a prospective, randomized cohort study. *Journal of Gastrointestinal Surgery* 2021;25(8):2011-8.
- 17. Anan T, Kajiki S, Oka H, et al. Effects of an Artificial Intelligence-Assisted Health Program on Workers With Neck/Shoulder Pain/Stiffness and Low Back Pain: Randomized Controlled Trial. *JMIR Mhealth Uhealth* 2021;9(9):e27535.
- 18. 1. Blomberg SN, Christensen HC, Lippert F, et al. Effect of Machine Learning on Dispatcher Recognition of Out-of-Hospital Cardiac Arrest During Calls to Emergency Medical Services: A Randomized Clinical Trial. *JAMA Netw Open* 2021;4(1):e2032320.
- 19. Chen J, Gao Y. The Role of Deep Learning-Based Echocardiography in the Diagnosis and Evaluation of the Effects of Routine Anti-Heart-Failure Western Medicines in Elderly Patients with Acute Left Heart Failure. *Journal of Healthcare Engineering* 2021;2021

- 20. Eng DK, Khandwala NB, Long J, et al. Artificial intelligence algorithm improves radiologist performance in skeletal age assessment: A prospective multicenter randomized controlled trial. *Radiology* 2021;301(3):692-99.
- 21. Harada Y, Katsukura S, Kawamura R, et al. Efficacy of artificial-intelligence-driven differential-diagnosis list on the diagnostic accuracy of physicians: An open-label randomized controlled study. *International Journal of Environmental Research and Public Health* 2021;18(4):1-10.
- 22. Hassoon A, Baig Y, Naiman DQ, et al. Randomized trial of two artificial intelligence coaching interventions to increase physical activity in cancer survivors. *npj Digital Medicine* 2021;4(1)
- 23. Jayakumar P, Moore MG, Furlough KA, et al. Comparison of an Artificial Intelligence-Enabled Patient Decision Aid vs Educational Material on Decision Quality, Shared Decision-Making, Patient Experience, and Functional Outcomes in Adults with Knee Osteoarthritis: A Randomized Clinical Trial. *JAMA Network Open* 2021;4(2)
- 24. Kamba S, Tamai N, Saitoh I, et al. Reducing adenoma miss rate of colonoscopy assisted by artificial intelligence: a multicenter randomized controlled trial. *Journal of Gastroenterology* 2021;56(8):746-57.
- 25. Luna A, Casertano L, Timmerberg J, et al. Artificial intelligence application versus physical therapist for squat evaluation: a randomized controlled trial. *Scientific reports* 2021;11(1):18109.

- 26. Medina R, Bouhaben J, de Ramon I, et al. Electrophysiological brain changes associated with cognitive improvement in a pediatric attention deficit hyperactivity disorder digital artificial intelligence-driven intervention: Randomized controlled trial. *Journal of Medical Internet Research* 2021;23(11)
- 27. Mertens S, Krois J, Cantu AG, et al. Artificial intelligence for caries detection: Randomized trial. *J Dent* 2021;115:103849.
- 28. Prochaska JJ, Vogel EA, Chieng A, et al. A randomized controlled trial of a therapeutic relational agent for reducing substance misuse during the COVID-19 pandemic. *Drug and Alcohol Dependence* 2021;227
- 29. Rafferty AJ, Hall R, Johnston CS. A novel mobile app (heali) for disease treatment in participants with irritable bowel syndrome:

 Randomized controlled pilot trial. *Journal of Medical Internet Research* 2021;23(3)
- 30. Seok J, Yoon S, Ryu CH, et al. A personalized 3d-printed model for obtaining informed consent process for thyroid surgery: A randomized clinical study using a deep learning approach with mesh-type 3d modeling. *Journal of Personalized Medicine* 2021;11(6)
- 31. Seol HY, Shrestha P, Muth JF, et al. Artificial intelligence-assisted clinical decision support for childhood asthma management: A randomized clinical trial. *PLoS ONE* 2021;16(8 August)
- 32. Stromblad CT, Baxter-King RG, Meisami A, et al. Effect of a Predictive Model on Planned Surgical Duration Accuracy, Patient Wait Time, and Use of Presurgical Resources: A Randomized Clinical Trial. *JAMA Surgery* 2021;156(4):315-21.

BMJ Open Page 62 of 68

- 33. Turino C, Benitez ID, Rafael-Palou X, et al. Management and treatment of patients with obstructive sleep apnea using an intelligent monitoring system based on machine learning aiming to improve continuous positive airway pressure treatment compliance: Randomized controlled trial. *Journal of Medical Internet Research* 2021;23(10)
- 34. Wang L, Song H, Wang M, et al. Utilization of Ultrasonic Image Characteristics Combined with Endoscopic Detection on the Basis of Artificial Intelligence Algorithm in Diagnosis of Early Upper Gastrointestinal Cancer. *J Healthc Eng* 2021;2021:2773022.
- 35. Wu L, He X, Liu M, et al. Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer: a randomized controlled trial. *Endoscopy* 2021;53(12):1199-207
- Wu L, Shang R, Sharma P, et al. Effect of a deep learning-based system on the miss rate of gastric neoplasms during upper gastrointestinal endoscopy: a single-centre, tandem, randomised controlled trial. *The Lancet Gastroenterology and Hepatology* 2021;6(9):700-08.
- 37. Xu F, Jiang L, He W, et al. The Clinical Value of Explainable Deep Learning for Diagnosing Fungal Keratitis Using in vivo Confocal Microscopy Images. *Frontiers in Medicine* 2021;8
- 38. Xu L, He X, Zhou J, et al. Artificial intelligence-assisted colonoscopy: A prospective, multicenter, randomized controlled trial of polyp detection. *Cancer Medicine* 2021;10(20):7184-93.
- 39. Yao X, Rushlow DR, Inselman JW, et al. Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. *Nature Medicine* 2021;27(5):815-19.
- 40. Zeng C, Huang Y, Yu L, et al. Long-Term Assessment of Rehabilitation Treatment of Sports through Artificial Intelligence Research.

 Comput Math Methods Med 2021;2021:4980718.

- 41. Zhang L, Jia Z, Leng X, et al. Artificial Intelligence Algorithm-Based Ultrasound Image Segmentation Technology in the Diagnosis of Breast Cancer Axillary Lymph Node Metastasis. *J Healthc Eng* 2021;2021:8830260.
- Zhang X, Wang Z, Liu J, et al. Value of Rehabilitation Training for Children with Cerebral Palsy Diagnosed and Analyzed by Computed 42. Tomography Imaging Information Features under Deep Learning. J Healthc Eng 2021;2021:6472440.

Search Strategy:

FOR EMBASE:

- 1) *deep learning/
- 2) *artificial intelligence/
- 3) *machine learning/
- 4) 1 or 2 or 3

For PubMed:

- 1. Artificial intelligence
- 2. Machine learning
- 3. Deep learning
- 4. 1 OR 2 OR 3

Restricted to:

• Article type: Randomized Control Trial

• Publication Date: 1/01/2015 to 31/12/2021

• Species: Human

• Language: English

Methods

Reporting checklist for systematic review (with or without a meta-analysis).

Based on the PRISMA guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the PRISMAreporting guidelines, and cite them as:

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews

		Reporting Item	Page Number
Title			
Title	<u>#1</u>	Identify the report as a systematic review	1
Abstract			
Abstract	<u>#2</u>	Report an abstract addressing each item in the PRISMA	3
		2020 for Abstracts checklist	
Introduction			
Background/rationale	<u>#3</u>	Describe the rationale for the review in the context of existing knowledge	4
Objectives	<u>#4</u>	Provide an explicit statement of the objective(s) or question(s) the review addresses	5

Eligibility criteria	<u>#5</u>	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses	6
Information sources	<u>#6</u>	Specify all databases, registers, websites, organisations, reference lists, and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted	6
Search strategy	<u>#7</u>	Present the full search strategies for all databases, registers, and websites, including any filters and limits used	6
Selection process	<u>#8</u>	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and, if applicable, details of automation tools used in the process	6
Data collection process	<u>#9</u>	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and, if applicable, details of automation tools used in the process	7
Data items	#10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (for example, for all measures, time points, analyses), and, if not, the methods used to decide which results to collect	7
Study risk of bias assessment	<u>#11</u>	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and, if applicable, details of automation tools used in the process	n/a
Effect measures	#12	Specify for each outcome the effect measure(s) (such as risk ratio, mean difference) used in the synthesis or presentation of results	7
Synthesis methods	<u>#13a</u>	Describe the processes used to decide which studies were eligible for each synthesis (such as tabulating the study	n/a
	For peer r	eview only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Page 66 of 68

		intervention characteristics and comparing against the planned groups for each synthesis (item #5))	
Synthesis methods	#13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics or data conversions	n/a
Synthesis methods	<u>#13c</u>	Describe any methods used to tabulate or visually display results of individual studies and syntheses	n/a
Synthesis methods	#13d	Describe any methods used to synthesise results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used	n/a
Synthesis methods	#13e	Describe any methods used to explore possible causes of heterogeneity among study results (such as subgroup analysis, meta-regression)	n/a
Synthesis methods	<u>#13f</u>	Describe any sensitivity analyses conducted to assess robustness of the synthesised results	n/a
Reporting bias assessment	<u>#14</u>	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases)	n/a
Certainty assessment	<u>#15</u>	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome	n/a
Data items	#10b	List and define all other variables for which data were sought (such as participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information	n/a
Results			
Study selection	#16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram (http://www.prisma-statement.org/PRISMAStatement/FlowDiagram)	7
Study selection	#16b For peer re	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded eview only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	7

