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1st Editorial Decision 20th May 2022

Thank you again for submitting your work to Molecular Systems Biology. We have now heard back from the three reviewers who
agreed to evaluate your study. As you will see below, the reviewers think that the study seems potentially interesting. However,
they raise a series of concerns, which we would ask you to address in a revision.

| think that the reviewers' recommendations are rather clear and | therefore see no need to repeat the comments listed below.
One important issue refers to the need to strengthen the conclusions related to the machine-learning-based scoring functions.
All issues raised by the referees would need to be satisfactorily addressed. Please let me know in case you would like to discuss
in further detail any of the issues raised, | would be happy to schedule a call.

On a more editorial level, we would ask you to address the following points:

Reviewer #1:

Although molecular docking provides an important tool to computationally identify protein-ligand interactions and drug
mechanisms of action, the availability of 3D structures of proteins has traditionally been a bottleneck for researchers using
docking. Enabled by the emergence of deep learning-based protein 3D structure, prediction methods now make it possible to
perform large-scale structure-based protein-ligand interaction identification campaigns.

In this manuscript, the authors analyzed the protein-ligand binding prediction obtained from molecular docking with AlphaFold2-
predicted protein structures. By comparing the protein-ligand binding predictions to experimentally determined enzymatic
inhibition data between 12 essential E. coli proteins and 218 active antibacterial compounds, the authors demonstrated that (1)
prediction performance of molecular docking using AlphaFold2-predicted protein structures is similar to that of using
experimentally determined structures, (2) molecular docking alone can only show predictive ability for protein-ligand interaction
identification on a subset of proteins, and (3) machine learning-based protein-ligand binding scoring for molecular docking poses
demonstrated predictive power for protein-ligand interaction identification (i.e., AUROC > 0.5) on the majority of the 12 tested
proteins. The manuscript demonstrated the feasibility of using AlphaFold2-predicted protein structures to address the structure
availability issue in molecular docking and highlighted the limitation of current protein-ligand scoring methods and the need to
develop machine learning-based approaches to improve scoring of docking-based protein-ligand interaction. In addition, an
experimentally validated protein-ligand affinity dataset for 218 antibacterial compounds and 12 E. coli proteins, and 142
antibiotic-protein target pairs previously reported in the literature, were generated in this manuscript as benchmark datasets for
future studies. Overall, the manuscript is well-written, and the data presented convincing. The following minor issues need to be
addressed:

(1) Docking study for inactive compounds. The docking study in the manuscript covered 218 compounds that are experimentally
active against E. coli. It would be interesting to also study inactive compounds that would serve as negative controls. For
example, the authors could randomly select inactive compounds from the screened library and perform docking studies to see
(a) if these compounds can be docked to the binding sites, and (b) check and compare the binding scores of these inactive
compounds to those of active compounds. In the case that a large number of inactive compounds can be docked into the
different binding sites with high binding scores, the authors would need to address potential false positive rate issues.

(2) The authors used two open-source docking programs in the manuscript. The authors should comment on how using other
software to perform docking and scoring, such as Schrédinger, would influence the results.



Reviewer #2:

Wong et al. present an integrated experimental-computational study to perform high-throughput molecular docking on bacterial
proteins making use of alphafold predictions (as well as experimental structures). After screening 40k compounds in a
phenotypic screen of E.coli survival, they docked the 218 compounds found to be active against a set of 296 proteins thought to
be essential, and recovered a number of known antibiotic-target interactions. They then performed dedicated enzymatic activity
inhibition assays and benchmarked their molecular docking results against these assays finding that they are roughly as good as
random, both based on alphafold structure, as well as on experimental ones. They also constructed a set of meta-predictors
which they find to perform somewhat better.

| find this to be a somewhat eclectic study. First, the "benchmarking of docking on alphafold structures” really is only done on 8
proteins (the only ones where a comparison was made to crystal structures), and even there, the results aren't conclusive; since
the results are found to be basically random for crystal structures, really no conclusion can be derived whether alphafold
structure are reliable for docking. Second, much work has been done on benchmarking of different virtual screening protocols
and scoring functions (though I'm no expert in this direct area), so the addition to this subfield here is largely an evaluation of
testing on 12 targets.

