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Figure S1. ITPR3 facilitates metastatic CRC liver colonization, related to Figure 2. (A) ITPR3

expression by immunoblot in CRISPR-edited sgCTRL or sgITPR3 SW480 cells (two independent



guide RNAs). (B) 5 x 10° SW480 sgCTRL or sgITPR3-2 cells were inoculated by portal circulation
injection, and metastatic colonization was measured by liver bioluminescence at the indicated
timepoints (n=4 mice). (C-E) Quantification of tumor nodules per liver (C), tumor nodule area (D),
and representative H&E staining (E) of livers with sgCTRL or sgITPR3 SW480 metastases. (F)
Representative H&E staining of livers with shCTRL or shITPR3 LS174T metastases. (G-l)
Quantification of tumor nodules per liver (G), tumor nodule area (H), and representative H&E
staining (1) of livers with sgCtrl or sgltpr3 MC38 metastases. (J) 2 x 10° SW480 sgCTRL or
sglTPR3-1 cells were inoculated by tail vein injection, and lung metastatic burden was monitored
by bioluminescence. (K) 5 x 10° SW480 sgCTRL or sgITPR3-1 cells were injected into the flanks
of mice and subcutaneous xenograft volume was monitored. (L) 5 x 10° SW480 sgCtrl or sgltpr3
MC38 cells were injected into the flanks of mice and subcutaneous xenograft volume was
monitored. (M) MC38 cells were treated with 20 uM BAPTA-AM or DMSO control for two hours
priors to portal circulation injection, and metastatic colonization was measured by liver
bioluminescence at the indicated timepoints (n = 8 mice). Mean + SEM; *p < 0.05, **p < 0.01, ***p

< 0.001, **** p < 0.0001, Student’s t-test.
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Figure S2. Expression of genes involved in IP3 signaling and metabolism are modulated
in CRC liver metastases, related to Figure 3. (A) PLCG1 and INPP5A expression as measured
by RNA sequencing from normal colon, primary tumors or liver metastases (GSE50760). (B) RNA
transcript levels of PLCG1 and INPP5A from control or shRNA-expressing SW480 cells as
measured by qRT-PCR. (C) 5x10° SW480 cells expressing control or PLCG1 shRNA were
inoculated by portal circulation injection, and metastatic tumor nodules were quantified by H&E
staining. (D) 5x10° SW480 cells expressing control or INPP5A shRNA were inoculated by portal
circulation injection, and metastatic tumor nodules were quantified by H&E staining. (E)
Immunoblot for PLCG1 and INPP5A protein in LS174T cells expressing the indicated shRNAs.
(F) 5x10° LS174T cells expressing control, PLCG1, or INPP5A shRNA were inoculated by portal
circulation injection, and metastatic tumor nodules were quantified by H&E staining. Median (A)
or Mean + SEM (C-D); *p < 0.05, ** p < 0.01, *** p < 0.001, *** p < 0.0001, Mann-Whitney test

(A) or Student’s t-test (C-D)
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Figure S3. Transcriptomic analysis of ITPR3-regulated genes in established CRC liver
metastases, related to Figure 5. 5 x 10° SW480 sgCTRL or sgITPR3 cells were inoculated by
portal circulation injection, and cells were isolated from liver metastases harvested at day 27 prior
to RNA-seq. Enrichment of biological pathways among down-regulated genes in ex vivo SW480

sglTPR3 cells by Reactome pathway analysis.
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Figure S4. RELB facilitates metastatic liver colonization, related to Figure 5. (A) 5x10°
LS174T cells expressing control or RELB shRNA were inoculated by portal circulation injection,
and metastatic tumor nodules were quantified by H&E staining. (B) 5x10° SW480 sgCTRL or
SgRELB cells were inoculated by portal circulation injection, and metastatic tumor nodules were
quantified by H&E staining. (C) Tumor nodule area of SW480 sgCTRL or sgRELB liver
metastases. (D) 5x10° CT26 cells were inoculated by portal circulation injection, and metastatic
liver burden was monitored by bioluminescence. (E) 5x10° MC38 cells were inoculated by portal
circulation injection, and metastatic liver burden was monitored by bioluminescence. *p < 0.05,

**p < 0.01, **p < 0.001, ****p < 0.0001, Student’s t-test.
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Figure S5. Effect of ITPR3 deficiency on migration and CRC growth, related to Figure 6. (A)

A scratch was made through a confluent monolayer of SW480 cells, and migration as measured



by gap area closure was monitored. (B) Viability of SW480 cells cultured in ULA plates for 5 days
as assessed by ATP-based luminescent cell viability assays (n=3 independent experiments). (C)
Immunoblot for cleaved caspase-3 levels in sgCTRL or sgITPR3 cells cultured under normoxia
or hypoxia (0.5% O) for 48H. (D) Immunoblot for cleaved caspase-3 levels in sgCTRL or sgRELB
cells cultured under normoxia or hypoxia (0.5% O;) for 48H. (E) SW480 cells labeled with
CellTracker Red (sgCTRL) or Green (sgITPR3) were mixed 1:1, and 1x 10° cells were introduced
into the portal circulation by splenic injection (n = 5 mice). Livers were harvested at 2H post-
inoculation and Ki67+ cells were monitored by immunofluorescence. Fraction of Ki67+ cells
among sgCTRL and sgITPR3 cells is shown. (F) Representative immunofluorescence images
and fraction of Ki67+ cells among sgCTRL and sgITPR3 cells in metastatic tumor nodules. (G)
5x10° SW480 sgCTRL or sgRELB cells were inoculated by portal circulation injection. Apoptotic
cell burden was monitored using DEVD-luciferin bioluminescence relative to live cell
bioluminescence over time. (H) Immunoblot for LC3 in sgCTRL, sgITPR3, or sgRELB cells
cultured under attached or detached conditions for 48H. (I) BCL3 RNA expression by qRT-PCR
in cells cultured under attached or detached conditions for 24H. (J) BCL2 RNA expression by
gRT-PCR in cells cultured under attached or detached conditions for 24H. (K) BMF RNA
expression by gRT-PCR in cells cultured under attached or detached conditions for 24H. (L) BMF
RNA expression by gqRT-PCR in cells cultured under normoxia or hypoxia for 72H. Mean + SEM;

