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Supplementary Figure 1: Gating strategies for FACS-based screens and SPP1 positive cells. 
a,b Gating strategies for (a) CD38 screens and (b) synaptosome phagocytosis screens. Intact iTF-
Microglia were identified from FSC-SSC plot and then gated for singlets. These cells were 
sorted into high and low signal populations corresponding to the top 30% and the bottom 30% of 
the signal distribution. c, To determine the fraction of SPP1+ cells, cells were treated with 
GolgiPlug and singlets were classified using the SPP1 isotype control to determine the threshold.  



SUPPLEMENTARY DISCUSSION 
 
Areas for methodological improvement 
 
Improved inducible CRISPRi/a machinery with more potent gene repression and activation in 
fully differentiated iTF-Microglia would enable the induction of CRISPRi/a at later stages during 
differentiation to avoid false-positive hits that affect microglial differentiation, such as CDK8 
and TGFBR2 (Fig. 4b, Extended Data Fig. 5b-f).  
 
Another goal for future technology development is further acceleration and enhancement of the 
microglial maturation. One potential concern about sustained expression of transgenic 
transcription factors is that this could promote certain microglial states over others. A protocol in 
which transcription factor expression is discontinued after day 8 (Extended Data Fig. 1a) can 
mitigate this concern. As with all currently available in vitro culture systems, microglia are 
slightly activated in monoculture and lose their unique homeostatic brain signature1. Previous 
research has shown that iPSC-microglia become more homeostatic in co-culture with neurons2, 
which is compatible with our own observation of enhanced ramification of iTF-Microglia in 
neuronal co-culture (Fig. 2f). Alternatively, optimizing the set of transcription factors used to 
generate iTF-Microglia may result in improved abundance of homeostatic microglia. CRISPRa 
screens in our current platform are a scalable strategy to identify additional transcription factors 
to promote microglial maturation and homeostasis, leading to ever more faithful models of 
human microglia.  
 
Phagocytosis phenotypes of disease-associated genes 
 
Coding mutations in profilin 1 (PFN1) gene cause amyotrophic lateral sclerosis (ALS)3. PFN1 is 
a small actin-binding protein that promotes formin-based actin polymerization and regulates 
numerous cellular functions, but how mutations in PFN1 cause ALS is unclear. The actin 
cytoskeleton is known to be important for the physiological functions of microglia, including 
migration and phagocytosis. We observed that PFN1 overexpression disrupts the actin 
cytoskeleton in iTF-Microglia with higher levels of F-actin. Recently, a study has shown that 
PFN1 is also involved in microglia activation, since knockdown of PFN1 inhibited M1 
proinflammatory microglial polarization and promoted anti-inflammatory M2 microglia 
polarization after oxygen and glucose deprivation4. Introducing the ALS-associated mutations in 
the PFN1 gene in iPSCs will shed light on the impact of these specific mutations on the function 
of different relevant cell types, such as iPSC-derived neurons and microglia. 
 
Genetic variants in the INPP5D locus are associated with an increased susceptibility to AD5 and 
cerebrovascular function as well as tau and Ab levels in the cerebrospinal fluid of AD patients6. 
INPP5D encodes the lipid phosphatase SHIP1, which is selectively expressed in brain microglia. 
SHIP1 inhibits signal transduction initiated by activation of immune cell surface receptors, such 
as TREM27. Intriguingly, INPP5D expression increases with AD progression, predominantly in 
plaque-associated microglia, and correlates with plaque density8. Given the results from our 
phagocytosis screen, INPP5D overexpression might result in microglia with deficient phagocytic 
capacity, resulting in increased Aβ deposition and neurodegeneration. Concordant with the 



findings from our genetic screen, a recent study found that pharmacological SHIP1/2 inhibitors 
promote microglial phagocytosis in vitro and in vivo9.  
 
Regulators of the SPP1 state 
 
Knockdown or pharmacological inhibition of MAPK14 strongly promoted adoption of the 
disease-associated SPP1-positive state. Previous work suggested a functional connection 
between SPP1 and MAPK14 in cancer cells, where SPP1 can activate the p38 MAPK signaling 
pathway, which comprises MAPK1410. MAPK14 was also recently predicted to be a unique 
network regulator in DAM11. However, our identification of MAPK14 as a regulator of the 
SPP1+ state is novel and enhances our understanding of modulators of microglia cell states. 
 
We found that the SPP1-positive microglia state can be selectively depleted by genetic and 
pharmacological inhibition of CSF1R. CSF1R inhibitors have beneficial effects in mouse models 
of diseases including AD12, 13, tauopathy14 and MS15. Intriguingly, CSF1R inhibition reduced 
SPP1 expression in the MS model, while homeostatic genes such as TMEM119 and P2RY12 
were increased15, paralleling our finding that the SPP1 microglia state is selectively vulnerable to 
CSF1R inhibition. Additionally, disruption of CSF1-CSF1R signaling downregulated SPP1 in 
the cerebellum16. Combining CSF1R depletion and single cell profiling has enabled us 
previously to elucidate the differential effects of CSF1R inhibitors on microglia subtypes17. 
Following CSF1R inhibition, we found an enrichment of microglia states with elevated markers 
of inflammatory chemokines and proliferation and interestingly, in concordance with our 
findings in iTF-Microglia here, an upregulation of cell surface receptor CD7417. Others have 
reported compensatory upregulation of TREM2/b-catenin and IL-34 in microglia following 
conditional CSF1R KO18; however, we did not find consistent upregulation of these factors in 
our iTF-microglia (Supplementary Table 9). Based on our new finding that CSF1R inhibition at 
low doses that are nontoxic to most microglia selectively depletes the SPP1+ population in iTF-
Microglia, low-dose CSF1R inhibition might also give us a tool to study the SPP1+ population in 
mouse disease models.  
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