On the other hand, they do provide a complete study, from high-throughput screening to dedicated biochemical inhibition
experiments, as well as molecular docking and evaluation of a number of ML-based scoring functions, so the
comprehensiveness and amount of data provided should be commended.

Major points:

1) I find it likely that the authors aren't experts in machine learning or related fields. For instance, they rely heavily on AU-ROC,
which in such cases with a large imbalance (that I'm assuming is the case here) between negative and positive data is usually a
problematic measure. Also, their "comparison of model predictions with known antibiotic binding targets” isn't very meaningful
(just knowing the true positive rates without knowing anything about false positives doesn't give any information about the
classifier). It also seems likely to me that their "wisdom of crowds" approach is just a classic case of overfitting. In any case, |
would warmly recommend that the authors recruit a proper expert in this field to help out.

2) It has been recognized that molecular docking on crystal structures isn't the best way forward, and I'm aware that real experts
to a fair bit of preprocessing of the structures using e.g., long molecular dynamics simulations to identify pockets. Surely this
would affect the authors' results.

Reviewer #3:

In this paper, the authors sought to test whether AlphaFold2 protein structure predictions could be used for reverse docking, that



is, prediction of binding targets of antibacterial compounds. They identify 218 compounds with anti-bacterial activity, which they
seek to dock to 296 AlphaFold2-predicted essential protein structures. These predictions seemed to suggest widespread
compound and protein promiscuity, which they experimentally validate using enzymatic inhibition assays. Using the results of
these assays and published interactions, they however find that the accuracy of the reverse docking predictions is poor
(auROC~0.5 on average). They do find that molecular docking using AlphaFold2-predicted structures provides similar
performance compared to using experimentally determined structures. For AlphaFold2 structures, using machine learning-based
scoring functions for docking in some cases improves the accuracy.

Overall this is an interesting idea but the conclusions are largely negative, and the main conclusion is that reverse docking as
currently done provides poor performance. The contribution of AlphaFold2 predictions to this study is moderately clear.

One important technical aspect that is missing is confidence intervals for auROC. It is very hard to compare auROC values
without such confidence intervals, and without them, one cannot conclude that one auROC value, eg obtained by ML based
scoring functions is higher than another one. This needs to be addressed.



1st Authors' Response to Reviewers 24th Jun 2022

Wong*, Krishnan*, Zheng, Stirk, Manson, Earl, Jaakkola, and Collins, “Benchmarking AlphaFold-enabled
molecular docking predictions for antibiotic discovery”

Summary of main changes.

We thank all the reviewers for their constructive and thoughtful comments on the paper. We have addressed
all of the points raised by the reviewers through additional experiments, analyses, and revisions, which have
significantly strengthened the work. We would like to highlight the following key additions and revisions to
the paper:

(1) To address Reviewers #1 and #2’s comments on false positives, we have performed additional docking
simulations with 100 compounds that are inactive against (i.e., do not inhibit the growth of) E. coli. The
results are now presented in Fig. 2 and included in Dataset EV2. We found that all the sampled inactive
compounds could be docked to the predicted binding sites of the 296 essential proteins, and intriguingly, that
the binding scores of these inactive compounds are largely similar to those of the active compounds. We
believe that this result further highlights one of the main messages of the present work, which is that the
performance of molecular docking in identifying true protein-ligand binding pairs is weak. We have described
these results in detail on lines 152-169 of the main text and discussed that docking is known to produce many
false positives there. As a result, we believe that these points motivate a more detailed analysis of the docking
predictions for active compounds, which could determine whether there is still any predictive power (indeed,
one of the main points of this study is that there largely is not).

(2) To address Reviewer #1’s comments on other docking and scoring software, we have now further
discussed how using other software would influence our results, and we have pointed out that prior
benchmarking studies using Schrodinger’s Glide and other software on the directory of useful decoys (DUD)
dataset suggest that the accuracy of our docking predictions would remain largely similar (Durrant et al, 2013;
Pereira et al, 2016) on lines 394-399 of the revised paper.

(3) To address Reviewer #2’s comments on the potential class imbalance of our protein-ligand interaction
data, we have generated precision-recall (PR) curves and calculated area under the PR curve (auPRC) values
for each protein (Fig. EVS). To address Reviewer #2’s comments on potential overfitting of machine learning
models, we have better detailed the minimal overlap between our model training and test sets (Methods). We
have consulted Professor Tommi Jakkola and Mr. Hannes Stérk for their input and help on responding to this
point on potential overfitting and all other aspects of the machine learning approaches used in this work. Due
to these important contributions, we have now added Prof. Jakkola and Mr. Stérk as co-authors of this
manuscript.

