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Supplementary figures 

Supplementary Figure S1 

  

Supplementary Fig. S1. Batch design.  

(a) The discovery group of 579 thyroid nodules (two nodules were excluded due to 

incorrect histological tissue type) from 578 patients consisted of 40 normal thyroid, 

203 multinodular goiter, 137 follicular thyroid adenoma, 75 follicular thyroid 

carcinoma, and 124 papillary thyroid carcinoma samples with unblinded diagnoses. 

Three cores represented each nodule as biological replicates. Thyroid FFPE samples 

and technical replicates were randomly allocated into 121 discovery batches to 

minimize the batch effect for this large-scale sample preparation. (b) The independent 

test datasets comprised a retrospective test group and a prospective test group. The 



retrospective test group comprised 288 thyroid nodules of blinded diagnoses from 271 

patients. Each nodule was analyzed in technical duplicates, without biological 

replicates. A total of 288 FFPE cores and 288 corresponding technical duplicates were 

divided into 44 batches for analysis. The prospective test group contained 395 fine-

needle aspiration biopsies of thyroid nodules which were divided into 27 batches. 

Each batch consisted of 15 thyroid samples, one mouse liver sample, and one pooled 

thyroid sample. 

  



Supplementary Figure S2 

 
  



 

Supplementary Fig. S2. Data quality evaluation.  

(a) Coefficient of variation (CV) of quantified protein abundance for 117, 36, and 27 

pooled thyroid samples in the discovery set, retrospective, and prospective test sets, 

respectively. (b) CV of identified protein numbers for 112, 18, and 18 mouse liver 

samples in the discovery set, retrospective, and prospective test sets, respectively. (c) 

Spearman correlation of paired technical replicates from 56 randomly selected thyroid 

samples in the discovery set and 288 in the retrospective test sets. (d) CV for the 

number of proteins in technical and biological replicates of the discovery set. (e) 

Spearman correlation of paired technical replicates and biological replicates from 56 

randomly selected thyroid samples in the discovery set. (f) Overlap of identified 

proteins in the three datasets. Altogether 5957 proteins were quantified.  

 

  



Supplementary Figure S3 

 

Supplementary Fig. S3. Uniform manifold approximation and projection 

(UMAP) analysis of five histotypes of thyroid tissues.  

5312 proteins for which missing values were less than 90% were used in data analysis. 

(a) All tissue types, showing FA distributed across benign (N and MNG) and malignant 

(FTC and PTC) tissues, (b) FA vs. N; (c) FTC vs. N; (d) PTC vs. N; (e) FA vs. MNG; 

(f) FTC vs. MNG; and (g) PTC vs. MNG. Normal tissue was generally well separated 

from all other lesional tissues, while MNG showed some overlap with FA, FTC, and 

PTC. 

 

  



Supplementary Figure S4 

 
  



Supplementary Fig. S4. Data splitting, biological insights of selected features and 

cross-validation of the classifier on discovery set and performance on test sets.  

(a) Data splitting. (b) Pathway enrichment for the selected protein features. Sankey 

diagram showing the relationship between enriched pathways and corresponding 

proteins. P values were calculated by right-tailed Fisher's exact test through IPA 

software. (c) Scatter diagram showing the predicted malignancy scores for discovery 

(training and validation), and test sets (retrospective and prospective test sets), X-axis 

indicates the score for each sample. Score of 0.5 is the threshold for benign and 

malignant classification. Nodules with score more than 0.5 would be regarded as 

benign tissue Y-axis represents the number of thyroid tissues in different sets. (d) 

UMAP plots showing specific tissue types (benign and malignant) based on the 19 

protein features in the training set, validation set, and retrospective and prospective 

test sets, labeled by each of the five histotypes. (e) Overall performance metrics of 

prediction of the neural network model for five follicular-pattern thyroid tumors per 

set. Graduated colors in the shaded bar indicate accuracy levels. Numbers in the boxes 

indicate the number of correctly identified samples/total sample number. 

 

 

  



Supplementary Figure S5 

 
  



Supplementary Fig. S5. Biological insights into Hürthle cell tumors.  

