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Supplementary Fig. S1. Batch design.

(a) The discovery group of 579 thyroid nodules (two nodules were excluded due to

incorrect histological tissue type) from 578 patients consisted of 40 normal thyroid,

203 multinodular goiter, 137 follicular thyroid adenoma, 75 follicular thyroid

carcinoma, and 124 papillary thyroid carcinoma samples with unblinded diagnoses.

Three cores represented each nodule as biological replicates. Thyroid FFPE samples

and technical replicates were randomly allocated into 121 discovery batches to

minimize the batch effect for this large-scale sample preparation. (b) The independent

test datasets comprised a retrospective test group and a prospective test group. The



retrospective test group comprised 288 thyroid nodules of blinded diagnoses from 271
patients. Each nodule was analyzed in technical duplicates, without biological
replicates. A total of 288 FFPE cores and 288 corresponding technical duplicates were
divided into 44 batches for analysis. The prospective test group contained 395 fine-
needle aspiration biopsies of thyroid nodules which were divided into 27 batches.
Each batch consisted of 15 thyroid samples, one mouse liver sample, and one pooled

thyroid sample.
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Supplementary Fig. S2. Data quality evaluation.

(a) Coefficient of variation (CV) of quantified protein abundance for 117, 36, and 27
pooled thyroid samples in the discovery set, retrospective, and prospective test sets,
respectively. (b) CV of identified protein numbers for 112, 18, and 18 mouse liver
samples in the discovery set, retrospective, and prospective test sets, respectively. (¢)
Spearman correlation of paired technical replicates from 56 randomly selected thyroid
samples in the discovery set and 288 in the retrospective test sets. (d) CV for the
number of proteins in technical and biological replicates of the discovery set. (e)
Spearman correlation of paired technical replicates and biological replicates from 56
randomly selected thyroid samples in the discovery set. (f) Overlap of identified

proteins in the three datasets. Altogether 5957 proteins were quantified.
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Supplementary Fig. S3. Uniform manifold approximation and projection
(UMAP) analysis of five histotypes of thyroid tissues.

5312 proteins for which missing values were less than 90% were used in data analysis.
(a) All tissue types, showing FA distributed across benign (N and MNG) and malignant
(FTC and PTC) tissues, (b) FA vs. N; (¢) FTC vs. N; (d) PTC vs. N; (e) FA vs. MNG;
(f) FTC vs. MNG; and (g) PTC vs. MNG. Normal tissue was generally well separated
from all other lesional tissues, while MNG showed some overlap with FA, FTC, and

PTC.
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Supplementary Fig. S4. Data splitting, biological insights of selected features and
cross-validation of the classifier on discovery set and performance on test sets.
(a) Data splitting. (b) Pathway enrichment for the selected protein features. Sankey
diagram showing the relationship between enriched pathways and corresponding
proteins. P values were calculated by right-tailed Fisher's exact test through IPA
software. (¢) Scatter diagram showing the predicted malignancy scores for discovery
(training and validation), and test sets (retrospective and prospective test sets), X-axis
indicates the score for each sample. Score of 0.5 is the threshold for benign and
malignant classification. Nodules with score more than 0.5 would be regarded as
benign tissue Y-axis represents the number of thyroid tissues in different sets. (d)
UMAP plots showing specific tissue types (benign and malignant) based on the 19
protein features in the training set, validation set, and retrospective and prospective
test sets, labeled by each of the five histotypes. (e) Overall performance metrics of
prediction of the neural network model for five follicular-pattern thyroid tumors per
set. Graduated colors in the shaded bar indicate accuracy levels. Numbers in the boxes

indicate the number of correctly identified samples/total sample number.
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Supplementary Fig. S5. Biological insights into Hiirthle cell tumors.

(a) Heatmap showing proteotype expression of thyroid tissue samples highlighting
differentially expressed proteins in Hiirthle cell neoplasms marked in white frames.
Proteins were clustered by method of Ward.D1 in R package of pheatmap. An
experienced histopathological reviewer assigned histological subtypes labeled in the
heatmap. (b) Volcano plots showing differentially expressed proteins between Hiirthle
cell neoplasms vs. follicular neoplasms. Protein intensities used were the average
intensity of three biological replicates. Proteins highlighted in red (up-regulated) or blue
(down-regulated) were significantly different with a four-fold-change cutoff and
adjusted P value threshold less than 0.01. (¢) Graph showing gene ontology (GO)
analysis of the 186 dysregulated proteins in Hiirthle cell neoplasms. Mitochondrial
proteins (160/186) were the most dominant group and most proteins mapped to the
metabolic process. (d) Graph showing enriched top-ten pathways based on 186
dysregulated proteins of Hiirthle cell tumors by IPA analysis. Y-axis shows -logjo (P

value) based on right-tailed Fisher's exact test based on the IPA database.
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Supplementary Fig. S6. Structures of models and stability of the training
algorithm.