(4) As suggested by Reviewer #3, we have provided 95% confidence interval information for all auROC (and
auPRC) values in Table EV1. We have revised the main text and Discussion to further emphasize the main
message of our work, which is that improvements in molecular docking—for instance, using machine
learning—are needed to fully leverage AlphaFold’s structural information. We believe that this conclusion is
especially timely in light of the excitement from AlphaFold and its implications for drug discovery.

In the following, line numbers and citations refer to the revised version of the paper, and responses are
indicated in blue font.

Reviewer #1.

We thank the reviewer for their thoughtful and enthusiastic comments.



Although molecular docking provides an important tool to computationally identify protein-ligand
interactions and drug mechanisms of action, the availability of 3D structures of proteins has
traditionally been a bottleneck for researchers using docking. Enabled by the emergence of deep
learning-based protein 3D structure, prediction methods now make it possible to perform large-scale
structure-based protein-ligand interaction identification campaigns.

In this manuscript, the authors analyzed the protein-ligand binding prediction obtained from molecular
docking with AlphaFold2-predicted protein structures. By comparing the protein-ligand binding
predictions to experimentally determined enzymatic inhibition data between 12 essential E. coli proteins
and 218 active antibacterial compounds, the authors demonstrated that (1) prediction performance of
molecular docking using AlphaFold2-predicted protein structures is similar to that of using
experimentally determined structures, (2) molecular docking alone can only show predictive ability for
protein-ligand interaction identification on a subset of proteins, and (3) machine learning-based
protein-ligand binding scoring for molecular docking poses demonstrated predictive power for protein-
ligand interaction identification (i.e., AUROC > 0.5) on the majority of the 12 tested proteins. The
manuscript demonstrated the feasibility of using AlphaFold2-predicted protein structures to address
the structure availability issue in molecular docking and highlighted the limitation of current protein-
ligand scoring methods and the need to develop machine learning-based approaches to improve scoring
of docking-based protein-ligand interaction. In addition, an experimentally validated protein-ligand
affinity dataset for 218 antibacterial compounds and 12 E. coli proteins, and 142 antibiotic-protein
target pairs previously reported in the literature, were generated in this manuscript as benchmark
datasets for future studies. Overall, the manuscript is well-written, and the data presented convincing.

We thank the reviewer for their appreciation of our work, and we hope that our revisions and responses
provided below sufficiently address their comments.

(1) Docking study for inactive compounds. The docking study in the manuscript covered 218
compounds that are experimentally active against E. coli. It would be interesting to also study inactive
compounds that would serve as negative controls. For example, the authors could randomly select
inactive compounds from the screened library and perform docking studies to see (a) if these
compounds can be docked to the binding sites, and (b) check and compare the binding scores of these
inactive compounds to those of active compounds. In the case that a large number of inactive
compounds can be docked into the different binding sites with high binding scores, the authors would
need to address potential false positive rate issues.

We thank the reviewer for this important comment and agree. To address this point, we have repeated our
docking simulations with 100 randomly selected compounds that are inactive against (do not inhibit the
growth of) E. coli. The results are now presented in Fig. 2 and included in Dataset EV2. We found that all the
sampled inactive compounds could be docked to the binding sites of the 296 essential proteins, and
intriguingly, that the binding scores of these inactive compounds are largely similar to those of the active
compounds. We believe that this result further highlights one of the main messages of the present work, which
is that the performance of molecular docking in identifying true protein-ligand binding pairs is weak. We have
described these results in detail on lines 151-168 of the main text and discussed that docking is known to
produce many false positives there. As a result, we believe that these points motivate a more detailed analysis
of the docking predictions for active compounds, which could determine whether there is still any predictive
power (indeed, one of the main points of this study is that there largely is not).

(2) The authors used two open-source docking programs in the manuscript. The authors should
comment on how using other software to perform docking and scoring, such as Schrodinger, would
influence the results.