(a) Heatmap showing proteotype expression of thyroid tissue samples highlighting 

differentially expressed proteins in Hürthle cell neoplasms marked in white frames. 

Proteins were clustered by method of Ward.D1 in R package of pheatmap. An 

experienced histopathological reviewer assigned histological subtypes labeled in the 

heatmap. (b) Volcano plots showing differentially expressed proteins between Hürthle 

cell neoplasms vs. follicular neoplasms. Protein intensities used were the average 

intensity of three biological replicates. Proteins highlighted in red (up-regulated) or blue 

(down-regulated) were significantly different with a four-fold-change cutoff and 

adjusted P value threshold less than 0.01. (c) Graph showing gene ontology (GO) 

analysis of the 186 dysregulated proteins in Hürthle cell neoplasms. Mitochondrial 

proteins (160/186) were the most dominant group and most proteins mapped to the 

metabolic process. (d) Graph showing enriched top-ten pathways based on 186 

dysregulated proteins of Hürthle cell tumors by IPA analysis. Y-axis shows -log10 (P 

value) based on right-tailed Fisher's exact test based on the IPA database. 

 

 

  



Supplementary Figure S6 

 
  



Supplementary Fig. S6. Structures of models and stability of the training 

algorithm.  

(a) Flow diagram of genetic algorithm for protein features selection. (b) Structural 

diagram of neural network. (c) line chart showing the model performance on different 

counts of protein features. (d) Plots showing the model performance on loss, (e) AUC 

and accuracy for each epoch.  

 

  



Supplementary Notes 

Supplementary Note 1. Determinate the missing value threshold  

In process of feature selection, we explored different screening conditions, using 

25%,30%,35%, and 40% as thresholds for the missing value. The data 

(Supplementary Table S5) showed that at more relaxed screening conditions the 

higher number of candidate features were nominated and that the results became more 

unstable in the independent validation set. The features with higher missing value 

rates, although potentially providing better classification were not stably detected and 

may negatively affect the quality of the model if such features are selected. Finally, in 

our classifier, we clearly defined the criteria for feature selection and used 767 

proteins that were missing in less than 35% of samples.  

 

Supplementary Note 2. Model performance on different counts of features 

To determine the count of protein features in the panel, we compare the model 

performances on the different number of features from four to 35 proteins. The more 

features the better accuracy and AUC achieved and reached a plateau when using 13 

proteins (Supplementary Table S6). But for the most similar two histopathology 

types, FA and FTC, 19 proteins achieved the highest accuracy. Therefore, we used 19 

proteins as a panel in the present study. 

 

Supplementary Note 3. Evaluate the stability of selected features 

Furthermore, we evaluated the stability of selected features by using 15 different 



seeds (integers from 0 to 14) for 15 replicate GA experiments. In the GA stage, a 

good feature combination is defended as better than or equal to our proposed 

combination, F" ≥ 0.917, accuracy	(validation	set) ≥ 0.862). While we reported a 

feature combination with high AUC, more than 94% in retrospective test datasets and 

93% in prospective test datasets, the other selected feature combinations had high 

individual protein overlap with the reported (Supplementary Table S7). Therefore, 

the results indicate that the selected markers were stable predictors. 

 

Supplementary Note 4. Three feature selection methods comparison 

Additionally, we compared two frequently used feature selection methods in machine 

learning, LASSO, and Random Forest, with GA in two ways. The accuracy values 

from both alternative feature selection methods were lower than the GA, indicating 

that the GA yields better sets of features (Supplementary Table S8).  

 

Supplementary Note 5. Model stability analysis 

To visualize the stability of the training algorithm, we plotted the model performance 

on loss, AUC, and accuracy for each epoch. The curve of the loss function 

(Supplementary Fig. S6d) was stable and convergent, and the curve of accuracy 

(Supplementary Fig. S6e) did not fluctuate, further consolidating the stability of the 

model. 