Study characteristics	<u>#17</u>	Cite each included study and present its characteristics	supplementary table 2
Risk of bias in studies	<u>#18</u>	Present assessments of risk of bias for each included study	n/a
Results of individual studies	<u>#19</u>	For all outcomes, present for each study (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (such as confidence/credible interval), ideally using structured tables or plots	8
Results of syntheses	#20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies	n/a
Results of syntheses	#20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (such as confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect	n/a
Results of syntheses	#20c	Present results of all investigations of possible causes of heterogeneity among study results	n/a
Results of syntheses	#20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesised results	n/a
Risk of reporting biases in syntheses	<u>#21</u>	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed	n/a
Certainty of evidence	<u>#22</u>	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed	n/a
Discussion			
Results in context	#23a	Provide a general interpretation of the results in the context of other evidence	11
Limitations of included studies	#23b	Discuss any limitations of the evidence included in the review	14
Limitations of the review methods	#23c	Discuss any limitations of the review processes used	14
Implications	#23d	Discuss implications of the results for practice, policy, and future research eview only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	14
	500111	, , , , , , , , , , , , , , , , , , ,	

Other information

Registration and protocol	#24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered	7
Registration and protocol	#24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared	7
Registration and protocol	<u>#24c</u>	Describe and explain any amendments to information provided at registration or in the protocol	7
Support	<u>#25</u>	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review	15
Competing interests	<u>#26</u>	Declare any competing interests of review authors	15
Availability of data, code, and other materials	#27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review	supplementary table 2

Notes:

- 17: supplementary table 2
- 27: supplementary table 2 The PRISMA checklist is distributed under the terms of the Creative Commons Attribution License CC-BY. This checklist was completed on 12. July 2022 using https://www.goodreports.org/, a tool made by the EQUATOR Network in collaboration with Penelope.ai

BMJ Open

Quality of reporting of randomised controlled trials in artificial intelligence in health care: a systematic review

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-061519.R2
Article Type:	Original research
Date Submitted by the Author:	16-Aug-2022
Complete List of Authors:	Shahzad, Rida; Shahzad Eye Hospital Ayub, Bushra; Aga Khan University Hospital Siddiqui, M. A. Rehman; Aga Khan University Hospital, Department of Ophthalmology and Visual Sciences
Primary Subject Heading :	Medical publishing and peer review
Secondary Subject Heading:	Qualitative research
Keywords:	STATISTICS & RESEARCH METHODS, Clinical trials < THERAPEUTICS, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Quality of reporting of randomised controlled trials in artificial intelligence in health care: a systematic review

Authors:

Rida Shahzad¹

Bushra Ayub²

M. A. Rehman Siddiqui^{1,3,4}

Affiliations:

- 1. Shahzad Eye Hospital, Karachi, Pakistan
- 2. Aga Khan University Hospital, Karachi, Pakistan
- 3. Department of Ophthalmology and Visual Sciences, Aga Khan University Hospital, Karachi, Pakistan
- 4. The Eye Centre, South City Hospital, Karachi, Pakistan

Correspondence to:

M. A. Rehman Siddiqui

Department of Ophthalmology and Visual Sciences,

Aga Khan University Hospital,

National Stadium Road, P.O. Box 3500,

Karachi, Pakistan

Email: rehman.siddiqui@gmail.com

Keywords: CONSORT, CONSORT-AI, artificial intelligence, deep learning, machine learning, randomised controlled trials

Word count: 2518 words

ABSTRACT

Objectives: The aim of this study was to evaluate the quality of reporting of randomised controlled trials (RCTs) of artificial intelligence (AI) in health care against Consolidated Standards of Reporting Trials – Artificial Intelligence (CONSORT-AI) guidelines.

Design: Systematic review.

Data sources: We searched PubMed and EMBASE databases for studies reported from January 2015 to December 2021.

Eligibility criteria: We included RCTs reported in English that used AI as the intervention. Protocols, conference abstracts, studies on robotics, and studies related to medical education were excluded.

Data extraction: The included studies were graded using the CONSORT-AI checklist, comprising 43 items, by two independent graders. The results were tabulated and descriptive statistics were reported.

Results: We screened 1501 potential abstracts, of which 112 full-text articles were reviewed for eligibility. A total of 42 studies were included. The number of participants ranged from 22 to 2352. Only two items of the CONSORT-AI items were fully reported in all studies. Five items were not applicable in more than 85% of the studies. Nineteen per cent (8/42) of the studies did not report more than 50% (21/43) of the CONSORT-AI checklist items.

Conclusions: The quality of reporting of RCTs in AI is suboptimal. As reporting is variable in existing RCTs, caution should be exercised in interpreting the findings of some studies.

ARTICLE SUMMARY

Strengths and limitations of this study

- This systematic review assesses the reporting of randomised trials of artificial intelligence interventions across medical fields from 2015 to 2021 against CONSORT-AI guidance, establishing a baseline for future studies.
- We did not separately analyse publications from before and after the publication of the CONSORT-AI guidance in September 2020, so were unable to assess whether there was any change in reporting quality following publication of the guidance.
- Only two databases were searched and only English-language publications were eligible for inclusion.

INTRODUCTION

Artificial intelligence (AI) is finding increased utility in the medical realm, with a special emphasis on deep learning. Medical applications of AI range from screening, diagnosis, prognosis, and generation of management plans. [1-5] For example, AI has been extensively studied in ophthalmology for various diseases such as diabetic retinopathy, [6] age-related macular degeneration, [7] and glaucoma. [8] However, increased hype associated with AI without sound evidence base – may result in inappropriate clinical decisions, which can potentially be detrimental to healthcare. [9]

Randomised controlled trials (RCTs) are one of the highest quality of evidence used by clinicians in decision-making regarding interventions. [10] RCTs may be susceptible to various forms of biases. Adequate reporting of RCTs is vital to allow results and conclusions derived from a study to be assessed critically by readers. [11,12]

The CONSORT (Consolidated Standards of Reporting Trials) statement was introduced in 1996 to establish guidelines to improve the reporting quality of clinical trials. Additionally, the CONSORT statement is a useful guide that helps readers with the critical appraisal of RCTs to ascertain their reliability and clinical applicability. [13] The most recent update of the CONSORT statement was published in 2010, listing 25 minimum reporting requirements. [14] Several extensions to CONSORT also exist, which cater to certain specific study designs. [15-18]

There has been an exponential increase in AI-based healthcare studies in recent years due to rapid advances in computational power. However, the methodological rigor has not kept pace with the development in technology. For example, the design and quality of reporting in these studies have not always been adequate. [19,20] CONSORT-AI was published on September 9, 2020 as an extension of the CONSORT 2010 statement to evaluate RCTs involving AI. Fourteen new items were added to the checklist – including 11 extensions and 3 elaborations. [21,22] These items mostly relate to the AI intervention in question and are necessary to independently evaluate and replicate the trial.

The aim of this study was to evaluate the quality of reporting of RCTs of AI intervention for medical conditions, published from 2015 to 2021, based on CONSORT-AI guidelines. While CONSORT-AI did not exist for much of this timeline, this study will serve as a baseline measure of reporting quality for comparison with future studies' adherence to CONSORT-AI guidelines.

METHODS

Search strategy

We performed a systematic review of RCTs of AI for medical conditions published from January 2015 to December 2021. The search date range was initially set as an arbitrary period of 5 years from 2015-2020; the literature search was later updated to include publications until December 2021. RCTs of AI in healthcare is a nascent field, and we expected very few RCTs of AI in healthcare prior to 2015. We searched PubMed and EMBASE databases for potential studies. The PubMed search was conducted using the MeSH terms: "artificial intelligence", "machine learning", and "deep learning". The term "artificial intelligence", "deep learning" and machine learning" were searched in EMBASE. In both the databases, the search was limited to RCTs, publications in the English language, from the year 2015 to 2021, and human subjects (Appendix 1).

Screening and study selection

The records were screened by two independent investigators (RS and BA) for potential inclusion. The abstracts of RCTs using artificial intelligence, deep learning, and machine learning were further evaluated for possible inclusion. Protocols, conference abstracts, studies on robotics, and post-hoc analyses of randomised controlled trials were excluded.

Full-text articles of all shortlisted abstracts were then screened for eligibility. Publications were included if AI was used as an intervention for a medical condition, if there was a comparator control group in the study and if there was evidence of randomisation. In case of a disagreement, a senior reviewer assessed the full text and the disagreement was resolved with consensus. The exclusion criteria were non-randomised studies, secondary studies, post-hoc analyses, or if the intervention investigated was not AI. Additionally, if the target condition was not a medical disease or if the research pertained to medical education, the study was excluded.

Assessment against CONSORT-AI guidance

The CONSORT-AI checklist of 43 items (Supplementary Table 1) was used to grade the included studies. Each item was scored fully-, partially- or not- reported. If an item was irrelevant to a particular study, it was labelled as "not applicable". Each publication was scored by two trained graders (RS and BA) independently. Differences were discussed with the senior reviewer (MARS) to reach a consensus.

The results were tabulated by writing all the reported items as the numerator and the total number of applicable items as the denominator. The descriptive statistics for the study population and clinical characteristics are reported. The only deviation from the initial protocol for the review was the extension of the search until December 2021 to keep this review up-to-date.

Patient and public involvement

None.

RESULTS

Study selection

The initial search identified 1501 potential records. One hundred and twelve articles were considered as potentially eligible after screening of abstracts. Following a review of full-text manuscripts, a total of 42 manuscripts were included in the systematic review (Figure 1).