We thank the reviewer for pointing this out. Although we have focused on using AutoDock Vina and
DOCKS®6.9 in this study as commonly used and popular docking platforms, we agree that other software for
performing docking and scoring could influence some of our detailed protein-ligand binding predictions.



Nevertheless, we believe that prior benchmarking studies using Schrodinger’s Glide and other software on the
directory of useful decoys (DUD) dataset suggest that the accuracy of our docking predictions would remain
largely similar (Durrant et al, 2013; Pereira et al, 2016). On lines 394-399 of the revised paper, we have now
discussed how using other software would influence our results, and we have pointed out studies that have
exhaustively benchmarked an array of docking and scoring software on previously available datasets.

We thank the reviewer for thoughtfully pointing out this and all other points, which have helped us to
significantly improve our work.

Reviewer #2.
We thank the reviewer for their insightful and detailed report.

Wong et al. present an integrated experimental-computational study to perform high-throughput
molecular docking on bacterial proteins making use of alphafold predictions (as well as experimental
structures). After screening 40k compounds in a phenotypic screen of E.coli survival, they docked the
218 compounds found to be active against a set of 296 proteins thought to be essential, and recovered a
number of known antibiotic-target interactions. They then performed dedicated enzymatic activity
inhibition assays and benchmarked their molecular docking results against these assays finding that
they are roughly as good as random, both based on alphafold structure, as well as on experimental ones.
They also constructed a set of meta-predictors which they find to perform somewhat better.

We thank the reviewer for their appreciative and insightful comments, which have helped to strengthen the
piece considerably, and we hope that the reviewer finds their concerns adequately addressed with our
introduced revisions and responses described below.

I find this to be a somewhat eclectic study. First, the "benchmarking of docking on alphafold
structures' really is only done on 8 proteins (the only ones where a comparison was made to crystal
structures), and even there, the results aren't conclusive; since the results are found to be basically
random for crystal structures, really no conclusion can be derived whether alphafold structure are
reliable for docking.

We agree with the reviewer that the comparison between docking predictions using AlphaFold structures and
those using empirically evidenced crystal structures is for eight proteins (blue curves in Fig. 4D, and black
curves in Fig. EVS5). Here, the reviewer correctly points out that we found the docking predictions using
empirically evidenced crystal structures to be largely similar to those using AlphaFold structures, suggesting
that the weak docking performance may not caused by AlphaFold’s limitations. These points are discussed in
detail on lines 288-298 of the revised paper. However, we also would like to respectfully point out that we
have not focused on evaluating the quality of AlphaFold structures in this work. Rather, we have aimed to
determine whether a commonly used, reverse-docking approach to predicting protein-ligand interactions
performs well given AlphaFold structures—a question which could inform our current abilities to make use of
general structures given by AlphaFold. We have sought to clarify this point by rewriting lines 298-303 and
lines 384-388 of the paper, and we apologize to the reviewer for not making this motivation clear previously.

More generally, we agree that the number of essential proteins (12) evaluated in our study is substantially less
than the total number of essential proteins in £. coli (296). We believe that data measuring direct protein-
ligand binding activity are necessarily scarce and hard-to-obtain, as only a handful of methods exist for
probing protein-ligand binding interactions (e.g., enzymatic activity assays, differential scanning fluorimetry,
and surface plasmon resonance). Of these methods, only a few can be made high-throughput. We have
resorted to high-throughput enzymatic activity assays in our study and have performed these assays for all
proteins for which we could readily do so. Accordingly, we believe that our dataset is both unique—
measuring both binders and non-binders—and will inspire future studies that use more diverse methods to



further assess protein-ligand binding interactions. In order to make these points clearer to all readers, we have
revised lines 440-451 in the Discussion, which also calls for future work to generate more original protein-
ligand binding datasets.

Second, much work has been done on benchmarking of different virtual screening protocols and
scoring functions (though I'm no expert in this direct area), so the addition to this subfield here is
largely an evaluation of testing on 12 targets.