*p <0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001, Student’s t-test.
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Figure S6. iPAGE analysis of RNA-seq from ITPR3 and RELB KO cells exposed to hypoxia,
related to Figure 6. (A) iPAGE analysis of SW480 sgITPR3 cells cultured for 72 hours in hypoxia
(0.5% O2) compared to control cells. (B) iPAGE analysis of SW480 sgRELB cells cultured for 72

hours in hypoxia (0.5% O.) relative to control cells. (C-D) Venn diagram showing number of



overlapping differentially expressed up-regulated (C) and down-regulated (D) genes under
normoxia or hypoxia (0.5% O for 72 hours) in ITPR3 and RELB KO SW480 cells relative to

control cells.

Cell count (x105)

Figure S7. Caffeine treatment of CRC cells inhibits cell growth under detached conditions,
related to Figure 7. SW480 cells were cultured on ULA plates for 4 days in the absence or

presence of caffeine 5 mM. **p < 0.01, Student’s t-test.



Table S5. shRNA and sgRNA sequences, related to the STAR Methods.

Name shRNA or sgRNA target sequence (5'-3")
shCTRL CAACAAGATGAAGAGCACCAA
shITPR3-1 (Human) CGTGAAGAACAAGACCGACTA
shITPR3-2 (Human) GATGACAAGAAGAACAAGTTT
shRELB-1 (Human) AGCCCGTCTATGACAAGAAAT
shRELB-2 (Human) CATGCTTCTGAAGTGGACATA
shPLCG1 (Human) AGAAGTTCCTTCAGTACAATC
shITPKA (Human) CCTTGTGTGCTCGACTGCAAA
shINPP5A (Human) GCGATTCGAGAAGGTTTCCTA
shRelb (Mouse) CGGTTCTCTTTGAGCCCATTT
sgCTRL GCGAGGTATTCGGCTCCGCG
sgITPR3-1 (Human) GTCCAGCTTTCTTCACATCG
sgITPR3-2 (Human) GCTGGTGGATGACCGCTGTG
sgRELB-1 (Human) GGGGACACTAGTCGGCCCAG
sgRELB-2 (Human) GTGGGGAAAGACTGCACCGA
sgltpr3 (Mouse) CTGGAAGCTTCGGAGCAATG
sgRelb-1 (Mouse) CCTACCAGAGGACATATCCG
sgRelb-2 (Mouse) GTTCAAAACGCCACCCTACG

10



Table S6. siRNAs, related to the STAR Methods.

Gene Symbol Dharmacon Catalog Number
PLK4 L-005036-00
DDR2 L-003112-00
ADGRG1 L-004552-00
RELB L-004767-00
MEF2D L-009884-00
CCL5 L-007844-00
CORO1B L-010493-01
ITPR3 L-006209-00
PLG L-006001-00
INSR L-003014-00
UBR4 L-014021-01
MST1R L-003157-00
COL6BA1 L-011620-00
OR10A5 L-008750-00
TMEM164 L-014805-02
MYH7 L-011086-00
GPR173 L-005727-00
NOB1 L-020594-01
MRPL24 L-017442-02
ODAM L-016965-02
IGF1R L-003012-00
CMTM®6 L-010711-00
FGF8 L-013693-00
SPACA1 L-013464-02
MTMR9 L-019244-00
PRSS37 L-025360-00
ON-TARGETplus Non-targeting Control D-001810-10




Table S7. Primers for qRT-PCR, related to the STAR Methods.

Name Sequence (5'-3")

BCL2_F GGAGGATTGTGGCCTTCTTT
BCL2 R CATCCCAGCCTCCGTTATC
BCL3_F GAACACCGAGTGCCAAGAAACC
BCL3 R GCTAAGGCTGTTGTTTTCCACGG
BMF_F GAGGTACAGATTGCCCGAAA
BMF_R CCCCGTTCCTGTTCTCTTCT
GAPDH_F  AGCCACATCGCTCAGACAC
GAPDH_R  GCCCAATACGACCAAATCC
HPRT_F GACCAGTCAACAGGGGACAT
HPRT_R CCTGACCAAGGAAAGCAAAG
ITPR3_F TATGCAGTTTCGGGACCACC
ITPR3_R TGCCCTTGTACTCGTCACAC
PLCG1_F CATCTGCCAAAGAATGGCCG
PLCG1_R  AGTCCATTGTCCACCACAAACT
ITPKA_F CTTCGACGGACCTTGTGTG
ITPKA_ R TACATGTCCTTCCGCAGCTT
INPPSA_F  TTCGACGACCCAGAAAACCT
INPP5SA_ R GCCTCGTAGTTCTTCCCTCC
TNF_F CTCTTCTGCCTGCTGCACTTTG
TNF_R ATGGGCTACAGGCTTGTCACTC
RELB_F AAGAAAAAGCCGGCCATC
RELB R CACGGTGCCAGAGAAGAAGT