General characteristics

The included studies (Supplementary table 2) were from the years 2016 to 2021(Figure 2). The number of participants ranged from 22 to 2352. They pertained to various medical fields, including gastroenterology (n = 12) medicine (n = 6), cardiology (n = 5), psychiatry (n = 4), ophthalmology (n = 2), endocrinology (n = 2), paediatrics (n = 2), oncology (n = 2), orthopaedics (n = 2), surgery (n = 1), radiology (n = 1), neurology (n = 1), pulmonology (n = 1) and dentistry (n = 1). Studies were from different parts of the world, including China (n = 16), United States (n = 14), Japan (n = 3), United Kingdom (n = 2), Spain (n = 2), Netherlands (n = 1), Germany (n = 1), Korea (n = 1), Denmark (n = 1) and Israel (n = 1). (Figure 3)

Adherence to reporting standards

The median number of fully reported CONSORT-AI checklist items in the included studies was 30 (range 7-37) of a possible total of 43. Overall, only 2 (items # 1b, and 21) out of possible 43 items were fully reported in all 42 studies. Five items (items #3b, 6b, 7b, 14b, and 17b) were deemed not applicable in more than 85% of the included studies. The two least reported items were item #5iii (not reported in 36/42 studies) and item #24 (not reported in 31/42 studies). Nineteen per cent (8/42) of included studies did not report more than 50% (21/43) of the CONSORT-AI checklist items. The reporting of each item is given in Table 1.

Table 1: CONSORT-AI scores of included studies

	Item	Fully Reported	Partially Reported	Not Reported	Not Applicable
Title and Abstract	1a, 1a(i)	41	1	0	0
	1b, 1b(ii)	42	0	0	0
Introduction					
Background and	2a, 2a(i)	41	1	0	0

objectives	2b	38	0	4	0
Methods					
Trial Design	3a	26	6	10	0
	3b	6	0	0	36
Participants	4ai	39	0	3	0
	4aii	15	0	27	0
	4b	40	0	2	0
Intervention	5i	15	0	27	0
	5ii	34	0	8	0
	5iii	6	0	36	0
	5iv	37	0	5	0
	5v	41	0	1	0
	5vi	31	0	11	0
Outcomes	6a	39	0	3	0
	6b	2	0	0	40
Sample size	7a	30	0	11	1
	7b	2	0	0	40
Sequence generation	8a	34	0	8	0
	8b	25	0	17	0
Randomisation					
Allocation	9	24	0	18	0
concealment					
mechanism					
Implementation	10	18	3	21	0
Blinding	11a	24	0	18	0
	11b	23	0	17	2
Statistical methods	12a	39	0	3	0

	12b	34	0	8	0
Results					
Participant flow	13a	32	2	8	0
	13b	29	1	12	0
Recruitment	14a	38	0	4	0
	14b	1	0	0	41
Baseline data	15	32	0	10	0
Numbers analysed	16	32	1	9	0
Outcomes and	17a	31	3	8	0
estimation	17b	1	0	0	41
Ancillary analyses	18	33	0	9	0
Harms	19	4	11	27	0
Discussion			>		
Limitations	20	36	0	6	0
Generalizability	21	42	0	0	0
Interpretation	22	41	0	1	0
Other information					
Registration	23	35	0	7	0
Protocol	24	11	0	31	0
Funding	25	10	20	12	0

DISCUSSION

In our review, variable reporting standards of RCTs of AI in healthcare were observed. While some items were reported adequately – for example, those relating to the abstract and

introduction of the manuscript – other items particularly in the methods section, had poor reporting scores.

Our results reinforce previously published findings. In a systematic review conducted by Liu et al., it was seen that sufficient reporting and external validation were done in less than one-third of the included 82 deep learning studies, thereby limiting their reliability. [23] Similarly, Nagendran et al. also found deviations from reporting standards, with less than 50% adherence to 12/29 items in the TRIPOD guidelines, and high levels of bias in AI studies. [20] Bozkurt et al. reported that demographic specifics of study populations were poorly reported in studies developing ML models from electronic health records, and external validation was omitted in 88% of the models. [24] In another systematic review of 28 articles regarding machine learning models for medical diagnosis, Yusuf et al. discovered that all studies in their systematic review failed to follow reporting guidelines. [25] Our study also revealed variable reporting of CONSORT-AI items in RCTs of AI in healthcare, suggesting there is still room in AI studies for further improving the quality of their reporting.

The CONSORT-AI checklist was developed to encourage transparent reporting of RCTs in AI. The extensions and elaborations added to the original CONSORT guideline largely emphasize the peculiarities related to AI intervention itself and its clinical application. These include details of the interventions, such as algorithm version, input and output data, how the intervention was integrated into the trial, and whether there was human and AI interaction. This information is crucial for the critical appraisal of a study and facilitates the replication of clinical trials. [23] These items had variable reporting scores in our study (items 4a to 5vi). Twenty-seven out of 42 (64%) studies did not mention the version of the AI algorithm used. This could confuse the reader regarding which version to apply the study findings to because

an AI algorithm is likely to undergo multiple updates. [21] Moreover, information regarding input data was largely missed in the majority of included studies; with only 35% (15/42) of the studies identifying the inclusion and exclusion criteria at the level of the input data, and a mere 14% (6/42) of studies reported how poor quality or unavailable input data was handled and assessed. Such details are essential, as the overall performance of any given AI intervention relies on the quality of input data. Additionally, this information allows an evaluator to distinguish AI platforms that may only work in ideal conditions from those which can be applied to real-world settings. [26,27]

On the other hand, items regarding human-AI interaction and required expertise level, as well as AI output were fully reported by majority of studies (37 and 41/42, respectively). Clarity about the human-AI interface is essential to ensure a standard approach and functional safety, as well as to avoid ethical implications. [28,29] For example, it is essential that qualified experts can interpret dynamically complex variables exhibited by AI interfaces which are related to patients as well as the clinical context – only then it is possible that AI platforms enable an improvement in clinicians' decision-making process. [30] It is encouraging to see most authors report these items clearly.

Interestingly, although missing out on important information regarding the details of AI intervention, 42/42 of the studies were promising generalizability of their findings in the clinical setting. The generalizability of AI systems may be limited, especially when used in the real-world setting outside of the environment they were developed in. [31,32] Therefore, caution must be employed when evaluating such studies.

An important factor to consider about CONSORT-AI, however, is the applicability of each item to clinical trials. Five items of the CONSORT-AI checklist were deemed to be not applicable in the majority of studies evaluated. Three of these items referred to changes made to methods and outcomes after trial commencement, and why the trial was ended (items 3b, 6b and 14b). These items pertain to modifications made in the protocol, which was not the case in most included studies.

Another item not applicable to most of the included studies was an explanation about any interim analysis and stopping guidelines. Since AI is a relatively recent advance in healthcare, harms and adverse events from AI have not been clearly defined yet. Perhaps this is the reason stopping guidelines were not reported in 40 out of 42 included studies. This ties closely to item 19: which requires reporting of adverse events in AI trials and a description of the analysis of performance errors. AI platforms can make errors that can be difficult to predict and go beyond human judgement, but may have harmful effects if employed on a large scale. [31] Only 4/42 studies fully reported this item, even though it is important to report information about error and outline risk mitigation strategies to decide which settings and populations the AI intervention can be safely employed in. [21] These points emphasize that AI clinical trials in healthcare have not integrated the concept of harm related to AI intervention to determine appropriate stopping guidelines.

Certain general observations were made regarding the included RCTs in our review. There was a large range of sample size (22 to 2352) in the studies. This wide range suggests that a standard approach to sample size calculation is not practised in RCTs of AI. For example, the diagnostic accuracy of healthcare professionals is often set higher than that of AI while employing sample size estimation, which presumes that AI is inferior to humans. [33] It is

recommended that sample size calculations are performed using a non-inferior design by setting a more suitable non-inferiority margin, of diagnostic accuracy, for example, 5%. [34] Similarly, the majority of the studies took place in China, and were focused on gastroenterology, making them less representative of other fields and perhaps other parts of the world.

There are some limitations to our review. Potential eligible studies could have been missed in the inclusion process, as only two databases were searched, and only English-language publications were eligible for inclusion. The majority of the included studies were published before the CONSORT-AI checklist was widely available. As such, most study authors would not have been able to use the guidance to inform their reporting. Furthermore, trial reports from before and after the publication of the CONSORT-AI guidance were not analyses separately, so we were not able to assess whether there was any improvement in reporting quality following publication of the guidance.

In conclusion, the standards of reporting in RCTs of AI were variable. We found certain important information regarding the AI intervention was insufficiently reported in many studies. Therefore, caution should be employed by healthcare service providers and policymakers when using these studies to inform decision-making.

Contributors

The idea for the study was conceived and planned by MARS. RS and BA carried out the literature review process including screening of abstracts and review of full-text articles, while MARS acted as a senior reviewer. RS and BA independently scored the included

studies using the CONSORT-AI checklist and disagreements were resolved following a combined discussion with MARS. The manuscript was prepared by RS and BA and edited by MARS. All authors reviewed and approved the final manuscript.

Funding

None.

Competing interests

None declared.

Ethics approval statement

This study is a systematic review which did not involve human subjects. Therefore, no ethics approval was required.

Data availability statement

No additional data available.

REFERENCES

- 1. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. *Nature* 2020;577(7788):89-94.
- 2. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al.

 Dermatologist-level classification of skin cancer with deep neural networks.

 Nature 2017;542(7639):115-8.
- 3. Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. *PLoS medicine* 2018;15(11):e1002686.