We thank the reviewer for this important comment and agree that there has been much work on benchmarking
different docking and scoring software. We have revised lines 394-399 to mention this literature, and we have
revised lines 440-451 to better contextualize the dataset contributions of the present work. Notably, we wish to
point out that our work differs from other studies in two important ways: (1) we have based our docking
simulations on AlphaFold structures; and (2) we have generated our own dataset, using enzymatic activity
assays for 12 essential E. coli proteins, that include both binders and non-binders to any given protein. While
typical benchmarking studies (Durrant et al, 2013; Pereira et al, 2016) have employed well-studied (and often
used) crystal structures, we believe that the first point is important because our results suggest that further
work in improving docking is needed to better leverage the protein structures predicted by AlphaFold. We feel
that this point is especially timely in light of the excitement from AlphaFold and its implications for drug
discovery. Additionally, typical benchmarking studies have not generated their own datasets and have instead
relied on well-studied (and often used) datasets like DUD-E (Mysinger et al, 2012). These datasets were
compiled by amalgamating a large number of studies and crystal structures known to form complexes, and
may therefore not be well-controlled; indeed, recent studies have suggested a substantial degree of hidden bias
in DUD-E, which might bias docking predictions (Chen et al, 2019). More importantly, DUD-E contains only
102 protein targets that are mostly specific to Homo sapiens (Mysinger et al, 2012), and only three proteins—
beta-lactamase, peptide deformylase, and thymidylate synthase, none of which we study here—from E. coli.
Evidently, new datasets and benchmarks for more diverse organisms, like E. coli, are needed for antibiotic
discovery. We believe that the present study contributes to this important task and have made our dataset
publicly available on BioStudies (https://www.ebi.ac.uk/biostudies/studies/S-BSST863 ?key=082576e6-3bd2-
4589-9640-104b8092f5cb), which we hope will inspire further related work.

On the other hand, they do provide a complete study, from high-throughput screening to dedicated
biochemical inhibition experiments, as well as molecular docking and evaluation of a number of ML-
based scoring functions, so the comprehensiveness and amount of data provided should be commended.

We thank the reviewer for their appreciation of this work. We very much agree that it is important to generate
original datasets to test docking predictions, and we hope that our work has provided a comprehensive and
inspiring evaluation of different docking and scoring approaches in order to determine whether we might be
able to fully leverage AlphaFold protein structures for the identification of true protein-ligand interactions.

Major points: 1) I find it likely that the authors aren't experts in machine learning or related fields. For
instance, they rely heavily on AU-ROC, which in such cases with a large imbalance (that I'm assuming
is the case here) between negative and positive data is usually a problematic measure. Also, their
"comparison of model predictions with known antibiotic binding targets" isn't very meaningful (just
knowing the true positive rates without knowing anything about false positives doesn't give any
information about the classifier). It also seems likely to me that their "wisdom of crowds'" approach is
just a classic case of overfitting. In any case, I would warmly recommend that the authors recruit a
proper expert in this field to help out.

We apologize for previously being unclear. We had chosen to present ROC curves and assess prediction
accuracy using the auROC because our experimental results did not generally indicate a large class imbalance
between hits and non-hits. Fig. 3B shows the distribution of empirically validated hits: while two proteins,
murC and ligA, had only 5 and 4 hits, respectively, all other proteins had at least 13 hits, and three proteins
(gyrA, murA, and dnaB) had more than 70 (>30% of all tested active compounds). Nevertheless, we agree
with the reviewer that presenting assessments that better control for class imbalance could strengthen the



quality of our analysis. We have therefore generated precision-recall (PR) curves and calculated area under the
PR curve (auPRC) values for each protein. We have summarized the statistics of the auPRC values on lines
273-285, lines 297-298, and lines 338-339 of the revised paper, and presented the PR curves in Fig. EVS5.
Accompanying 95% confidence interval estimates for all auROC and auPRC values are now provided in
Table EV1.