 

Supplementary Note 6. Different models comparison  



Furthermore, we compared six alternative machine learning models with our 

established classification model using the 19 selected proteins (Fig. 3e). The protein 

panel was not optimized for each of the test classifiers, including our designed 

classifier. Logistic regression did not use L1 regularization (LASSO constraint) and 

was processed using scikit-learn standard logistic regression. Our model performed 

the best (AUC=0.93) followed by Random Forest (AUC=0.91), Logistic Regression 

(AUC=0.91), LASSO (AUC=0.91), MLP Classifier (AUC=0.91), Support Vector 

Machine (SVM, AUC=0.91) and Decision Tree (AUC=0.59). 

 

Supplementary Note 7. Processing the unbalanced data 

We designed the cross-entropy loss function by giving different weights to the two 

categories to deal with the imbalanced data. β?	and	β@ = 2 − β? were the 

hyperparameters of the cross-entropy loss function. The table shows the model 

performance with different alpha values and alpha=1.6 achieved the highest AUC on 

the validation set, which was selected in the model. 

 

  



Supplementary Tables 

Supplementary Table S1. Detailed patient information of 1161 nodules 

 

Supplementary Table S2. Protein matrices of discovery set, retrospective test 

sets, and prospective test sets 

 

Supplementary Table S3. Detailed prediction results 

 



Supplementary Table S4. Model performance of the 19-protein classifier on different sets 

�  Discovery study Retrospective study Prospective study 
Bethesda III and IV 
in the prospective 

study 

Bethesda III in the 
prospective study 

Bethesda IV in the 
prospective study 

Sample type FFPE FFPE FNA biopsy FNA biopsy FNA biopsy FNA biopsy 
Total nodules (n) 579 288 294 74 52 22 

Malignant nodules (n) 194 144 200 40 30 17 
Benign nodules (n) 385 144 94 19 22 5 

Prevalence (%)a 33.51 (29.78 - 37.45) 50.00 (44.26 - 55.74) 68.03 (62.49 - 73.10) 63.51 (52.13 - 73.56) 57.69 (44.19 - 70.13) 77.27 (56.56 - 89.88) 
Predict M/Mb 181 121 183 40 24 14 
Predict B/Bc 347 135 67 19 16 5 

Sensitivity (%) 93.30 (88.87 - 96.04) 84.03 (77.17 - 89.11) 91.50 (86.81 - 94.63) 85.11 (72.31 - 92.59) 80.00 (62.69 - 90.50) 94.12 (73.02 - 98.95) 
Specificity (%) 90.13 (86.74 - 92.72) 93.75 (88.55 - 96.68) 71.28 (61.44 - 79.45) 70.37 (51.52 - 84.15) 63.64 (42.95 - 80.27) 100.00 (56.55 - 100.00) 

PPV (%) 96.39 (94.52 - 97.62) 85.44 (80.87 - 89.03) 79.76 (74.98 - 84.11) 73.08 (61.91 - 81.77) 70.00 (55.73 - 80.09) 83.33 (61.48 - 92.69) 
NPV (%) 82.65 (79.44 - 85.59) 93.08 (89.52 - 95.46) 87.14 (82.76 - 90.44) 83.33 (73.76 - 90.47) 75.00 (61.79 - 84.77) 100.00 (85.13 - 100.00) 

Accuracy (%) 91.19 (88.60 - 93.24) 88.89 (84.74 - 92.02) 85.03 (80.51 - 88.66) 79.73 (69.21 - 87.31) 73.08 (59.75 - 83.23) 95.45 (78.20 - 99.19) 

Each value was calculated to 95% Wilson confidence intervals. 

aThe ratio of carcinoma in total nodules. The ratio of carcinoma in total nodules. 

bThe number of malignant nodules was correctly predicted as malignant. 

cThe number of benign nodules was correctly predicted as benign. 