- 4. Tyler NS, Mosquera-Lopez CM, Wilson LM, Dodier RH, Branigan DL, Gabo VB, et al. An artificial intelligence decision support system for the management of type 1 diabetes. *Nat Metab* 2020;2(7):612-9.
- 5. Kim H, Goo JM, Lee KH, Kim YT, Park CM. Preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinomas. *Radiol* 2020;296(1):216-24.
- 6. Wong TY, Bressler NM. Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. *JAMA* 2016 Dec 13;316(22):2366-7.
- 7. von der Emde L, Pfau M, Dysli C, Thiele S, Möller PT, Lindner M, Schmid M, Fleckenstein M, Holz FG, Schmitz-Valckenberg S. Artificial intelligence for morphology-based function prediction in neovascular age-related macular degeneration. *Sci Rep* 2019 Jul 31;9(1):1-2.
- 8. Devalla SK, Liang Z, Pham TH, Boote C, Strouthidis NG, Thiery AH, Girard MJ. Glaucoma management in the era of artificial intelligence. *Br J Ophthalmol* 2020 Mar 1;104(3):301-11.
- 9. Navarro CL, Damen JA, Takada T, Nijman SW, Dhiman P, Ma J, Collins GS, Bajpai R, Riley RD, Moons KG, Hooft L. Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. *Br Med J* 2021 Oct 20:375.
- 10. Altman DG. Better reporting of randomised controlled trials: the CONSORT statement. *British Medical Journal Publishing Group*; 1996.
- 11. Jüni P, Altman DG, Egger M. Assessing the quality of controlled clinical trials. *Br Med J* 2001;323(7303):42-6.

- 12. Schulz KF, Chalmers I, Hayes RJ, Altman DG. Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials. *JAMA* 1995;273(5):408-12.
- 13. Begg C, Cho M, Eastwood S, Horton R, Moher D, Olkin I, et al. Improving the quality of reporting of randomized controlled trials: the CONSORT statement. *JAMA* 1996;276(8):637-9.
- 14. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. *Trials* 2010;11(1):1-8.
- 15. Boutron I, Altman DG, Moher D, Schulz KF, Ravaud P. CONSORT statement for randomized trials of nonpharmacologic treatments: a 2017 update and a CONSORT extension for nonpharmacologic trial abstracts. *Ann Int Med* 2017;167(1):40-7.
- 16. Hopewell S, Clarke M, Moher D, Wager E, Middleton P, Altman DG, et al.
 CONSORT for reporting randomised trials in journal and conference abstracts.
 The Lancet 2008;371(9609):281-3.
- 17. Gagnier JJ, Boon H, Rochon P, Moher D, Barnes J, Bombardier C. Reporting randomized, controlled trials of herbal interventions: an elaborated CONSORT statement. *Ann Int Med* 2006;144(5):364-7.
- 18. Calvert M, Blazeby J, Altman DG, Revicki DA, Moher D, Brundage MD, et al.

 Reporting of patient-reported outcomes in randomized trials: the CONSORT PRO extension. *JAMA* 2013;309(8):814-22.
- 19. Gregory J, Welliver S, Chong J. Top 10 reviewer critiques of radiology artificial intelligence (AI) articles: qualitative thematic analysis of reviewer critiques of machine learning/deep learning manuscripts submitted to JMRI. *J Magn Reson Imaging* 2020;52(1):248-54.

- 20. Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, Harvey H, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. *Br Med J* 2020;368.
- 21. Liu X, Rivera SC, Faes L, Di Ruffano LF, Yau C, Keane 10 PA, et al. Reporting guidelines for clinical trials evaluating artificial intelligence interventions are needed. *Nat Med* 2019;25:1467-8.
- 22. Liu X, Rivera SC, Moher D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI Extension. BMJ 2020;370:m3164.
- 23. Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health 2019;1(6):e271-e97
- 24. Bozkurt S, Cahan EM, Seneviratne MG, et al. Reporting of demographic data and representativeness in machine learning models using electronic health records. J Am Med Inform Assoc 2020;27(12):1878-84.
- 25. Yusuf M, Atal I, Li J, et al. Reporting quality of studies using machine learning models for medical diagnosis: a systematic review. BMJ Open 2020;10(3):e034568.
- 26. Sabottke CF, Spieler BM. The effect of image resolution on deep learning in radiography. *Radiol Artif Intell* 2020 Jan 22;2(1):e190015.
- 27. Ibrahim H, Liu X, Rivera SC, Moher D, Chan AW, Sydes MR, Calvert MJ, Denniston AK. Reporting guidelines for clinical trials of artificial intelligence interventions: the SPIRIT-AI and CONSORT-AI guidelines. *Trials* 2021 Dec;22(1):1-5.

- 28. Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F, Jung K, Heller K, Kale D, Saeed M, Ossorio PN. Do no harm: a roadmap for responsible machine learning for health care. *Nat Me* 2019 Sep;25(9):1337-40.
- 29. Habli I, Lawton T, Porter Z. Artificial intelligence in health care: accountability and safety. *Bull World Health Organ* 2020 Apr 1;98(4):251.
- 30. Shortliffe EH, Sepúlveda MJ. Clinical decision support in the era of artificial intelligence. *JAMA* 2018 Dec 4;320(21):2199-200.
- 31. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. *BMC Med* 2019

 Dec;17(1):1-9.
- 32. Pooch EH, Ballester P, Barros RC. Can We Trust Deep Learning Based Diagnosis? The Impact of Domain Shift in Chest Radiograph Classification. In International Workshop on Thoracic Image Analysis 2020 Oct 8 (pp. 74-83). Springer, Cham.
- 33. Lin H, Li R, Liu Z, Chen J, Yang Y, Chen H, et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial. *EClinicalMedicine* 2019; 9: 52–9.
- 34. Zhou Q, Cao YH, Chen ZH. Optimizing the study design of clinical trials to identify the efficacy of artificial intelligence tools in clinical practices.

 EClinicalMedicine 2019 Nov 1;16:10-1.

FIGURE TITLES:

Figure 1: PRISMA flowchart

Figure 2: Year-wise distribution of RCTs in AI

e of AI RCTs in α. Figure 3: Percentage of AI RCTs in different countries and specialties

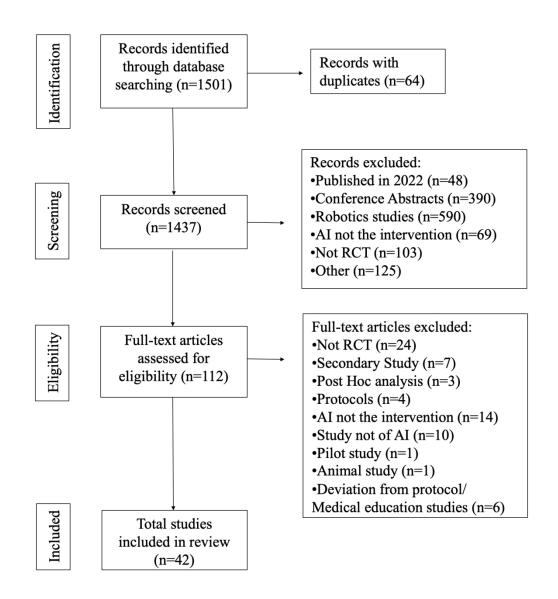


Figure 1: PRISMA flowchart 293x349mm (144 x 144 DPI)

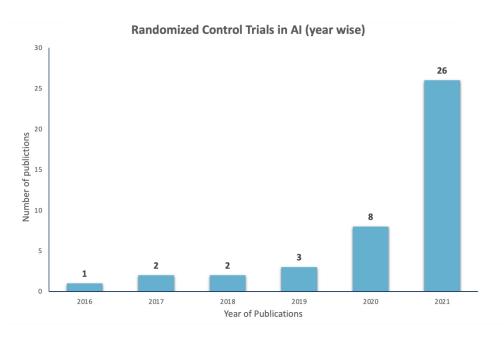


Figure 2: Year-wise distribution of RCTs in AI 403x244mm (144 x 144 DPI)

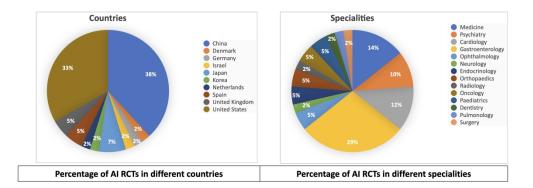


Figure 3: Percentage of AI RCTs in different countries and specialties $608 \times 295 \text{mm}$ (144 x 144 DPI)

Supplementary table 1: CONSORT-AI checklist**

Section	Item	CONSORT 2010 item	CONSORT-	NSORT-AI item			
					on page		
					no.*		
Title and abstrac	:t						
m'd 1		I to the transfer of	CONCORT				
Title and	1a	Identification as a	CONSORT-	(i) Indicate that the			
abstract		randomized trial in the	AI a,b	intervention involves			
		title	Elaboration	artificial			
				intelligence/machine			
		10		learning in the title			
				and/or abstract and			
				specify the type of			
				model.			
	1b	Structured summary of	5.	(ii) State the intended			
		trial design, methods,	4.	use of the AI			
		results, and conclusions	0.	intervention within the			
		(for specific guidance	4	trial in the title and/or			
		see CONSORT for		abstract.			
		abstracts)		0			
Introduction							
Background and	2a	Scientific background	CONSORT-	Explain the intended use			
objectives		and explanation of	AI a (i)	of the AI intervention in			
		rationale	Extension	the context of the			
				clinical pathway,			
				including its purpose			
				and its intended users			
				(e.g. healthcare			

				professionals, patients,	
				public).	
	2b	Specific objectives or			
		hypotheses			
Methods					
Wiethous					
Trial design	3a	Description of trial			
		design			
		(such as parallel,			
		factorial) including			
		allocation ratio			
	3b	Important changes to			
		methods after trial			
		commencement (such as	9 /		
		eligibility criteria), with			
		reasons			
Participants	4a	Eligibility criteria for	CONSORT-	State the inclusion and	
		participants	AI a (i)	exclusion criteria at the	
			Elaboration	level of participants.	
			CONSORT-	State the inclusion and	
			AI a (ii)	exclusion criteria at the	
			Extension	level of the input data.	
	4b	Settings and locations	CONSORT-	Describe how the AI	
		where the data were	AI b	intervention was	
		collected	Extension	integrated into the trial	
				setting, including any	
				onsite or on site	
				requirements.	