We also thank the reviewer for their comment on true positive rates and agree. We had mainly intended for
our discussion on known antibiotic binding targets to inform a reasonable binding affinity threshold for the
docking predictions, and using this to assess the performance of the classifier would indeed require knowledge
about false positives. To address this comment, we have now appended a discussion of corresponding false
positive rates and the implications on model performance on lines 180-186 of the revised paper. Additionally,
in response to a comment made by Reviewer #1, we have repeated our docking simulations with 100
compounds that are inactive against (i.e., do not inhibit the growth of) E. coli. The results are now presented in
Fig. 2 and included in Dataset EV2. We found that all the sampled inactive compounds could be docked to the
predicted binding sites of the 296 essential proteins, and intriguingly, that the predicted binding affinities of
these inactive compounds are largely similar to those of the active compounds. We believe that this result
further highlights one of the main messages of the present work, which is that the performance of molecular
docking in identifying true protein-ligand binding pairs is weak. We have described these results in detail on
lines 152-169 of the main text and mentioned that docking is known to produce many false positives there.
Additionally, in relation to the discussion on false positive rates, we have revised lines 184-191 to read: “If
true protein-ligand interactions were rare, this would suggest that the false positive rates predicted by our
model are comparable to its true positive rates, even for a stringent binding affinity threshold of -7 kcal/mol.
Consistent with this reasoning, the same binding affinity thresholds encompass 10% (-7 kcal/mol) and 30% (-
5 kcal/mol) of the modeled protein-ligand interactions involving inactive compounds (Fig. 2C), which are
likely to not bind any essential protein given that they do not inhibit bacterial growth. This comparison
therefore suggests that the performance of our modeling platform is weak.” We believe that these additions
make our comparison of model predictions with known antibiotic binding targets more meaningful.

In regards to the reviewer’s comment that our wisdom of crowds approach may be a case of overfitting, we
would like to respectfully point out that ensembling is a common and valid approach in machine learning. An
ensemble of models may perform better than any individual model if the regions where the individual models
are wrong do not completely overlap.

Of particular relevance to our case, our protein-ligand interaction data shares only one overlapping protein-
ligand interaction—rifampicin bound to RNA polymerase (4KMU)—with PDBBind v2016, and none with
DUD-E, as mentioned on lines 324-326 of the revised paper. Hence, nearly all the predicted protein-ligand
interactions from each model and our ensembling approach pertain to those that the models have not
previously seen. Additionally, while there is little protein-ligand interaction overlap between our training and
test data, we further investigated the overlap between individual proteins and compounds between the training
and test data. We found that the overlap in each case was also minimal, as tabulated below in Table R1.

Number of overlapping | Number of overlapping Number of

proteins with test set ligands with test set overlapping protein-
ligand interactions
with test set

PDBBind v2016 6 31 1
(13’308 protein- E. coli gyrAB (2Y3P, 4ZV1), Azidothy-midine‘, Triclose.m, rpoABCDEZ with rifampicin
ligan d interactions rpoABCDZ (AKMU), gmk Tyfomycm.e, Tr'lmetho'prlm, 5- (4KMU)
’ (2F3R), glmU (4AA7), murA Fluorouracil, Nitroxoline,
3,095 unique (31SS), murD (2JFH) Aminacrine, Rifampicin, Aztreonam,

. Piperacillin, Cefoxitin, Cefuroxime,
pr(.)telns,‘ and 9,642 Organisms other than E. coli: ligd | Cefotaxime, Ciprofloxacin,
unique hgands) (several bacteria including S. Furazolidone, Bleomycin,

aureus), dnaG (Homo sapiens) Cephalothin, Meropenem,
Kanamycin B, Foscarnet,
Methylisothiazolinone, Amikacin,
Tobramycin, Cefmenoxime,




Erythromycin A, Azithromycin,
Mupirocin, Avibactam, Geneticin,
Rifapentine, Chloroxine

DUD-E (1,434,015 |0 5 0

protein-ligand Gliotpxin, Zi'dovgdine, Trilesan,
Cefditoren pivoxil, Donepezil

interactions, 102
unique proteins, and
1,200,431 unique
ligands)

Table R1: Summary statistics for the difference between the training and test sets used in this study.
Overlapping compounds were determined by comparing isomeric SMILES or generic ligand names (when
available). Where numbers are not equal to zero, all the overlapping proteins, ligands, or protein-ligand
interactions are also indicated.

To quantitatively investigate overfitting, we performed additional statistical analyses examining the
correlations between the similarity (in terms of protein sequence or chemical structure) of our training and test
sets and model performance. For each protein in our training (either PDBbind v2016 or DUD-E) and test set,
we curated amino acid sequence information from UniProt. For each pair of proteins between our training and
test set, we used BioPython’s pairwise2.align.globalxx() function to align the corresponding sequences and
determine an alignment score. We quantified the “training set alignment score” of each protein in our test set
to the proteins in our training set by taking the maximum alignment score among all proteins in the training
set. For proteins with multiple subunits (e.g., gyr4B), we further assigned an alignment score to the protein
complex by taking the maximum alignment score among the training set alignment scores of each subunit. We
then plotted the training set align score values against the per-protein true positive rate and accuracy values for
the 8 machine learning-based models shown in Fig. SC-E (comprising 4 single rescoring models and 4
ensemble models). The results of our correlation analyses are shown below in Fig. R1. We found no
statistically significant (»p<0.05) correlation between protein similarity and model performance in all analyses,
demonstrating that our models have not overfitted based on protein similarity.