(a) Flow diagram of genetic algorithm for protein features selection. (b) Structural
diagram of neural network. (¢) line chart showing the model performance on different
counts of protein features. (d) Plots showing the model performance on loss, (e¢) AUC

and accuracy for each epoch.



Supplementary Notes

Supplementary Note 1. Determinate the missing value threshold

In process of feature selection, we explored different screening conditions, using
25%,30%,35%, and 40% as thresholds for the missing value. The data
(Supplementary Table S5) showed that at more relaxed screening conditions the
higher number of candidate features were nominated and that the results became more
unstable in the independent validation set. The features with higher missing value
rates, although potentially providing better classification were not stably detected and
may negatively affect the quality of the model if such features are selected. Finally, in
our classifier, we clearly defined the criteria for feature selection and used 767

proteins that were missing in less than 35% of samples.

Supplementary Note 2. Model performance on different counts of features

To determine the count of protein features in the panel, we compare the model
performances on the different number of features from four to 35 proteins. The more
features the better accuracy and AUC achieved and reached a plateau when using 13
proteins (Supplementary Table S6). But for the most similar two histopathology
types, FA and FTC, 19 proteins achieved the highest accuracy. Therefore, we used 19

proteins as a panel in the present study.

Supplementary Note 3. Evaluate the stability of selected features

Furthermore, we evaluated the stability of selected features by using 15 different



seeds (integers from 0 to 14) for 15 replicate GA experiments. In the GA stage, a
good feature combination is defended as better than or equal to our proposed
combination, F¢ > 0.917, accuracy (validation set) > 0.862). While we reported a
feature combination with high AUC, more than 94% in retrospective test datasets and
93% in prospective test datasets, the other selected feature combinations had high
individual protein overlap with the reported (Supplementary Table S7). Therefore,

the results indicate that the selected markers were stable predictors.

Supplementary Note 4. Three feature selection methods comparison
Additionally, we compared two frequently used feature selection methods in machine
learning, LASSO, and Random Forest, with GA in two ways. The accuracy values
from both alternative feature selection methods were lower than the GA, indicating

that the GA yields better sets of features (Supplementary Table S8).

Supplementary Note 5. Model stability analysis

To visualize the stability of the training algorithm, we plotted the model performance
on loss, AUC, and accuracy for each epoch. The curve of the loss function
(Supplementary Fig. S6d) was stable and convergent, and the curve of accuracy
(Supplementary Fig. S6e) did not fluctuate, further consolidating the stability of the

model.

Supplementary Note 6. Different models comparison



Furthermore, we compared six alternative machine learning models with our
established classification model using the 19 selected proteins (Fig. 3e). The protein
panel was not optimized for each of the test classifiers, including our designed
classifier. Logistic regression did not use L1 regularization (LASSO constraint) and
was processed using scikit-learn standard logistic regression. Our model performed
the best (AUC=0.93) followed by Random Forest (AUC=0.91), Logistic Regression
(AUC=0.91), LASSO (AUC=0.91), MLP Classifier (AUC=0.91), Support Vector

Machine (SVM, AUC=0.91) and Decision Tree (AUC=0.59).

Supplementary Note 7. Processing the unbalanced data

We designed the cross-entropy loss function by giving different weights to the two
categories to deal with the imbalanced data. 3; and 3, = 2 — [3; were the
hyperparameters of the cross-entropy loss function. The table shows the model
performance with different alpha values and alpha=1.6 achieved the highest AUC on

the validation set, which was selected in the model.



Supplementary Tables

Supplementary Table S1. Detailed patient information of 1161 nodules

Supplementary Table S2. Protein matrices of discovery set, retrospective test

sets, and prospective test sets

Supplementary Table S3. Detailed prediction results



Supplementary Table S4. Model performance of the 19-protein classifier on different sets