Interventions		The interventions for	CONSORT-	State which version of
		each group with	AI (i)	the AI algorithm was
		sufficient details to	Extension	used.
		allow replication,	CONSORT-	Describe how the input
	5	including how and when	AI (ii)	data were acquired and
		they were actually	Extension	selected for the
		administered		AI intervention.
			CONSORT-	Describe how poor
			AI (iii)	quality or unavailable
			Extension	input data were assessed
		6		and handled.
			CONSORT-	Specify whether there
			AI (iv)	was human-AI
			Extension.	interaction in the
				handling of the input
		C	7	data, and what level of
				expertise was required
				of users.
			CONSORT-	Specify the output of the
			AI (v)	AI intervention
			Extension	2/
			CONSORT-	Explain how the AI
			AI (vi)	intervention's outputs
			Extension	contributed to decision-
				making or other
				elements of clinical
				practice.
Outcomes	6a	Completely defined pre-		
		specified primary and		
		secondary outcome		
			I	

measures, including how and when they were	
and when they were	
assessed	
6b Any changes to trial	
outcomes after the trial	
commenced, with	
reasons	
Sample size 7a How sample size was	
determined	
7b When applicable,	
explanation of any	
interim analyses and	
stopping guidelines	
Sequence 8a Method used to generate	
generation the random allocation	
sequence	
8b Type of randomization;	
details of any restriction	
(such as blocking and	
block size)	
Randomization	
Allocation Mechanism used to	
concealment implement the random 9	
mechanism allocation sequence	
(such as sequentially	
numbered containers),	
describing any steps	
taken to conceal the	

		sequence until			
		interventions were			
		assigned			
Implementation	10	Who generated the			
		random allocation			
		sequence, who enrolled			
		participants, and who			
		assigned participants to			
		interventions			
Blinding	11a	If done, who was			
		blinded after assignment			
		to interventions (for			
		example, participants,			
		care providers, those			
		assessing outcomes) and			
		how	۷.		
	11b	If relevant, description			
		of the similarity of			
		interventions			
Statistical	12a	Statistical methods used		0,	
methods		to compare groups for			
		primary and secondary		3/	
		outcomes			
	12b	Methods for additional			
		analyses, such as			
		subgroup analyses and			
		adjusted analyses			
Results	<u> </u>	1			

Participant flow	13a	For each group, the		
(a diagram is		numbers of participants		
strongly		who were randomly		
recommended)		assigned, received		
		intended treatment,		
		and were analyzed for		
		the primary outcome		
	13b	For each group, losses		
		and exclusions after		
		randomization, together		
		with reasons		
Recruitment	14a	Dates defining the		
		periods of recruitment		
		and follow-up		
	14b	Why the trial ended or		
		was stopped	4.	
Baseline data		A table showing baseline	(Q),	
	15	demographic and clinical	4	
		characteristics for each		
		group		
Numbers		For each group, number		
analyzed	16	of participants		
	10	(denominator) included		
		in each analysis and		
		whether the analysis was		
		by original assigned		
		groups		
Outcomes and	17a	For each primary and		
estimation		secondary outcome,		

		results for each group,			
		and the estimated effect			
		size and its precision			
		(such as % confidence			
		interval)			
	17b	For binary outcomes,			
		presentation of both			
		absolute and relative			
		effect sizes is			
		recommended			
Ancillary		Results of any other			
analyses	18	analyses performed,			
		including subgroup			
		analyses and adjusted			
		analyses, distinguishing			
		pre-specified from	/_		
		exploratory			
Harms		All important harms or	CONSORT-	Describe results of any	
	19	unintended effects in	AI	analysis of performance	
		each group (for specific	Extension	errors and how errors	
		guidance see CONSORT		were identified, where	
		for harms)		applicable. If no such	
				analysis was planned or	
				done, justify why not.	
Discussion	1	1	l	<u> </u>	<u> </u>
Limitations	20	Trial limitations,			
		addressing sources of			
		potential bias,			

		imprecision, and, if			
		relevant, multiplicity of			
		analyses			
Generalizability	21	Generalizability			
		(external validity,			
		applicability) of the trial			
		findings			
Interpretation	22	Interpretation consistent			
		with results, balancing			
		benefits and harms, and			
		considering other			
		relevant evidence			
Other information	n				
					T
Registration	23	Registration number and	9 /		
		name of trial registry			
Protocol	24	Where the full trial			
		protocol can be	7		
		accessed, if available		0,	
Funding		Sources of funding and	CONSORT-	State whether and how	
	25	other support (such as	AI	the AI intervention	
		supply of drugs), role of	Extension.	and/or its code can be	
		funders		accessed, including any	
				restrictions to access or	
				re-use.	
					<u>I</u>

*Indicates page numbers to be completed by authors during protocol development

** 22. Liu X, Rivera SC, Moher D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI Extension. BMJ 2020;370:m3164.

Supplementary table 2: Included studies

No.	Authors	Year	Title	Countr	Specialty	Disease	Sample	Intervention	Control	Blinding	Primary	Trial
				y		studied	size				outcome	registration
1.	Sadasiva	2016	Impact of a	United	Medicine	Smoking	120	AI	Standard	Single	Influence	NR
	m, et al.		Collective	States		addiction		recommended	tailored	(study	of	
			Intelligence) 4				motivational	messages	staff)	messages	
			Tailored Messaging		5			messages				
			System on Smoking		700							
			Cessation: The		16	16						
			Perspect			16						
			Randomized				1					
			Experiment				, (1/1				
2.	Morrison	2017	The Effect of	United	Psychiatry	Stress	77	Smartphone-	Daily/oc	Not stated	Notificatio	ISRCTN6717
	, et al.		Timing and	States				based stress	casional		n response	7737
			Frequency of Push					management	notificati			
			Notifications on					system	ons			
			Usage of a						within			
			Smartphone- Based						pre-			
			Stress Management						defined			

			Intervention: An						time			
			Exploratory Trial						frames			
3.	Labovitz,	2017	Using Artificial	United	Cardiology	Ischemic	28	AI system	No daily	Not stated	Adherence	NCT0259925
	et al.		Intelligence to	States		stroke		monitoring	monitori		to therapy	9
			Reduce the Risk of						ng			
			Nonadherence in	0								
			Patients on		6							
			Anticoagulation		700							
			Therapy		76	r _						
4.	Rostill,	2018	Technology	United	Psychiatry	Dementi	408	Technology-	No	Not stated	Alerts	NR
	et al.		integrated health	Kingdo		a	1	integrated	TIHM			
			management for	m			, (health				
			dementia					management				
								for dementia	7/4			
5.	Wang, et	2018	Real-time	China	Gastroente	Adenom	1058	AI-aided	Standard	None	Adenoma	ChiCTR-
	al		automatic detection		rology	a		colonoscopy	colonosc		detection	DDD-
			system increases						opy		rate	17012221
			colonoscopic polyp									
			and adenoma									

			detection rates: a									
			prospective									
			randomised									
			controlled study									
6.	Lin, et al.	2019	Diagnostic Efficacy	China	Ophthalmo	Cataract	350	AI-assisted	Normal	Double	Diagnostic	NCT0324084
			and Therapeutic) 4	logy			cataract	clinic		accuracy	8
			Decision-making		5			detection			for	
			Capacity of an		700						congenital	
			Artificial		, 6						cataracts	
			Intelligence									
			Platform for									
			Childhood				10	40				
			Cataracts in Eye									
			Clinics: A						7/1			
			Multicentre									
			Randomized									
			Controlled Trial									

7.	Voss, et	2019	Effect of Wearable	United	Psychiatry	Autism	474	AI-driven	Applied	Single	SRS-II,	NCT0356917
	al.		Digital Intervention	States				behavioral	behavior		EGG,	6
			for Improving					intervention	al		VABS-II,	
			Socialization in						analysis		NEPSY-II	
			Children With						therapy		socializati	
			Autism Spectrum) ,							on scores	
			Disorder A		5							
			Randomized		700							
			Clinical Trial		,6	<i>F b</i>						
8.	Wu, et	2019	Randomised	China	Gastroente	Upper GI	324	AI-aided	Standard	Single	Blind spot	ChiCTR1800
	al.		controlled trial of		rology	lesions	11	esophagogastr	esophago		rate	014809
			WISENSE, a real-				10	oduodenoscop	gastrodu			
			time					у	odenosco			
			quality improving						py			
			system for									
			monitoring blind									
			spots									
			spots									

			during									
			esophagogastroduo									
			denoscopy									
9.	Wang, et	2020	Effect of a deep-	China	Gastroente	Adenom	1046	AI-aided	Sham	Double	Adenoma	ChiCTR1800
	al.		learning computer-		rology	a		colonoscopy			detection	017675
			aided detection	06							rate	
			system		5							
			on adenoma		Pec.							
			detection during		16	/						
			colonoscopy			16						
			(CADe-DB trial):				11					
			a double-blind				10	1/1.				
			randomised study						L			
10.	Persell,	2020	Effect of Home	United	Medicine	Hyperten	333	AI-driven	Blood	None	Systolic	NCT0328814
	et al.		Blood Pressure	States		sion		coaching app	pressure		blood	2
			Monitoring via a						tracking		pressure at	
			Smartphone						app		6 months	
			Hypertension									
			Coaching									

			Application or Tracking Application on Adults With Uncontrolled Hypertension A Randomized									
11.	Wijnberg e, et al.	2020	on Adults With Uncontrolled Hypertension	Netherl	Cardiology	Intra- operative hypotens ion	68	AI-driven early warning system for intraoperative hypotension	Standard	None	Time- weighted average of intraoperat ive hypotensio n	NCT0337634 7
			Hypotension									