Supplementary Table S5. Model performance on different missing value rate features 

Missing rate Features Overlap rate 
AUC 

(Retrospective sets) 

AUC 

(Prospective sets) 

30% 

P02765, P04083, O00339, P04899, O75347, P04216, P02751, P26038, 

P00568, P78527, P04792, P35579, P42224, P27797, Q9HAT2, P46940, 

O14964, Q8IXM2, P17931 

0.74 0.92 0.92 

P02765, P04083, O00339, P04899, O75347, P04216, P02751, P26038, 

P00568, P78527, P04792, P35579, P42224, P27797, Q9HAT2, P46940, 

O14964, Q8IXM2, Q01130 

0.68 0.90 0.90 

P02765, P04083, O00339, P04899, O75347, P04216, P02751, P26038, 

P00568, Q13263, P15090, Q8WX93, P42224, Q9Y696, Q9HAT2, 

P30086, O14964, P10909, P17931 

0.68 0.93 0.91 



P02765, P04083, O00339, P04899, O75347, P23297, P02751, P26038, 

P00568, P78527, P04792, P35579, Q7Z4V5, P27797, O00170, Q12797, 

O14964, P09467, P17931 

0.58 0.86 0.89 

P02765, P04083, O00339, P04899, O75347, P23297, P02751, P26038, 

P00568, P78527, P04792, P35579, Q7Z4V5, P27797, Q9BUT1, Q12797, 

O14964, P09467, P17931 

0.58 0.89 0.92 

P02765, P04083, O00339, P04899, O75347, P23297, P02751, P26038, 

P00568, P78527, P04792, P35579, Q7Z4V5, P27797, Q9Y5X3, Q12797, 

O14964, P09467, P17931 

0.58 0.88 0.91 

P02765, P06703, O00339, P04899, P37802, P04216, P09496, P26038, 

P00568, P15090, Q07654, Q6IQ23, P25788, P50402, Q9HAT2, P30086, 

O43143, P10909, P17931 

0.42 0.89 0.87 



P02765, P06703, O00339, P04899, P37802, P04216, P09496, P26038, 

P00568, P15090, Q07654, Q6IQ23, P25788, P50402, Q9HAT2, P30086, 

O43143, P10909, P17931 

0.42 0.93 0.93 

P02765, P07202, O00339, P04899, O75347, P04216, P02751, P26038, 

P00568, P78527, P04792, P35579, P42224, P27797, Q9HAT2, P30086, 

P20340, P10909, P17931 

0.74 0.91 0.93 

P50454, P04083, O00339, P04899, O75347, P04216, P02751, P06703, 

P00568, P78527, P04792, P35579, P42224, P27797, Q9HAT2, P30086, 

O14964, P10909, P17931 

0.79 0.93 0.92 

35% 

(Selected) 

P02765, P04083, O00339, P58546, O75347, P04216, P02751, P83731, 

P00568, P78527, P04792, P57737, P42224, P27797, Q9HAT2, P30086, 

O14964, P10909, P17931 

-- 0.94 0.93 

40% P02765, P04083, O00339, P04899, O75347, P04216, P02751, P82979, 0.84 0.91 0.89 



P00568, P78527, P04792, P35579, P42224, P27797, Q9HAT2, P30086, 

O14964, P10909, P17931 

 

  



Supplementary Table S6. Model performance on different counts of features 

Feature count 
AUC  

(Validation sets)  

AUC of 

(Retrospective sets) 

AUC 

(Prospective sets) 

Accuracy 

(FA and FTC) 

4 0.954  0.866  0.828  0.636  

5 0.955  0.910  0.872  0.661  

6 0.946  0.904  0.902  0.706  

7 0.942  0.894  0.902  0.699  

8 0.939  0.907  0.872  0.742  

9 0.943  0.917  0.914  0.736  

10 0.952  0.919  0.878  0.755  

11 0.952  0.924  0.887  0.767  

12 0.951  0.908  0.856  0.761  



13 0.947  0.924  0.923  0.779  

14 0.943  0.929  0.914  0.755  

15 0.947  0.908  0.935  0.761  

16 0.951  0.936  0.910  0.791  

17 0.943  0.930  0.914  0.804  

18 0.953  0.931  0.915  0.785  

19 (Selected) 0.951  0.936  0.928  0.816  

20 0.958  0.931  0.915  0.804  

25 0.963  0.929  0.914  0.791  

30 0.962  0.924  0.923  0.779  

35 0.967  0.924  0.914  0.791  

 

  



Supplementary Table S7. Model performance on different seeds for GA 

Seed Features 
AUC 

(Retrospective sets) 