Discovery study

Retrospective study

Prospective study

Bethesda III and IV

in the prospective

Bethesda III in the

prospective study

Bethesda IV in the

prospective study

study
Sample type FFPE FFPE FNA biopsy FNA biopsy FNA biopsy FNA biopsy
Total nodules (n) 579 288 294 74 52 22
Malignant nodules (n) 194 144 200 40 30 17
Benign nodules (n) 385 144 94 19 22 5
Prevalence (%)* 33.51(29.78 -37.45)  50.00 (44.26 - 55.74)  68.03 (62.49-73.10)  63.51 (52.13 - 73.56)  57.69 (44.19 - 70.13) 77.27 (56.56 - 89.88)
Predict M/M" 181 121 183 40 24 14
Predict B/B® 347 135 67 19 16 5
Sensitivity (%) 93.30 (88.87-96.04)  84.03 (77.17-89.11)  91.50 (86.81-94.63)  85.11 (72.31-92.59)  80.00 (62.69 - 90.50) 94.12 (73.02 - 98.95)
Specificity (%) 90.13 (86.74 -92.72)  93.75(88.55-96.68)  71.28 (61.44-79.45)  70.37 (51.52 -84.15) 63.64 (42.95-80.27)  100.00 (56.55 - 100.00)
PPV (%) 96.39 (94.52-97.62)  85.44 (80.87 - 89.03)  79.76 (74.98 - 84.11)  73.08 (61.91 - 81.77)  70.00 (55.73 - 80.09) 83.33 (61.48 - 92.69)
NPV (%) 82.65(79.44 -85.59)  93.08 (89.52-95.46) 87.14 (82.76 -90.44)  83.33 (73.76-90.47)  75.00 (61.79 - 84.77)  100.00 (85.13 - 100.00)
Accuracy (%) 91.19 (88.60 - 93.24)  88.89 (84.74-92.02)  85.03 (80.51-88.66)  79.73 (69.21 - 87.31)  73.08 (59.75 - 83.23) 95.45 (78.20 - 99.19)

Each value was calculated to 95% Wilson confidence intervals.

*The ratio of carcinoma in total nodules. The ratio of carcinoma in total nodules.

"The number of malignant nodules was correctly predicted as malignant.

“The number of benign nodules was correctly predicted as benign.



Supplementary Table S5. Model performance on different missing value rate features

Missing rate

Features

Overlap rate

AUC

(Retrospective sets)

AUC

(Prospective sets)

30%

P02765, P04083, 000339, P04899, 075347, P04216, P02751, P26038,

P00568, P78527, P04792, P35579, P42224, P27797, QOHAT2, P46940,

014964, Q8IXM2, P17931

0.74

0.92

0.92

P02765, P04083, 000339, P04899, 075347, P04216, P02751, P26038,

P00568, P78527, P04792, P35579, P42224, P27797, QOHAT?2, P46940,

014964, Q8TXM2, Q01130

0.68

0.90

0.90

P02765, P04083, 000339, P04899, 075347, P04216, P02751, P26038,

P00568, Q13263, P15090, Q8WX93, P42224, Q9Y 696, QOHAT?2,

P30086, 014964, P10909, P17931

0.68

0.93

0.91




P02765, P04083, 000339, P04899, 075347, P23297, P02751, P26038,

P00568, P78527, P04792, P35579, Q7Z4V5, P27797, 000170, Q12797,

014964, P09467, P17931

0.58

0.86

0.89

P02765, P04083, 000339, P04899, 075347, P23297, P02751, P26038,

P00568, P78527, P04792, P35579, Q7Z4VS5, P27797, Q9BUT1, Q12797,

014964, P09467, P17931

0.58

0.89

0.92

P02765, P04083, 000339, P04899, 075347, P23297, P02751, P26038,

P00568, P78527, P04792, P35579, Q7Z4VS5, P27797, Q9Y5X3, Q12797,

014964, P09467, P17931

0.58

0.88

0.91

P02765, P06703, 000339, P04899, P37802, P04216, P09496, P26038,

P00568, P15090, Q07654, Q61Q23, P25788, P50402, Q9HAT2, P30086,

043143, P10909, P17931

0.42

0.89

0.87




P02765, P06703, 000339, P04899, P37802, P04216, P09496, P26038,

P00568, P15090, Q07654, Q61Q23, P25788, P50402, Q9HAT2, P30086,

043143, P10909, P17931

0.42

0.93

0.93

P02765, P07202, 000339, P04899, 075347, P04216, P02751, P26038,

P00568, P78527, P04792, P35579, P42224, P27797, QOHAT2, P30086,

P20340, P10909, P17931

0.74

0.91

0.93

P50454, P04083, 000339, P04899, 075347, P04216, P02751, P06703,

P00568, P78527, P04792, P35579, P42224, P27797, QOHAT2, P30086,

014964, P10909, P17931

0.79

0.93

0.92

35%

(Selected)