			During Elective									
			Noncardiac Surgery									
			The HYPE									
			Randomized									
			Clinical Trial									
12.	Pavel, et	2020	A machine-learning	United	Neurology	Neonatal	264	Automated	Conventi	Single	Diagnostic	NCT0243178
	al.		algorithm for	Kingdo	5	seizures		seizure	onal		accuracy	0
			neonatal seizure	m	700			detection	EEG		of	
			recognition: a		Pee.	/		algorithm			healthcare	
			multicentre,			16					profession	
			randomised,				Vi				als with	
			controlled trial				′(1/1.			aid of	
											algorithm	
13.	Nimri, et	2020	Insulin dose	Israel	Endocrinol	Diabetes	108	AI-based	Physicia	Single	Time of	NCT0300380
	al.		optimization using		ogy			decision	n guided		glucose	6
			an automated					support	care		level	
			artificial					system			within	
			intelligence-based								target	
			decision support								range	

			system in youths									
			with type 1 diabetes									
14.	Liu, et al.	2020	The single-monitor	China	Gastroente	Adenom	790	AI-aided	Routine	None	Adenoma	ChiCTR1800
			trial: an embedded		rology	a		colonoscopy	colonosc		detection	018058
			CADe						opy		rate	
			system increased	0								
			adenoma detection		5							
			during		700							
			colonoscopy: a		66	<i>F b</i>						
			prospective									
			randomized study				Vi					
15.	Gong, et	2020	Detection of	China	Gastroente	Adenom	704	AI-aided co	Unassiste	Single	Adenoma	ChiCTR1900
	al.		colorectal		rology	a		lonoscopy	d		detection	021984
			adenomas with a						colonosc		rate	
			real-time						opy			
			computer-aided									
			system									
			(ENDOANGEL): a									
			randomised									
	<u> </u>		<u> </u>	<u>I</u>	<u> </u>		1	<u> </u>	<u>l</u>	<u>l</u>	1	<u>l</u>

			controlled study									
16.	Luo, et	2020	Artificial	China	Gastroente	Polyps	150	AI-aided	Unaided	None	Polyp	NCT0471262
	al.		Intelligence-		rology			colonoscopy	colonosc		detection	65
			Assisted						ору		rate	
			Colonoscopy for									
			Detection) /-								
			of Colon Polyps: a		5							
			Prospective,		700							
			Randomized Cohort		,6	/						
			Study									
17.	Anan, at	2021	Effects of an	Japan	Orthopaedi	Neck/sho	94	AI-assisted	Usual	None	Pain level	(UMIN-CTR)
	al.		Artificial		cs	ulder and	, (health	care			000033894
			Intelligence-			back pain		program	routine			
			Assisted Health						7/			
			Program on							•		
			Workers With									
			Neck/Shoulder									
			Pain/Stiffness and									
			Low Back Pain:									

			Randomized									
			Controlled Trial									
18.	Blomber	2021	Effect of Machine	Denma	Cardiology	Cardiac	654	AI-led alerts	Normal	Double	Recognitio	NCT0421930
	g, et al.		Learning on	rk		arrest			protocol		n of	6
			Dispatcher								cardiac	
			Recognition of Out-) 4							arrest	
			of-Hospital Cardiac		5							
			Arrest During Calls		Dee.							
			to Emergency		,6	/						
			Medical Services:									
			A Randomized				11					
			Clinical Trial				, (4				
19.	Chen, et	2021	The Role of Deep	China	Cardiology	Heart	80	AI-based	Routine	None	Mortality	NR
	al.		Learning-Based			failure		echocardiogra	echocard		and	
			Echocardiography					phy	iography		rehospitali	
			in the Diagnosis								zation rate	
			and Evaluation of									
			the Effects of									
			Routine Anti-Heart-									

		Medicines in Elderly Patients with Acute Left									
		with A outs I off									
		with Acute Left									
		Heart Failure									
20. Eng, et	t 2021	Artificial	United	Radiology	Skeletal	1903	AI diagnostic	Without	None	Mean	NCT0353009
al.		Intelligence	States	5	age		aid	aid		absolute	8
		Algorithm		700						difference	
		Improves		, 6	/					between	
		Radiologist		066	16					the	
		Performance in				11				skeletal	
		Skeletal Age				10	1/1.			age	
		Assessment									
21. Harada	a, 2021	Efficacy of	Japan	Medicine	Various	22	AI-assisted	Without	Single	Diagnostic	UMIN000042
et al.		artificial-			medical		differential	AI		accuracy	881
		intelligence-driven			condition		diagnosis	assistanc			
		differential-			S			e			
		diagnosis list on the									
		diagnostic accuracy									

			of physicians: An									
			open-label									
			randomized									
			controlled study									
22.	Hassoon,	2021	Randomized trial of	United	Oncology	Different	42	AI coaching	Written	Single	Change in	NCT0321207
	et al.		two artificial	States		cancer			informati		steps per	9
			intelligence		5	types			on		day	
			coaching		Dee.							
			interventions to		,6	/						
			increase physical									
			activity in cancer				11					
			survivors				,(4				
23.	Jayakum	2021	Comparison of an	United	Orthopaedi	Osteoart	129	AI-enabled	Educatio	None	Knee OA	NCT0395600
	ar, et al.		Artificial	States	cs	hritis		patient	nal		Decision	4
			Intelligence-					decision aid	material		Quality	
			Enabled Patient									
			Decision Aid vs									
			Educational									
			Material on	_								

			Decision Quality,									
			Shared Decision-									
			Making, Patient									
			Experience, and									
			Functional									
			Outcomes in Adults) 4								
			with Knee		5							
			Osteoarthritis: A		700							
			Randomized		16	<i>f</i>						
			Clinical Trial			16						
24.	Kamba,	2021	Reducing adenoma	Japan	Gastroente	Adenom	358	AI-aided	Unaided	None	Adenoma	jRCTs032190
	et al.		miss rate of		rology	a	, (colonoscopy	colonosc		miss rate	061
			colonoscopy						opy			
			assisted by artificial						7/			
			intelligence: a									
			multicenter									
			randomized									
			controlled trial									
			controlled trial									

25.	Luna, et	2021	Artificial	United	Medicine	Physical	30	AI-assisted	Unassiste	Single	Successful	NCT0462459
	al.		intelligence	States		therapy		exercise	d		squats	4
			application versus					application	exercise			
			physical therapist									
			for squat									
			evaluation: a) 4								
			randomized		5							
			controlled trial		90							
26.	Medina,	2021	Electrophysiologica	Spain	Psychiatry	Attention	29	AI-driven	Commeri	Single	Conners	ISRCTN7104
	et al.		1 brain changes			deficit		cognitive	cal video		CPT	1318
			associated with			hyperacti	Vi	stimulation	games		(CPT-III)	
			cognitive			vity	, (program			score	
			improvement in a			disorder			<i>h</i> _			
			pediatric attention						7/2			
			deficit hyperactivity							•		
			disorder digital									
			artificial									
			intelligence-driven									
			intervention:									

			Randomized									
			controlled trial									
27.	Mertens,	2021	Artificial	Germa	Dentistry	Caries	22	AI-based	Unaided	None	Accuracy	DRKS000223
	et al.		intelligence for	ny				diagnostic	diagnosis		metrics	57
			caries detection:					support				
			Randomized trial	0/								
28.	Prochask	2021	A randomized	United	Medicine	Substanc	180	AI relational	No	None	Past-	NCT0409600
	a, et al.		controlled trial of a	States	700	e-related		conversational	interventi		month	1
			therapeutic		16	disorders		agent	on during		substance	
			relational agent for			16			the study		use	
			reducing substance				11				occasions	
			misuse during the				, (4				
			COVID-19									
			pandemic						7/1			
29.	Rafferty,	2021	A novel mobile app	United	Gastroente	Irritable	58	AI dietry	Educatio	None	Quality of	NCT0425655
	et al.		(heali) for disease	States	rology	bowel		mobile app	nal		life score	1
			treatment in			syndrom			material			
			participants with			e						
			irritable bowel									

			syndrome:									
			Randomized									
			controlled pilot trial									
30.	Seok, et	2021	A personalized 3d-	Korea	Endocrinol	Thyroid	53	AI 3D-printed	Without	None	Patient	KCT0005069
	al.		printed model for		ogy	lesions		thyroid model	model		general	
			obtaining informed) 4							knowledge	
			consent process for		5						and	
			thyroid surgery: A)ee						satisfactio	
			randomized clinical		76	/					n	
			study using a deep			16						
			learning approach				11					
			with mesh-type 3d				10	1/1.				
			modeling									
31.	Seol, et	2021	Artificial	United	Paediatrics	Childhoo	184	AI-assisted	Usual	Single	Asthma	NCT0286596
	al.		intelligence-assisted	States		d asthma		decision	asthma		exacerbati	7
			clinical decision					support	care		on	
			support for								occurrence	
			childhood asthma								within one	
			management: A								year	

			randomized clinical									
			trial									
32.	Strombla	2021	Effect of a	United	Surgery	Gynaecol	683	AI-assisted	Standard	None	Accurate	NCT0347137
	d, et al.		Predictive Model	States		ogical		surgical	estimatio		surgery	7
			on Planned Surgical			and		predictions	n process		duration	
			Duration Accuracy,	0		colorecta					prediction	
			Patient Wait Time,		5	1 surgery						
			and Use of)ee							
			Presurgical		, 6	/						
			Resources: A			16						
			Randomized				Vi					
			Clinical Trial				10	4				
33.	Turino,	2021	Management and	Spain	Pulmonolo	Obstructi	60	Intelligent	Standard	None	Complianc	NCT0311695
	et al.		treatment of		gy	ve sleep		monitoring	manage		e to CPAP	8
			patients with			apnea		system	ment	•		
			obstructive sleep									
			apnea using an									
			intelligent									
			monitoring system									