AUC 

(Prospective sets) 

Our model  

P02765, P04083, O00339, P58546, O75347, P04216, P02751, P83731, 

P00568, P78527, P04792, P57737, P42224, P27797, Q9HAT2, P30086, 

O14964, P10909, P17931 

0.94 0.93 

1 

P02765, P04083, O00339, P04899, O75347, P04216, P02751, P26038, 

P00568, P05109, Q16643, P35579, P42224, P09211, Q9HAT2, P30086, 

O14964, P10909, P17931 

0.90 0.92 

4 

P02765, P04083, O00339, P58546, O75347, P04216, P02751, P83731, 

P00568, P78527, P04792, P57737, P42224, P27797, Q9HAT2, P30086, 

O14964, P10909, P17931 

0.94 0.93 



7 

O43290, P02766, O00339, Q14498, Q04917, P04216, P02751, P26038, 

P61978, P35579, P43405, P08962, P68366, P06753, Q96HE7, P08727, 

O75521, Q9Y3F4, P17931 

0.86 0.85 

P02765, P04083, O00339, P04899, O75347, P04216, P02751, P08727, 

P00568, P78527, P04792, P35579, P42224, P27797, Q9HAT2, P30086, 

O14964, P10909, P17931 

0.92 0.91 

8 

P08238, P02766, O00339, P02765, Q04917, P04216, P02751, P09543, 

P61978, P35579, P43405, P68871, P68366, P06753, Q96HE7, P08727, 

O75521, Q9Y3F4, P17931 

0.90 0.91 

P08238, P02766, O00339, P02765, Q04917, P04216, P02751, P17612, 

P61978, P35579, P43405, P68871, P68366, P06753, Q96HE7, P08727, 

O75521, Q9Y3F4, P17931 

0.87 0.88 



P08238, P02766, O75369, P02765, Q15149, P02511, P02751, P17612, 

P61978, P35579, P43405, P68871, P51580, P06753, Q96HE7, P39059, 

O75521, Q13263, P17931 

0.88 0.82 

11 

P02765, P04083, O00339, P04899, O75347, P04216, P02751, P82979, 

P00568, P78527, P04792, P35579, P42224, P27797, Q9HAT2, P30086, 

O14964, P10909, P17931 

0.90 
0.89 

 

12 

P02765, Q8WX93, P27824, P04899, Q9HCD5, P04216, Q53EL6, 

P26038, Q9NP61, P04080, P30837, P35579, Q8NHG8, P07202, 

Q9HAT2, P30086, O60934, P10909, P17931 

0.90 0.82 

 

  



Supplementary Table S8. Model performance on different feature selection methods and models 

Features Feature count  
Accuracy 

(Retrospective sets) 

Accuracy 

(Prospective sets) 