Next, we performed a similar analysis for ligands, using RDKit to compute the Tanimoto similarity between
the 2048-bit Morgan fingerprint representation (ECFP radius of 2) of each pair of ligands in our training and
test sets. For each ligand in our test set, we took the maximum Tanimoto similarity score among all ligands in
the training set. We then plotted these training set Tanimoto similarity values against the per-protein true
positive rate and accuracy values for each of the 8 machine learning-based models shown in Fig. 5C-E
(comprising 4 single rescoring models and 4 ensemble models). As before, the results of our correlation
analyses are shown below in Fig. R1. We found only 4 statistically significant correlations, and none for our
final ensemble of all 5 models. Furthermore, all 4 statistically significant correlations were negative,
indicating that model performance is anti-correlated with training/test set ligand similarity, and that these may
be spurious correlations. These analyses demonstrate that our models have not overfitted based on ligand
similarity.

In sum, we believe that the minimal overlap between our training and test sets and our statistical analyses of
protein/ligand similarity and model performance provide a robust demonstration of no overfitting.
Additionally, we agree with the reviewer that consulting with a machine learning expert would be beneficial
for this work. We have therefore consulted Professor Tommi Jakkola and Mr. Hannes Stérk for their input and
help on responding to the above point on potential overfitting and all other aspects of the machine learning
used in this work. Due to their important contributions, we have now added Prof. Jakkola and Mr. Stérk as co-
authors of this manuscript.
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Fig. R1: Plots of protein and ligand similarity to the training set and model performance. For a given model
(single or ensemble), each plot represents either a per-protein (12 points) or per-ligand (218 points)
comparison of the protein or ligand similarity to all proteins or ligands in either PDBbind v2016 or DUD-E,
depending on which set was used for training. Model performance is assessed using either true positive rate or
accuracy. In each plot, the Spearman’s correlation coefficient (R) and p-value (p) are indicated. Overlapping
proteins have high sequence similarity, and overlapping ligands have high Tanimoto similarity (which may
not necessarily equal 1 due to chemical structure variations and the presence of salts).

2) It has been recognized that molecular docking on crystal structures isn't the best way forward, and
I'm aware that real experts to a fair bit of preprocessing of the structures using e.g., long molecular
dynamics simulations to identify pockets. Surely this would affect the authors' results.

We thank the reviewer for this important comment. To our knowledge, long molecular dynamics simulations
have been used in several studies that focus on a specific protein of interest to account for protein
conformational changes. These may be important for the ligand binding activities of certain proteins like AcrB
(Vargiu and Nikaido (2012) PNAS 109: 20637-20642 (2012); Weng et al (2021) Sci. Rep. 11: 7429; Kuzmanic
et al (2020) Acc. Chem. Res. 53: 654-661). We acknowledge the fact that docking simulations with rigid
proteins are more limited in this regard, and we view our docking as a baseline approach that is fully
consistent with the rigid protein docking pipeline used in numerous docking studies, including benchmarking
studies (Durrant et al, 2013; Pereira et al, 2016). In these studies, proteins have been assumed to be rigid, and
their crystal structures have been directly used for docking. The advantage of this approach is that large-scale
analyses are more computationally tractable, enabling both large-scale forward (Lyu et al. 2019; Bender et al.
2021) and reverse (Kharkar et al. 2014; Lee et al. 2016) docking applications. The disadvantage of this
approach is that—as the reviewer suggests—situations in which protein conformational activity is important
to ligand binding may not be accurately modeled. We believe that long molecular dynamics simulations
require detailed, protein-specific information regarding interaction domains and key rate parameters, which
fall beyond the scope of our large-scale study. To clarify this point, we have revised lines 429-434 to read:
“Concomitantly, limitations to the development of more accurate docking methods are the use of rigid protein
docking in this and other benchmarking studies (Durrant et a/, 2013; Pereira et al, 2016) and the scarcity of
benchmarking datasets. Long molecular dynamics simulations that focus on a specific protein of interest could
account for protein conformational changes that, in certain cases like AcrB, might be important for ligand
binding (Vargiu & Nikaido, 2012).” We think that these revisions better contextualize the limitations of our
docking approach for all readers, and also make clear that what we have done—although coarse-grained—is
consistent with prior docking studies and benchmarks.