34.	Wang, et	2021	based on machine learning aiming to improve continuous positive airway pressure treatment compliance: Randomized controlled trial Utilization of Ultrasonic Image Characteristics Combined with Endoscopic	China	Gastroente	Early gastric cancer	80	Endoscopy with AI-based ultrasound imaging	Endosco py alone	None	Detection rate of upper gastric cancer	NR
			Randomized									
			controlled trial		900							
34.	Wang, et	2021	Utilization of	China	Gastroente	Early	80	Endoscopy	Endosco	None	Detection	NR
	al.		Ultrasonic Image		rology	gastric		with AI-based	py alone		rate of	
			Characteristics			cancer	11	ultrasound			upper	
			Combined with				,(imaging			gastric	
			Endoscopic								cancer	
			Detection on the						γ_{ν}			
			Basis of Artificial									
			Intelligence									
			Algorithm in									
			Diagnosis of Early									
			Upper									

			Gastrointestinal									
			Cancer									
35.	Wu, et	2021	Evaluation of the	China	Gastroente	Early	1050	AI-aided	Endosco	Single	Number of	ChiCTR1800
	al.		effects of an		rology	gastric		endoscopy	py alone		blind spots	018403
			artificial			cancer					during	
			intelligence system),							endoscopy	
			on endoscopy		5							
			quality and		700							
			preliminary testing		,6	/		240				
			of its performance			16						
			in detecting early				Vi					
			gastric cancer: a				, (1/1.				
			randomized									
			controlled trial						7/			
36.	Wu, et	2021	Effect of a deep	China	Gastroente	Gastric	1886	AI-assisted	Unaided	Single	Gastric	ChiCTR2000
	al.		learning-based		rology	neoplasm		endoscopy	endoscop		neoplasm	034453
			system on the miss						у		miss rate	
			rate of gastric									
			neoplasms during									

			upper gastrointestinal endoscopy: a single-centre, tandem, randomised controlled trial) _h								
37.	Xu, et al.	2021	The Clinical Value of Explainable Deep Learning for Diagnosing Fungal Keratitis Using in vivo Confocal Microscopy Images	China	Ophthalmo	Fungal keratitis	1089	AI-assisted image reading	Unassiste d image reading	None	Accuracy	NR
38.	Xu, et al.	2021	Artificial intelligence-assisted colonoscopy: A prospective, multicenter, randomized	China	Gastroente	Polyp	2352	AI-assisted colonoscopy	Conventi onal colonosc opy	None	Polyp detection rate	ChiCTR1800 015607

			controlled trial of									
			polyp detection									
39.	Yao, et	2021	Artificial	United	Cardiology	Low	358	AI-enabled	Usual	None	New	NCT0400008
	al.		intelligence-enabled	States		ejection		electrocardiog	care		diagnosis	7
			electrocardiograms			fraction		rams			of low	
			for identification of) 4							ejection	
			patients with low		5						fraction	
			ejection fraction: a		000							
			pragmatic,		,6	/						
			randomized clinical									
			trial									
40.	Zeng, et	2021	Long-Term	China	Medicine	Sports	150	AI-based	General	None	Blood	NR
	al.		Assessment of			health		personalized	manage		glucose,	
			Rehabilitation			manage		sports	ment		blood	
			Treatment of Sports			ment		management			pressure,	
			through Artificial					service system			lipids	
			Intelligence									
			Research									

41.	Zhang, et	2021	Artificial	China	Oncology	Breast	90	AI-based ultra	Routine	Double	Accuracy	NR
	al.		Intelligence			cancer		sound image	ultrasoun		metrics	
			Algorithm-Based					segmentation	d			
			Ultrasound Image									
			Segmentation									
			Technology in the									
			Diagnosis of Breast		5							
			Cancer Axillary		700							
			Lymph Node		,6	/						
			Metastasis			16						
42.	Zhang, et	2021	Value of	China	Paediatrics	Cerebral	73	AI-assisted	Original	None	Cerebral	NR
	al.		Rehabilitation			palsy	10	analysis of	images		artery	
			Training for					brain images			blood flow	
			Children with						7/1		velocity	
			Cerebral Palsy								(VP) and	
			Diagnosed and								Vasscular	
			Analyzed by								pulse	
			Computed								index (PI)	
			Tomography									

	Imaging					
	Information					
	Features under					
	Deep Learning					

- 1. Sadasivam RS, Borglund EM, Adams R, Marlin BM, Houston TK. Impact of a collective intelligence tailored messaging system on smoking cessation: the Perspect randomized experiment. *JMIR* 2016;18(11):e285.
- 2. Morrison LG, Hargood C, Pejovic V, Geraghty AW, Lloyd S, Goodman N, et al. The effect of timing and frequency of push notifications on usage of a smartphone-based stress management intervention: an exploratory trial. *PloS one* 2017;12(1):e0169162.
- 3. Labovitz DL, Shafner L, Reyes Gil M, Virmani D, Hanina A. Using artificial intelligence to reduce the risk of nonadherence in patients on anticoagulation therapy. *Stroke* 2017;48(5):1416-9.
- 4. Rostill H, Nilforooshan R, Morgan A, Barnaghi P, Ream E, Chrysanthaki T. Technology integrated health management for dementia. Br J Community Nurs 2018;23(10):502-8.
- 5. Wang P, Berzin TM, Brown JRG, Bharadwaj S, Becq A, Xiao X, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. *Gut* 2019;68(10):1813-9.

- 6. Lin H, Li R, Liu Z, Chen J, Yang Y, Chen H, et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial. *EClinicalMedicine* 2019; 9: 52–9.
- 7. Voss C, Schwartz J, Daniels J, Kline A, Haber N, Washington P, et al. Effect of wearable digital intervention for improving socialization in children with autism spectrum disorder: a randomized clinical trial. *JAMA Pediatr* 2019;173(5):446-54.
- 8. Wu L, Zhang J, Zhou W, An P, Shen L, Liu J, et al. Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy. *Gut* 2019;68(12):2161-9.
- 9. Wang P, Liu X, Berzin TM, Brown JRG, Liu P, Zhou C, et al. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. *Lancet Gastroenterol Hepatol* 2020;5(4):343-51.
- 10. Persell SD, Peprah YA, Lipiszko D, Lee JY, Li JJ, Ciolino JD, et al. Effect of home blood pressure monitoring via a smartphone hypertension coaching application or tracking application on adults with uncontrolled hypertension: a randomized clinical trial. *JAMA Netw Open* 2020;3(3):e200255-e.
- 11. Wijnberge M, Geerts BF, Hol L, Lemmers N, Mulder MP, Berge P, et al. Effect of a machine learning–derived early warning system for intraoperative hypotension vs standard care on depth and duration of intraoperative hypotension during elective noncardiac surgery: the HYPE randomized clinical trial. *JAMA* 2020;323(11):1052-60.

- 12. Pavel AM, Rennie JM, de Vries LS, Blennow M, Foran A, Shah DK, et al. A machine-learning algorithm for neonatal seizure recognition: a multicentre, randomised, controlled trial. *The Lancet Child & Adolescent Health* 2020;4(10):740-9.
- 13. Nimri R, Battelino T, Laffel LM, Slover RH, Schatz D, Weinzimer SA, et al. Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. *Nature medicine* 2020;26(9):1380-4.
- 14. Liu P, Wang P, Glissen Brown JR, Berzin TM, Zhou G, Liu W, et al. The single-monitor trial: an embedded CADe system increased adenoma detection during colonoscopy: a prospective randomized study. *Therap Adv Gastroenterol* 2020;13:1756284820979165.
- 15. Gong D, Wu L, Zhang J, Mu G, Shen L, Liu J, et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study. *Lancet Gastroenterol Hepatol* 2020;5(4):352-61.
- 16. Luo Y, Zhang Y, Liu M, Lai Y, Liu P, Wang Z, Xing T, Huang Y, Li Y, Li A, Wang Y. Artificial intelligence-assisted colonoscopy for detection of colon polyps: a prospective, randomized cohort study. *Journal of Gastrointestinal Surgery* 2021;25(8):2011-8.
- 17. Anan T, Kajiki S, Oka H, et al. Effects of an Artificial Intelligence-Assisted Health Program on Workers With Neck/Shoulder Pain/Stiffness and Low Back Pain: Randomized Controlled Trial. *JMIR Mhealth Uhealth* 2021;9(9):e27535.
- 18. 1. Blomberg SN, Christensen HC, Lippert F, et al. Effect of Machine Learning on Dispatcher Recognition of Out-of-Hospital Cardiac Arrest During Calls to Emergency Medical Services: A Randomized Clinical Trial. *JAMA Netw Open* 2021;4(1):e2032320.
- 19. Chen J, Gao Y. The Role of Deep Learning-Based Echocardiography in the Diagnosis and Evaluation of the Effects of Routine Anti-Heart-Failure Western Medicines in Elderly Patients with Acute Left Heart Failure. *Journal of Healthcare Engineering* 2021;2021

- 20. Eng DK, Khandwala NB, Long J, et al. Artificial intelligence algorithm improves radiologist performance in skeletal age assessment: A prospective multicenter randomized controlled trial. *Radiology* 2021;301(3):692-99.
- 21. Harada Y, Katsukura S, Kawamura R, et al. Efficacy of artificial-intelligence-driven differential-diagnosis list on the diagnostic accuracy of physicians: An open-label randomized controlled study. *International Journal of Environmental Research and Public Health* 2021;18(4):1-10.
- 22. Hassoon A, Baig Y, Naiman DQ, et al. Randomized trial of two artificial intelligence coaching interventions to increase physical activity in cancer survivors. *npj Digital Medicine* 2021;4(1)
- 23. Jayakumar P, Moore MG, Furlough KA, et al. Comparison of an Artificial Intelligence-Enabled Patient Decision Aid vs Educational Material on Decision Quality, Shared Decision-Making, Patient Experience, and Functional Outcomes in Adults with Knee Osteoarthritis: A Randomized Clinical Trial. *JAMA Network Open* 2021;4(2)
- 24. Kamba S, Tamai N, Saitoh I, et al. Reducing adenoma miss rate of colonoscopy assisted by artificial intelligence: a multicenter randomized controlled trial. *Journal of Gastroenterology* 2021;56(8):746-57.
- 25. Luna A, Casertano L, Timmerberg J, et al. Artificial intelligence application versus physical therapist for squat evaluation: a randomized controlled trial. *Scientific reports* 2021;11(1):18109.