Our model 19 0.89 0.85 

LASSO selected features with lasso model 

P01903, P07202, P09758, P16671, P22748, P27487, P35625, P36021, 

P52926, P58107, Q07654, Q07817, Q13509, Q15742, Q16656, Q6IQ23, 

Q8IV56, Q8WUF5, Q8WXX5, Q9BV79, Q9BWM7, Q9NX55, Q9P2K5 

23 0.79 0.76 

P01903, P07202, P09758, P16671, P22748, P27487, P35625, P52926, 

P58107, Q07654, Q07817, Q13509, Q15742, Q16656, Q6IQ23, Q8IV56, 

Q8WUF5, Q8WXX5, Q9BV79, Q9BWM7, Q9NX55, Q9P2K5 

22 0.80 0.77 

P01903, P07202, P09758, P16671, P22748, P27487, P35625, P52926, 21 0.79 0.77 



P58107, Q07654, Q07817, Q13509, Q15742, Q16656, Q6IQ23, Q8IV56, 

Q8WUF5, Q8WXX5, Q9BV79, Q9BWM7, Q9P2K5 

P01903, P07202, P09758, P16671, P22748, P27487, P35625, P52926, 

P58107, Q07654, Q13509, Q15742, Q8IV56, Q8WUF5, Q8WXX5, Q9BV79, 

Q9BWM7, Q9P2K5 

18 0.80 0.78 

P01903, P07202, P09758, P16671, P22748, P27487, P35625, P52926, 

P58107, Q07654, Q13509, Q15742, Q8WUF5, Q8WXX5, Q9BV79, Q9P2K5 
16 0.81 0.78 

LASSO selected features with our model 

P01903, P07202, P09758, P16671, P22748, P27487, P35625, P36021, 

P52926, P58107, Q07654, Q07817, Q13509, Q15742, Q16656, Q6IQ23, 

Q8IV56, Q8WUF5, Q8WXX5, Q9BV79, Q9BWM7, Q9NX55, Q9P2K5 

23 0.83 0.81 

P01903, P07202, P09758, P16671, P22748, P27487, P35625, P52926, 

P58107, Q07654, Q07817, Q13509, Q15742, Q16656, Q6IQ23, Q8IV56, 
22 0.84 0.81 



Q8WUF5, Q8WXX5, Q9BV79, Q9BWM7, Q9NX55, Q9P2K5 

P01903, P07202, P09758, P16671, P22748, P27487, P35625, P52926, 

P58107, Q07654, Q07817, Q13509, Q15742, Q16656, Q6IQ23, Q8IV56, 

Q8WUF5, Q8WXX5, Q9BV79, Q9BWM7, Q9P2K5 

21 0.83 0.80 

P01903, P07202, P09758, P16671, P22748, P27487, P35625, P52926, 

P58107, Q07654, Q13509, Q15742, Q8IV56, Q8WUF5, Q8WXX5, Q9BV79, 

Q9BWM7, Q9P2K5 

18 0.84 0.81 

P01903, P07202, P09758, P16671, P22748, P27487, P35625, P52926, 

P58107, Q07654, Q13509, Q15742, Q8WUF5, Q8WXX5, Q9BV79, Q9P2K5 
16 0.83 0.80 

Random Forest selected features with our model 

O00154, O15020, O95171, P09668, P11137, P16989, P42167, P54727, 

P60660, Q00688, Q13185, Q14847, Q15149, Q15742, Q9BW04, Q9UBG0, 

Q9UJU6 

17 0.73 0.76 



O00154, O15020, O95171, O95436, P09668, P11137, P12268, P16989, 

P42167, P50479, P54727, P60660, Q00688, Q13185, Q14847, Q15149, 

Q15742, Q9BW04, Q9UBG0, Q9UJU6 

20 0.75 0.75 

O00154, O15020, O95171, O95436, P04083, P09668, P11137, P12268, 

P16989, P42167, P50479, P54727, P60660, P63313, Q00688, Q13185, 

Q14847, Q15149, Q15742, Q99961, Q9BW04, Q9BZG1, Q9UBG0, Q9UJU6 

24 0.74 0.73 

Random Forest selected features with Random Forest model 

O00154, O15020, O95171, P09668, P11137, P16989, P42167, P54727, 

P60660, Q00688, Q13185, Q14847, Q15149, Q15742, Q9BW04, Q9UBG0, 

Q9UJU6 

17 0.77 0.76 

O00154, O15020, O95171, O95436, P09668, P11137, P12268, P16989, 

P42167, P50479, P54727, P60660, Q00688, Q13185, Q14847, Q15149, 

Q15742, Q9BW04, Q9UBG0, Q9UJU6 

20 0.73 0.71 



O00154, O15020, O95171, O95436, P04083, P09668, P11137, P12268, 

P16989, P42167, P50479, P54727, P60660, P63313, Q00688, Q13185, 

Q14847, Q15149, Q15742, Q99961, Q9BW04, Q9BZG1, Q9UBG0, Q9UJU6 

24 0.75 0.73 

 

  



Supplementary Table S9. Model performance with different alpha values 

alpha AUC 

(Validation sets)  

AUC 

(Retrospective sets) 

AUC 

(Prospective sets) 

1 0.9473 0.91 0.87 

1.2 0.9512 0.91 0.91 

1.4 0.9496 0.94 0.94 

1.6 (Selected) 0.9514 0.94 0.93 

 

 