P02765, P04083, 000339, P58546, 075347, P04216, P02751, P83731,

P00568, P78527, P04792, P57737, P42224, P27797, Q9HAT2, P30086,

014964, P10909, P17931

0.94

0.93

40%

P02765, P04083, 000339, P04899, 075347, P04216, P02751, P82979,

0.84

0.91

0.89




P00568, P78527, P04792, P35579, P42224, P27797, QOHAT2, P30086,

014964, P10909, P17931




Supplementary Table S6. Model performance on different counts of features

AUC AUC of AUC Accuracy
Feature count
(Validation sets) (Retrospective sets) (Prospective sets) (FA and FTC)
4 0.954 0.866 0.828 0.636
5 0.955 0.910 0.872 0.661
6 0.946 0.904 0.902 0.706
7 0.942 0.894 0.902 0.699
8 0.939 0.907 0.872 0.742
9 0.943 0.917 0.914 0.736
10 0.952 0.919 0.878 0.755
11 0.952 0.924 0.887 0.767
12 0.951 0.908 0.856 0.761




13 0.947 0.924 0.923 0.779
14 0.943 0.929 0914 0.755
15 0.947 0.908 0.935 0.761
16 0.951 0.936 0.910 0.791
17 0.943 0.930 0914 0.804
18 0.953 0.931 0.915 0.785
19 (Selected) 0.951 0.936 0.928 0.816
20 0.958 0.931 0.915 0.804
25 0.963 0.929 0914 0.791
30 0.962 0.924 0.923 0.779
35 0.967 0.924 0914 0.791




Supplementary Table S7. Model performance on different seeds for GA

014964, P10909, P17931

AUC AUC
Seed Features
(Retrospective sets) (Prospective sets)
P02765, P04083, 000339, P58546, 075347, P04216, P02751, P83731,
Our model | P00568, P78527, P04792, P57737, P42224, P27797, Q9HAT?2, P30086, | 0.94 0.93
014964, P10909, P17931
P02765, P04083, 000339, P04899, 075347, P04216, P02751, P26038,
1 P00568, P05109, Q16643, P35579, P42224, P09211, Q9HAT2, P30086, | 0.90 0.92
014964, P10909, P17931
P02765, P04083, 000339, P58546, 075347, P04216, P02751, P83731,
4 P00568, P78527, P04792, P57737, P42224, P27797, Q9HAT2, P30086, | 0.94 0.93




043290, P02766, 000339, Q14498, Q04917, P04216, P02751, P26038,
P61978, P35579, P43405, P08962, P68366, P06753, Q96HE7, P08727,

075521, Q9Y3F4, P17931

0.86

0.85

P02765, P04083, 000339, P04899, 075347, P04216, P02751, P08727,
P00568, P78527, P04792, P35579, P42224, P27797, QOHAT2, P30086,

014964, P10909, P17931

0.92

0.91

P08238, P02766, 000339, P02765, Q04917, P04216, P02751, P09543,
P61978, P35579, P43405, P68871, P68366, P06753, Q96HE7, P08727,

075521, Q9Y3F4, P17931

0.90

0.91

P08238, P02766, 000339, P02765, Q04917, P04216, P02751, P17612,
P61978, P35579, P43405, P68871, P68366, P06753, Q96HE7, P08727,

075521, Q9Y3F4, P17931

0.87

0.88




P08238, P02766, 075369, P02765, Q15149, P02511, P02751, P17612,
P61978, P35579, P43405, P68871, P51580, P06753, Q96HE7, P39059,

075521, Q13263, P17931

0.88

0.82

11

P02765, P04083, 000339, P04899, 075347, P04216, P02751, P82979,
P00568, P78527, P04792, P35579, P42224, P27797, QOHAT2, P30086,

014964, P10909, P17931

0.90

0.89

12

P02765, Q8WX93, P27824, P04899, QOHCDS, P04216, Q53ELS6,
P26038, QONP61, P04080, P30837, P35579, Q8NHGS, P07202,

Q9HAT?2, P30086, 060934, P10909, P17931

0.90

0.82




Supplementary Table S8. Model performance on different feature selection methods and models

Accuracy Accuracy
Features Feature count

(Retrospective sets) | (Prospective sets)
Our model 19 0.89 0.85
LASSO selected features with lasso model
P01903, P07202, P09758, P16671, P22748, P27487, P35625, P36021,
P52926, P58107, Q07654, Q07817, Q13509, Q15742, Q16656, Q61Q23, 23 0.79 0.76
Q8IV56, Q8WUFS5, Q8WXXS, Q9BV79, Q9BWM7, QINXSS, QIP2KS
P01903, P07202, P09758, P16671, P22748, P27487, P35625, P52926,
P58107, Q07654, Q07817, Q13509, Q15742, Q16656, Q61Q23, Q8IV56, 22 0.80 0.77
Q8WUFS, Q8WXXS5, Q9BV79, Q9BWM7, QINXSS, Q9P2KS
P01903, P07202, P09758, P16671, P22748, P27487, P35625, P52926, 21 0.79 0.77




