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1. Skull-stripping U-net for brain MRIs

Isolating the intracranial matter from brain MRIs is important for sub-
sequent processing in many image processing pipelines. Multiple methods
have been developed for brain extraction [1, 2, 3], however their accuracy
is often not consistent between subjects due to atrophy, enlarged ventricles,
traumatic brain injury, or random errors. Atlas based methods are com-
mon, however, they often do not capture anatomical variability. One such
brain extraction method is the Multi-contrast brain stripping (MONSTR) [4]
method, which was developed to be robust to traumatic brain injury by uti-
lizing multi-contrast information. Although highly accurate in most cases,
we found that MONSTR fails in some subjects of the AGES-Reykjavik data
set. State-of-the art methods for most brain segmentation tasks are based
on convolutional neural networks (CNNs) [5, 6, 7]. They are usually more
consistent because they are robust to random errors in the training set, which
usually contains multiple manually delineated images. CNN based methods
can also be much faster than methods based on multi-atlas registration with
multiple degrees of freedom. However, manually delineated brainmasks are
often not available and are time consuming to generate. Here we show that
by training a three dimensional U-net CNN using the brainmasks generated
by MONSTR as training data we can generate more accurate brainmasks
than MONSTR, if images with the most visible errors are removed from
the training set. This training method can be used when a skull-stripping
method, such as MONSTR, generates near perfect brainmasks for a large
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Figure 1: Erroneous skull-stripping results from MONSTR that were removed from our
training set. The figure shows T1-w images and the corresponding skull-stripping bound-
aries generated by MONSTR (red).

subset of the data at hand, which can be used for training. Alternatively,
brainmasks can be manually corrected, however, this is a much more time
consuming approach.

1.1. Preparation of training data and CNN architecture

The development and evaluation of the skull-stripping U-net was per-
formed using brain MRIs from the AGES-Reykjavik data set (cf. Section
2.1. in the main text). The brainmasks used for supervised training of the
skullstripping CNN were generated by the MONSTR method [4]. Brain-
mask atlases for MONSTR were created by manually delineating the brain
in 6 subjects from our AGES-Reykjavik development set of 120 subjects.
Manual inspection of 60 of the generated MONSTR brainmasks led to the
exclusion of 13 masks due to skullstripping failures (see Figure 1); hence the
remaining 47 masks were used for training. Our training set comprised the
T1-w, T2-w, and FLAIR images and the corresponding brainmasks. The
network architecture can be seen in Figure 2.
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Figure 2: The proposed CNN architecture for the skullstripping U-net. The input com-
prises large 3D patches from FLAIR, T1-w, and T2-w images. Kernels of size 3×3×3 are
used in all convolutional layers except size 1×1×1 is used in the final two layers.

1.2. Training

The 47 training images were intensity normalized by dividing by the 99th
percentile of the non-zero elements of the image and 80×80×80 voxel patches
were extracted with a 40 voxel stride. A weighted categorical cross-entropy
loss function was used. The weights were determined with class weights [8].
The network was trained for 200 epochs with a learning rate of 1 · 105 using
the Adam optimizer [9] with Nesterov momentum [10], with β1 = 0.9, β2 =
0.999, schedule decay of 0.004, and a batch size of 5.

1.3. Evaluation

The evaluation of our skull-stripping method was twofold: First, we com-
pared the results of our method to results generated by MONSTR on the de-
velopment set of 120 subjects. Second, we compared the intracranial volumes
(ICVs) of 2401 subjects on MRI scans that were acquired at two different
time points (scans acquired 5 years apart on average). We visually inspected
9 slices of each of these 2401 subjects to detect failures and their causes.

Figure 3 shows a histogram of the Dice dissimilarity (one minus the Dice
similarity coefficient) between the 120 MONSTR brainmasks and the U-
net brainmasks. Subjects with the lowest Dice dissimilarity between the
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Figure 3: A histogram showing the number of the skullstripping U-net brain segmentations
within each group of Dice dissimilarity when compared with the MONSTR segmentations.
The brown columns show the values of the 8 brain segmentations with the highest dissim-
ilarity and the rest is shown in blue.

U-net and MONSTR were selected one-by-one for visual comparison, until
the visual differences between the two brain segmentations were negligible,
resulting in 8 subjects. Figure 4 shows one slice from each of these 8 subjects
that have the largest error.

One limitation to this evaluation strategy is that by comparing the overlap
of the masks generated by the U-net to the masks from MONSTR we would
not expect to find large values for Dice dissimilarity if both MONSTR and the
U-net systematically fail in the same way. Therefore, we visually inspected 9
slices from each of the 2401 subjects with longitudinal MRI scans and found
that the U-net was very robust, except in cases when: 1) One or more MRI
sequences had registration errors (24 registration errors in total); and/or 2)
there were visible skullstripping errors (9 cases of which 3 were caused by
registration errors). These registration errors are marked on Figure 5, which
compares the brainmask volumes at two timepoints. The figure shows that
the predicted ICV is generally very consistent, with the exception of the few
cases that had registration and/or skullstripping failures.
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Figure 4: T1-w images and the corresponding skullstripping boundaries generated by
MONSTR (red) and the U-net (yellow) and their overlap (white). Figures (a)-(h) show
the 8 subjects from the development set that have the lowest Dice similarity in ascending
order.

Figure 5: The intracranial volume predictions from the skullstripping U-net for MRIs at
the first and second visit (timepoint 2 vs. timepoint 1) shown in blue. The line representing
equal volume is shown with a dashed black line.
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