We thank the reviewer again for their detailed and insightful comments, which have helped us to significantly
improve our work.

Reviewer #3.
We thank the reviewer for their thoughtful and insightful report.

In this paper, the authors sought to test whether AlphaFold2 protein structure predictions could be
used for reverse docking, that is, prediction of binding targets of antibacterial compounds. They
identify 218 compounds with anti-bacterial activity, which they seek to dock to 296 AlphaFold2-
predicted essential protein structures. These predictions seemed to suggest widespread compound and
protein promiscuity, which they experimentally validate using enzymatic inhibition assays. Using the
results of these assays and published interactions, they however find that the accuracy of the reverse
docking predictions is poor (auROC~0.5 on average). They do find that molecular docking using
AlphaFold2-predicted structures provides similar performance compared to using experimentally
determined structures. For AlphaFold2 structures, using machine learning-based scoring functions for
docking in some cases improves the accuracy.
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We thank the reviewer for their interest and thoughtful suggestions, and we have revised the manuscript to
address all the points raised.

Overall this is an interesting idea but the conclusions are largely negative, and the main conclusion is
that reverse docking as currently done provides poor performance. The contribution of AlphaFold2
predictions to this study is moderately clear.

We thank the reviewer for their interest and agree that our results suggest that further work in improving
docking is needed to better leverage the protein structures predicted by AlphaFold. We feel that this point is
especially timely in light of the excitement from AlphaFold and its implications for drug discovery. We would
also point out that, while we have performed the first large-scale docking study involving AlphaFold2-
predicted protein structures, we have not focused on evaluating the quality of AlphaFold structures in this
work. Rather, we have aimed to determine whether a commonly used, reverse-docking approach to predicting
protein-ligand interactions performs well given AlphaFold structures—a question which could inform our
current abilities to make use of general structures given by AlphaFold. To this end, we hope that our work has
provided a comprehensive and inspiring evaluation of different docking and scoring approaches, in addition to
unique original datasets, that could determine whether we might be able to fully leverage AlphaFold protein
structures in this way.

One important technical aspect that is missing is confidence intervals for auROC. It is very hard to
compare auROC values without such confidence intervals, and without them, one cannot conclude that
one auROC value, eg obtained by ML based scoring functions is higher than another one. This needs to
be addressed.

We thank the reviewer for this thoughtful comment. To address this point, we have provided 95% confidence
intervals for all auROC (and area under the precision-recall curve, auPRC) values, as generated by
bootstrapping (lines 871-873 in the Methods), in Table EV1. The calculated confidence intervals suggest that
our values of the auROC (and auPRC) are robust to variability in the data; this is now mentioned on lines 281-
283 and lines 338-341 of the revised paper. We believe that these confidence intervals also definitively show
that the auROC values obtained by the machine learning-based rescoring fucntions are, for the most part,
indeed higher than the corresponding AutoDock Vina baseline values (Table EV1).

We thank the reviewer again for their thoughtful and insightful comments, which have helped us to
significantly improve our work.
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Thank you again for sending us your revised manuscript. We have now received the reports from two of the three reviewers who
were asked to review four revised study. As you will see below, they are satisfied with the performed revisions and support
publication. We have also been in contact with reviewer #2, who unfortunately did not have time to perform a full review, but did
look at your point by point response and informally informed us that they do support publication. As such, | am pleased to inform

you that your paper has been accepted for publication.

Reviewer #1:

The authors have addressed my prior comments.

Reviewer #3:

| remain somewhat skeptical about the contribution of this paper to the field except being the first paper to apply molecular
docking to Alphafold2 structures. As the authors note, the performance of molecular docking in identifying true protein-ligand
binding pairs is weak, whether applied to real structure or predicted structures. With all that said, the reviewers have addressed
my few comments and other reviewers'. The paper is technically sound and | won't object to its publication.
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