P58107, Q07654, Q07817, Q13509, Q15742, Q16656, Q61Q23, Q8IV56,

Q8WUF5, Q8WXXS5, Q9BV79, Q9BWM7, Q9P2KS

P01903, P07202, P09758, P16671, P22748, P27487, P35625, P52926,
P58107, Q07654, Q13509, Q15742, Q8IV56, QWUF5, Q8WXX5, QIBV79,

QIBWM7, Q9P2KS5

18

0.80

0.78

P01903, P07202, PO9758, P16671, P22748, P27487, P35625, P52926,

P58107, Q07654, Q13509, Q15742, Q8WUFS5, Q8WXXS5, QIBV79, Q9P2KS

16

0.81

0.78

LASSO selected features with our model

P01903, P07202, P0O9758, P16671, P22748, P27487, P35625, P36021,
P52926, P58107, Q07654, Q07817, Q13509, Q15742, Q16656, Q6I1Q23,

Q8IV56, QWUFS5, Q8WXXS5, Q9BV79, Q9BWM?7, QINX55, QIP2KS

23

0.83

0.81

P01903, P07202, P0O9758, P16671, P22748, P27487, P35625, P52926,

P58107, Q07654, Q07817, Q13509, Q15742, Q16656, Q61Q23, Q8IV56,

22

0.84

0.81




Q8WUF5, Q8WXXS5, Q9BV79, Q9BWM7, QINXS55, QIP2K5

P01903, P07202, P09758, P16671, P22748, P27487, P35625, P52926,
P58107, Q07654, Q07817, Q13509, Q15742, Q16656, Q61Q23, Q8IV56,

Q8WUF5, Q8WXXS5, Q9BV79, Q9BWM7, QIP2KS

21

0.83

0.80

P01903, P07202, P09758, P16671, P22748, P27487, P35625, P52926,
P58107, Q07654, Q13509, Q15742, Q8IV56, QWUF5, Q8WXX5, QIBV79,

QIBWM7, Q9P2KS5

18

0.84

0.81

P01903, P07202, P0O9758, P16671, P22748, P27487, P35625, P52926,

P58107, Q07654, Q13509, Q15742, Q8WUFS5, Q8WXXS5, QIBV79, Q9P2KS

16

0.83

0.80

Random Forest selected features with our model

000154, 015020, 095171, P09668, P11137, P16989, P42167, P54727,
P60660, Q00688, Q13185, Q14847, Q15149, Q15742, Q9BW04, Q9UBGO,

QYUJUG6

17

0.73

0.76




000154, 015020, 095171, O95436, P09668, P11137, P12268, P16989,
P42167, P50479, P54727, P60660, Q00688, Q13185, Q14847, Q15149,

Q15742, Q9BW04, Q9UBGO, Q9UJU6

20

0.75

0.75

000154, 015020, 095171, O95436, P04083, P09668, P11137, P12268,
P16989, P42167, P50479, P54727, P60660, P63313, Q00688, Q13185,

Q14847, Q15149, Q15742, Q99961, Q9BW04, Q9BZG1, QQUBGO, QIUJU6

24

0.74

0.73

Random Forest selected features with Random Forest model

000154, 015020, 095171, P09668, P11137, P16989, P42167, P54727,
P60660, Q00688, Q13185, Q14847, Q15149, Q15742, Q9BW04, Q9UBGO,

QYUJUG6

17

0.77

0.76

000154, 015020, 095171, ©O95436, P09668, P11137, P12268, P16989,
P42167, P50479, P54727, P60660, Q00688, Q13185, Q14847, Q15149,

Q15742, Q9BW04, Q9UBGO, Q9UJU6

20

0.73

0.71




000154, 015020, 095171, ©O95436, P04083, P09668, P11137, P12268,
P16989, P42167, P50479, P54727, P60660, P63313, Q00688, Q13185,

Q14847, Q15149, Q15742, Q99961, Q9BW04, Q9BZG1, QQUBGO, QIUJU6

24

0.75

0.73




Supplementary Table S9. Model performance with different alpha values

alpha AUC AUC AUC
(Validation sets) (Retrospective sets) | (Prospective sets)
1 0.9473 091 0.87
1.2 0.9512 091 091
1.4 0.9496 0.94 0.94
1.6 (Selected) | 0.9514 0.94 0.93