- 26. Medina R, Bouhaben J, de Ramon I, et al. Electrophysiological brain changes associated with cognitive improvement in a pediatric attention deficit hyperactivity disorder digital artificial intelligence-driven intervention: Randomized controlled trial. *Journal of Medical Internet Research* 2021;23(11)
- 27. Mertens S, Krois J, Cantu AG, et al. Artificial intelligence for caries detection: Randomized trial. *J Dent* 2021;115:103849.
- 28. Prochaska JJ, Vogel EA, Chieng A, et al. A randomized controlled trial of a therapeutic relational agent for reducing substance misuse during the COVID-19 pandemic. *Drug and Alcohol Dependence* 2021;227
- 29. Rafferty AJ, Hall R, Johnston CS. A novel mobile app (heali) for disease treatment in participants with irritable bowel syndrome:

 Randomized controlled pilot trial. *Journal of Medical Internet Research* 2021;23(3)
- 30. Seok J, Yoon S, Ryu CH, et al. A personalized 3d-printed model for obtaining informed consent process for thyroid surgery: A randomized clinical study using a deep learning approach with mesh-type 3d modeling. *Journal of Personalized Medicine* 2021;11(6)
- 31. Seol HY, Shrestha P, Muth JF, et al. Artificial intelligence-assisted clinical decision support for childhood asthma management: A randomized clinical trial. *PLoS ONE* 2021;16(8 August)
- 32. Stromblad CT, Baxter-King RG, Meisami A, et al. Effect of a Predictive Model on Planned Surgical Duration Accuracy, Patient Wait Time, and Use of Presurgical Resources: A Randomized Clinical Trial. *JAMA Surgery* 2021;156(4):315-21.

- 33. Turino C, Benitez ID, Rafael-Palou X, et al. Management and treatment of patients with obstructive sleep apnea using an intelligent monitoring system based on machine learning aiming to improve continuous positive airway pressure treatment compliance: Randomized controlled trial. *Journal of Medical Internet Research* 2021;23(10)
- 34. Wang L, Song H, Wang M, et al. Utilization of Ultrasonic Image Characteristics Combined with Endoscopic Detection on the Basis of Artificial Intelligence Algorithm in Diagnosis of Early Upper Gastrointestinal Cancer. *J Healthc Eng* 2021;2021:2773022.
- 35. Wu L, He X, Liu M, et al. Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer: a randomized controlled trial. *Endoscopy* 2021;53(12):1199-207
- Wu L, Shang R, Sharma P, et al. Effect of a deep learning-based system on the miss rate of gastric neoplasms during upper gastrointestinal endoscopy: a single-centre, tandem, randomised controlled trial. *The Lancet Gastroenterology and Hepatology* 2021;6(9):700-08.
- 37. Xu F, Jiang L, He W, et al. The Clinical Value of Explainable Deep Learning for Diagnosing Fungal Keratitis Using in vivo Confocal Microscopy Images. *Frontiers in Medicine* 2021;8
- 38. Xu L, He X, Zhou J, et al. Artificial intelligence-assisted colonoscopy: A prospective, multicenter, randomized controlled trial of polyp detection. *Cancer Medicine* 2021;10(20):7184-93.
- 39. Yao X, Rushlow DR, Inselman JW, et al. Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. *Nature Medicine* 2021;27(5):815-19.
- 40. Zeng C, Huang Y, Yu L, et al. Long-Term Assessment of Rehabilitation Treatment of Sports through Artificial Intelligence Research.

 Comput Math Methods Med 2021;2021:4980718.

- 41. Zhang L, Jia Z, Leng X, et al. Artificial Intelligence Algorithm-Based Ultrasound Image Segmentation Technology in the Diagnosis of Breast Cancer Axillary Lymph Node Metastasis. *J Healthc Eng* 2021;2021:8830260.
- Zhang X, Wang Z, Liu J, et al. Value of Rehabilitation Training for Children with Cerebral Palsy Diagnosed and Analyzed by Computed 42. Tomography Imaging Information Features under Deep Learning. J Healthc Eng 2021;2021:6472440.

Search Strategy:

FOR EMBASE:

- 1) *deep learning/
- 2) *artificial intelligence/
- 3) *machine learning/
- 4) 1 or 2 or 3

For PubMed:

- 1. Artificial intelligence
- 2. Machine learning
- 3. Deep learning
- 4. 1 OR 2 OR 3

Restricted to:

• Article type: Randomized Control Trial

• Publication Date: 1/01/2015 to 31/12/2021

• Species: Human

• Language: English

Methods

Reporting checklist for systematic review (with or without a meta-analysis).

Based on the PRISMA guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the PRISMAreporting guidelines, and cite them as:

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews

		Reporting Item	Page Number
Title			
Title	<u>#1</u>	Identify the report as a systematic review	1
Abstract			
Abstract	<u>#2</u>	Report an abstract addressing each item in the PRISMA 2020 for Abstracts checklist	3
Introduction			
Background/rationale	<u>#3</u>	Describe the rationale for the review in the context of existing knowledge	4
Objectives	<u>#4</u>	Provide an explicit statement of the objective(s) or question(s) the review addresses	5

Eligibility criteria	<u>#5</u>	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses	6
Information sources	<u>#6</u>	Specify all databases, registers, websites, organisations, reference lists, and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted	6
Search strategy	<u>#7</u>	Present the full search strategies for all databases, registers, and websites, including any filters and limits used	6
Selection process	<u>#8</u>	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and, if applicable, details of automation tools used in the process	6
Data collection process	<u>#9</u>	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and, if applicable, details of automation tools used in the process	7
Data items	<u>#10a</u>	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (for example, for all measures, time points, analyses), and, if not, the methods used to decide which results to collect	7
Study risk of bias assessment	<u>#11</u>	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and, if applicable, details of automation tools used in the process	n/a
Effect measures	<u>#12</u>	Specify for each outcome the effect measure(s) (such as risk ratio, mean difference) used in the synthesis or presentation of results	7
Synthesis methods	<u>#13a</u>	Describe the processes used to decide which studies were eligible for each synthesis (such as tabulating the study	n/a
	For peer r	eview only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Page 64 of 66

		intervention characteristics and comparing against the planned groups for each synthesis (item #5))	
Synthesis methods	#13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics or data conversions	n/a
Synthesis methods	<u>#13c</u>	Describe any methods used to tabulate or visually display results of individual studies and syntheses	n/a
Synthesis methods	#13d	Describe any methods used to synthesise results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used	n/a
Synthesis methods	#13e	Describe any methods used to explore possible causes of heterogeneity among study results (such as subgroup analysis, meta-regression)	n/a
Synthesis methods	<u>#13f</u>	Describe any sensitivity analyses conducted to assess robustness of the synthesised results	n/a
Reporting bias assessment	<u>#14</u>	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases)	n/a
Certainty assessment	<u>#15</u>	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome	n/a
Data items	#10b	List and define all other variables for which data were sought (such as participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information	n/a
Results			
Study selection	#16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram (http://www.prisma-statement.org/PRISMAStatement/FlowDiagram)	7
Study selection	#16b For peer re	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded eview only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	7

Study characteristics	<u>#17</u>	Cite each included study and present its characteristics	supplementary table 2
Risk of bias in studies	<u>#18</u>	Present assessments of risk of bias for each included study	n/a
Results of individual studies	<u>#19</u>	For all outcomes, present for each study (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (such as confidence/credible interval), ideally using structured tables or plots	8
Results of syntheses	#20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies	n/a
Results of syntheses	#20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (such as confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect	n/a
Results of syntheses	#20c	Present results of all investigations of possible causes of heterogeneity among study results	n/a
Results of syntheses	#20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesised results	n/a
Risk of reporting biases in syntheses	<u>#21</u>	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed	n/a
Certainty of evidence	<u>#22</u>	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed	n/a
Discussion			
Results in context	#23a	Provide a general interpretation of the results in the context of other evidence	11
Limitations of included studies	#23b	Discuss any limitations of the evidence included in the review	14
Limitations of the review methods	#23c	Discuss any limitations of the review processes used	14
Implications	#23d	Discuss implications of the results for practice, policy, and future research	14

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Other information

Registration and protocol	<u>#24a</u>	Provide registration information for the review, including register name and registration number, or state that the review was not registered	7
Registration and protocol	#24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared	7
Registration and protocol	<u>#24c</u>	Describe and explain any amendments to information provided at registration or in the protocol	7
Support	<u>#25</u>	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review	15
Competing interests	<u>#26</u>	Declare any competing interests of review authors	15
Availability of data, code, and other materials	#27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review	supplementary table 2

Notes:

- 17: supplementary table 2
- 27: supplementary table 2 The PRISMA checklist is distributed under the terms of the Creative Commons Attribution License CC-BY. This checklist was completed on 12. July 2022 using https://www.goodreports.org/, a tool made by the EQUATOR Network in collaboration with Penelope.ai